1
|
Liang P, Chen X, Wang J, Cai C, He M, Li X, Li Y, Koskela S, Xu D. Regenerated cellulose films with controllable microporous structure for enhanced seed germination. Int J Biol Macromol 2024; 279:135287. [PMID: 39233169 DOI: 10.1016/j.ijbiomac.2024.135287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
In this work, the preparation of high-performance and porous regenerated cellulose (RCNH) films for seed germination application were investigated. The films were prepared from bamboo-based cellulose carbamate-NaOH/ZnO/urea and coagulated using environmentally friendly aqueous solution of (NH4)2SO4. The results showed that the pore size of the films could be efficiently controlled by changing the concentration and temperature of the coagulation bath. In a mild environment, the system remains undisturbed, resulting in slow diffusion between the solvent and coagulation bath. This allows for the cellulose molecular chains to align in parallel and self-aggregate, forming a three-dimensional network structure. Therefore, the best mechanical properties were demonstrated by a film coagulated using 5 wt% (NH4)2SO4 solution at 10 °C. This film showed excellent tensile strength of 108 MPa and high elongation at break (35 %). As compared to a plastic wrap, the film demonstrated higher permeability for oxygen, and a moisture retaining ability. Due to these properties, it could be used as an agricultural film to encase and promote the growth of mung bean seeds. Moreover, the film was biodegradable with a short decomposition time, losing 90.75 % of its original mass after 63 days. In a summary, this work provides a route for robust, biodegradable, and permeable regenerated cellulose films with potential applications as biodegradable agricultural mulches.
Collapse
Affiliation(s)
- Pin Liang
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Xiaoping Chen
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, PR China
| | - Junmei Wang
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Chunsheng Cai
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China.
| | - Meng He
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Xingxing Li
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Yibao Li
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Salla Koskela
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Dingfeng Xu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China.
| |
Collapse
|
2
|
Godshall GF, Rau DA, Williams CB, Moore RB. Additive Manufacturing of Poly(phenylene Sulfide) Aerogels via Simultaneous Material Extrusion and Thermally Induced Phase Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307881. [PMID: 38009658 DOI: 10.1002/adma.202307881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Additive manufacturing (AM) of aerogels increases the achievable geometric complexity, and affords fabrication of hierarchically porous structures. In this work, a custom heated material extrusion (MEX) device prints aerogels of poly(phenylene sulfide) (PPS), an engineering thermoplastic, via in situ thermally induced phase separation (TIPS). First, pre-prepared solid gel inks are dissolved at high temperatures in the heated extruder barrel to form a homogeneous polymer solution. Solutions are then extruded onto a room-temperature substrate, where printed roads maintain their bead shape and rapidly solidify via TIPS, thus enabling layer-wise MEX AM. Printed gels are converted to aerogels via postprocessing solvent exchange and freeze-drying. This work explores the effect of ink composition on printed aerogel morphology and thermomechanical properties. Scanning electron microscopy micrographs reveal complex hierarchical microstructures that are compositionally dependent. Printed aerogels demonstrate tailorable porosities (50.0-74.8%) and densities (0.345-0.684 g cm-3), which align well with cast aerogel analogs. Differential scanning calorimetry thermograms indicate printed aerogels are highly crystalline (≈43%), suggesting that printing does not inhibit the solidification process occurring during TIPS (polymer crystallization). Uniaxial compression testing reveals that compositionally dependent microstructure governs aerogel mechanical behavior, with compressive moduli ranging from 33.0 to 106.5 MPa.
Collapse
Affiliation(s)
- Garrett F Godshall
- Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Daniel A Rau
- Department of Mechanical Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Christopher B Williams
- Department of Mechanical Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Robert B Moore
- Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
3
|
Spiering GA, Godshall GF, Moore RB. High Modulus, Strut-like poly(ether ether ketone) Aerogels Produced from a Benign Solvent. Gels 2024; 10:283. [PMID: 38667702 PMCID: PMC11049303 DOI: 10.3390/gels10040283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Poly(ether ether ketone) (PEEK) was found to form gels in the benign solvent 1,3-diphenylacetone (DPA). Gelation of PEEK in DPA was found to form an interconnected, strut-like morphology composed of polymer axialites. To our knowledge, this is the first report of a strut-like morphology for PEEK aerogels. PEEK/DPA gels were prepared by first dissolving PEEK in DPA at 320 °C. Upon cooling to 50 °C, PEEK crystallizes and forms a gel in DPA. The PEEK/DPA phase diagram indicated that phase separation occurs by solid-liquid phase separation, implying that DPA is a good solvent for PEEK. The Flory-Huggins interaction parameter, calculated as χ12 = 0.093 for the PEEK/DPA system, confirmed that DPA is a good solvent for PEEK. PEEK aerogels were prepared by solvent exchanging DPA to water then freeze-drying. PEEK aerogels were found to have densities between 0.09 and 0.25 g/cm3, porosities between 80 and 93%, and surface areas between 200 and 225 m2/g, depending on the initial gel concentration. Using nitrogen adsorption analyses, PEEK aerogels were found to be mesoporous adsorbents, with mesopore sizes of about 8 nm, which formed between stacks of platelike crystalline lamellae. Scanning electron microscopy and X-ray scattering were utilized to elucidate the hierarchical structure of the PEEK aerogels. Morphological analysis found that the PEEK/DPA gels were composed of a highly nucleated network of PEEK axialites (i.e., aggregates of stacked crystalline lamellae). The highly connected axialite network imparted robust mechanical properties on PEEK aerogels, which were found to densify less upon freeze-drying than globular PEEK aerogel counterparts gelled from dichloroacetic acid (DCA) or 4-chlorphenol (4CP). PEEK aerogels formed from DPA were also found to have a modulus-density scaling that was far more efficient in supporting loads than the poorly connected aerogels formed from PEEK/DCA or PEEK/4CP solutions. The strut-like morphology in these new PEEK aerogels also significantly improved the modulus to a degree that is comparable to high-performance crosslinked aerogels based on polyimide and polyurea of comparable densities.
Collapse
Affiliation(s)
| | | | - Robert B. Moore
- Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; (G.A.S.); (G.F.G.)
| |
Collapse
|
4
|
Suresh S, Nabiyeva T, Biniek L, Gowd EB. Poly(vinylidene fluoride) Aerogels with α, β, and γ Crystalline Forms: Correlating Physicochemical Properties with Polymorphic Structures. ACS POLYMERS AU 2024; 4:128-139. [PMID: 38618004 PMCID: PMC11010255 DOI: 10.1021/acspolymersau.3c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 04/16/2024]
Abstract
Strategic customization of crystalline forms of poly(vinylidene fluoride) (PVDF) aerogels is of great importance for a variety of applications, from energy harvesters to thermal and acoustic insulation. Here, we report sustainable strategies to prepare crystalline pure α, β, and γ forms of PVDF aerogels from their respective gels using a solvent exchange strategy with green solvents, followed by a freeze-drying technique. The crucial aspect of this process was the meticulous choice of appropriate solvents to enable the formation of thermoreversible gels of PVDF by crystallization-induced gelation. Depending on the polymer-solvent interactions, the chain conformation of PVDF can be modulated to obtain gels and aerogels with specific crystalline structures. The crystalline pure α-form and piezoelectric β-form aerogels were readily obtained by using cyclohexanone and γ-butyrolactone as gelation solvents. On the other hand, the γ-form aerogel was obtained using a binary solvent system consisting of dimethylacetamide and water. These aerogels with distinct crystalline structures exhibit different morphologies, mechanical properties, hydrophobicities, acoustic properties, and electrical properties. Measurement of thermal conductivity for these aerogels showed exceptionally low thermal conductivity values of ∼0.040 ± 0.003 W m-1 K-1 irrespective of their crystal structures. Our results showcase the fabrication approaches that enable PVDF aerogels with varied physicochemical properties for multifunctional applications.
Collapse
Affiliation(s)
- Sruthi Suresh
- Materials
Science and Technology Division CSIR-National Institute for Interdisciplinary
Science and Technology, Trivandrum 695 019 Kerala, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Turkan Nabiyeva
- Université
de Strasbourg, CNRS, Institute Charles Sadron UPR22, F-67000 Strasbourg, France
| | - Laure Biniek
- Université
de Strasbourg, CNRS, Institute Charles Sadron UPR22, F-67000 Strasbourg, France
| | - E. Bhoje Gowd
- Materials
Science and Technology Division CSIR-National Institute for Interdisciplinary
Science and Technology, Trivandrum 695 019 Kerala, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
5
|
Crater ER, Tutika R, Moore RB, Bartlett MD. X-ray scattering as an effective tool for characterizing liquid metal composite morphology. SOFT MATTER 2022; 18:7762-7772. [PMID: 36205260 DOI: 10.1039/d2sm00796g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Quantitative analysis of particle size and size distribution is crucial in establishing structure-property relationships of composite materials. An emerging soft composite architecture involves dispersing droplets of liquid metal throughout an elastomer, enabling synergistic properties of metals and soft polymers. The structure of these materials is typically characterized through real-space microscopy and image analysis; however, these techniques rely on magnified images that may not represent the global-averaged size and distribution of the droplets. In this study, we utilize ultra-small angle X-ray scattering (USAXS) as a reciprocal-space characterization technique that yields global-averaged dimensions of eutectic gallium indium (EGaIn) alloy soft composites. The Unified fit and Monte Carlo scattering methods are applied to determine the particle size and size distributions of the liquid metal droplets in the composites and are shown to be in excellent agreement with results from real-space image analysis. Additionally, all methods indicate that the droplets are getting larger as they are introduced into composites, suggesting that the droplets are agglomerating or possibly coalescing during dispersion. This work demonstrates the viability of X-ray scattering to elucidate structural information about liquid metal droplets for material development for applications in soft robotics, soft electronics, and multifunctional materials.
Collapse
Affiliation(s)
- Erin R Crater
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, VA 24061, USA
| | - Ravi Tutika
- Department of Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA 24061, USA.
- Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, VA 24061, USA
| | - Robert B Moore
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, VA 24061, USA
| | - Michael D Bartlett
- Department of Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA 24061, USA.
- Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
6
|
Kasprzak CR, Anderson LJ, Moore RB. Tailored sequencing of highly brominated Poly(ether ether ketone) as a means to preserve crystallizability and enhance Tg. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Rusakov D, Menner A, Spieckermann F, Wilhelm H, Bismarck A. Morphology and properties of foamed high crystallinity
PEEK
prepared by high temperature thermally induced phase separation. J Appl Polym Sci 2022; 139:51423. [PMID: 35865188 PMCID: PMC9286599 DOI: 10.1002/app.51423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/22/2022]
Abstract
Polyetheretherketone (PEEK) is a high‐performance semi‐crystalline thermoplastic polymer with outstanding mechanical properties, high thermal stability, resistance to most common solvents, and good biocompatibility. A high temperature thermally induced phase separation technique was used to produce PEEK foams with controlled foam density from PEEK in 4‐phenylphenol (4PPH) solutions. Physical and mechanical properties, foam and bulk density, surface area, and pore morphology of foamed PEEK were characterized and the role of PEEK concentration and cooling rate was investigated. Porous PEEK with densities ranging from 110 to 360 kg/m3 with elastic moduli and crush strength ranging from 13 to 125 MPa and 0.8 to 7 MPa, respectively, was produced.
Collapse
Affiliation(s)
- Dmitrii Rusakov
- Institute of Material Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry University of Vienna Vienna Austria
| | - Angelika Menner
- Institute of Material Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry University of Vienna Vienna Austria
| | - Florian Spieckermann
- Materials Physics, Department Materials Science University of Leoben Leoben Austria
| | - Harald Wilhelm
- Laboratory of Polymer Engineering (LKT‐TGM) Vienna Austria
| | - Alexander Bismarck
- Institute of Material Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry University of Vienna Vienna Austria
- Department of Chemical Engineering Imperial College London London UK
| |
Collapse
|
8
|
Krishnan VG, Joseph AM, Kuzhichalil Peethambharan S, Gowd EB. Nanoporous Crystalline Aerogels of Syndiotactic Polystyrene: Polymorphism, Dielectric, Thermal, and Acoustic Properties. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vipin G. Krishnan
- Materials Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Angel Mary Joseph
- Materials Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, Kerala, India
| | - Surendran Kuzhichalil Peethambharan
- Materials Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - E. Bhoje Gowd
- Materials Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Song L, Huang Z, Guo S, Li Y, Wang Q. Hierarchically Architected Polyvinylidene Fluoride Piezoelectric Foam for Boosted Mechanical Energy Harvesting and Self-Powered Sensor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37252-37261. [PMID: 34318675 DOI: 10.1021/acsami.1c11158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the rapid development of wearable electronics, piezoelectric materials have received great attention owing to their potential solution to the portable power source. To enhance the output capability and broaden the application, it is highly desired for the design of piezoelectric materials with a three-dimensional and porous structure to facilitate strain accumulation. Herein, enlightened by hierarchical structures in nature, a hierarchically nested network was constructed in polyvinylidene fluoride (PVDF) foam via solid-state shear milling and salt-leaching technology. The as-prepared foam exhibited two hierarchical levels of pores with diameters of 20∼50 μm and 0.3∼4 μm, by which the porosity and flexibility were significantly enhanced, while the highest piezoelectric output reached 11.84 V and 217.78 nA. As a proof-of-concept, the PVDF piezoelectric foam can also be used to monitor human movement toward the different magnitude of strain and frequency, and simultaneously collect energy in a multidimensional stress field for energy harvesting. This work provides a simple and convenient design idea for the preparation of energy harvesters, which have great application potential as a mechanical energy harvester or self-powered sensor in wearable electronic devices.
Collapse
Affiliation(s)
- Li Song
- School of Materials Science & Engineering, North Minzu University, Ningxia 750021, China
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Zhaoxia Huang
- National Engineering Research Center of Novel Equipment for Polymer Processing; Key Laboratory of Polymer Processing Engineering, Ministry of Education; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing; School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shengwei Guo
- School of Materials Science & Engineering, North Minzu University, Ningxia 750021, China
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yijun Li
- School of Materials Science & Engineering, North Minzu University, Ningxia 750021, China
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Affiliation(s)
- Tan‐Phat Huynh
- Laboratory of Molecular Science and Engineering Åbo Akademi University Porthaninkatu 3–5 20500 Turku Finland
| |
Collapse
|
11
|
Juhász L, Moldován K, Gurikov P, Liebner F, Fábián I, Kalmár J, Cserháti C. False Morphology of Aerogels Caused by Gold Coating for SEM Imaging. Polymers (Basel) 2021; 13:polym13040588. [PMID: 33669181 PMCID: PMC7919642 DOI: 10.3390/polym13040588] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/02/2022] Open
Abstract
The imaging of non-conducting materials by scanning electron microscopy (SEM) is most often performed after depositing few nanometers thick conductive layers on the samples. It is shown in this work, that even a 5 nm thick sputtered gold layer can dramatically alter the morphology and the surface structure of many different types of aerogels. Silica, polyimide, polyamide, calcium-alginate and cellulose aerogels were imaged in their pristine forms and after gold sputtering utilizing low voltage scanning electron microscopy (LVSEM) in order to reduce charging effects. The morphological features seen in the SEM images of the pristine samples are in excellent agreement with the structural parameters of the aerogels measured by nitrogen adsorption-desorption porosimetry. In contrast, the morphologies of the sputter coated samples are significantly distorted and feature nanostructured gold. These findings point out that extra care should be taken in order to ensure that gold sputtering does not cause morphological artifacts. Otherwise, the application of low voltage scanning electron microscopy even yields high resolution images of pristine non-conducting aerogels.
Collapse
Affiliation(s)
- Laura Juhász
- Department of Solid State Physics, University of Debrecen, Egyetem sqr. 1, H-4032 Debrecen, Hungary;
- Doctoral School of Physics, University of Debrecen, Egyetem sqr. 1, H-4032 Debrecen, Hungary
| | - Krisztián Moldován
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem sqr. 1, H-4032 Debrecen, Hungary; (K.M.); (I.F.)
- Doctoral School of Chemistry, University of Debrecen, Egyetem sqr. 1, H-4032 Debrecen, Hungary
| | - Pavel Gurikov
- Laboratory for Development and Modelling of Novel Nanoporous Materials, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany;
| | - Falk Liebner
- Institute for Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria;
| | - István Fábián
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem sqr. 1, H-4032 Debrecen, Hungary; (K.M.); (I.F.)
| | - József Kalmár
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem sqr. 1, H-4032 Debrecen, Hungary; (K.M.); (I.F.)
- Correspondence: (J.K.); (C.C.); Tel.: +36-52-512-900 (J.K.); +36-52-316-073 (C.C.)
| | - Csaba Cserháti
- Department of Solid State Physics, University of Debrecen, Egyetem sqr. 1, H-4032 Debrecen, Hungary;
- Correspondence: (J.K.); (C.C.); Tel.: +36-52-512-900 (J.K.); +36-52-316-073 (C.C.)
| |
Collapse
|
12
|
Forgács A, Papp V, Paul G, Marchese L, Len A, Dudás Z, Fábián I, Gurikov P, Kalmár J. Mechanism of Hydration and Hydration Induced Structural Changes of Calcium Alginate Aerogel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2997-3010. [PMID: 33401895 DOI: 10.1021/acsami.0c17012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The most relevant properties of polysaccharide aerogels in practical applications are determined by their microstructures. Hydration has a dominant role in altering the microstructures of these hydrophilic porous materials. To understand the hydration induced structural changes of monolithic Ca-alginate aerogel, produced by drying fully cross-linked gels with supercritical CO2, the aerogel was gradually hydrated and characterized at different states of hydration by small-angle neutron scattering (SANS), liquid-state nuclear magnetic resonance (NMR) spectroscopy, and magic angle spinning (MAS) NMR spectroscopy. First, the incorporation of structural water and the formation of an extensive hydration sphere mobilize the Ca-alginate macromolecules and induce the rearrangement of the dry-state tertiary and quaternary structures. The primary fibrils of the original aerogel backbone form hydrated fibers and fascicles, resulting in the significant increase of pore size, the smoothing of the nanostructured surface, and the increase of the fractal dimension of the matrix. Because of the formation of these new superstructures in the hydrated backbone, the stiffness and the compressive strength of the aerogel significantly increase compared to its dry-state properties. Further elevation of the water content of the aerogel results in a critical hydration state. The Ca-alginate fibers of the backbone disintegrate into well-hydrated chains, which eventually form a quasi-homogeneous hydrogel-like network. Consequently, the porous structure collapses and the well-defined solid backbone ceases to exist. Even in this hydrogel-like state, the macroscopic integrity of the Ca-alginate monolith is intact. The postulated mechanism accounts for the modification of the macroscopic properties of Ca-alginate aerogel in relation to both humid and aqueous environments.
Collapse
Affiliation(s)
- Attila Forgács
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Vanda Papp
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Geo Paul
- Department of Science and Technological Innovation, Universitá del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Leonardo Marchese
- Department of Science and Technological Innovation, Universitá del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Adél Len
- Neutron Spectroscopy Department, Centre for Energy Research, Konkoly-Thege Miklós út 29-33, Budapest H-1121, Hungary
| | - Zoltán Dudás
- Neutron Spectroscopy Department, Centre for Energy Research, Konkoly-Thege Miklós út 29-33, Budapest H-1121, Hungary
| | - István Fábián
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Pavel Gurikov
- Laboratory for Development and Modelling of Novel Nanoporous Materials, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - József Kalmár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, Egyetem tér 1, Debrecen H-4032, Hungary
| |
Collapse
|
13
|
Wu K, Dong W, Pan Y, Cao J, Zhang Y, Long D. Lightweight and Flexible Phenolic Aerogels with Three-Dimensional Foam Reinforcement for Acoustic and Thermal Insulation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kede Wu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Dong
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yankai Pan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junxiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yayun Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Donghui Long
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Noble KF, Troya D, Talley SJ, Ilavsky J, Moore RB. High-Resolution Comonomer Sequencing of Blocky Brominated Syndiotactic Polystyrene Copolymers Using 13C NMR Spectroscopy and Computer Simulations. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kristen F. Noble
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Diego Troya
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Samantha J. Talley
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jan Ilavsky
- X-ray Science Division, Advanced Photon Source Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Robert B. Moore
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
15
|
Rusakov D, Menner A, Bismarck A. High-Performance Polymer Foams by Thermally Induced Phase Separation. Macromol Rapid Commun 2020; 41:e2000110. [PMID: 32363705 DOI: 10.1002/marc.202000110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 11/12/2022]
Abstract
Macroporous, low-density polyetheretherketone, polyetherketoneketone, and polyetherimide foams are produced using a high-temperature, thermally induced phase separation method. A high-boiling-point solvent, which is suitable to dissolve at least 20 wt% of these high-performance polymers at temperatures above 250 °C, is identified. The foam morphology is controlled by the cooling procedure. The resulting polymer foams have porosities close to 80% with surface areas up to 140 m2 g-1 and elastic moduli up to 97 MPa.
Collapse
Affiliation(s)
- Dmitrii Rusakov
- Institute of Material Chemistry and Research Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna, 1090, Austria
| | - Angelika Menner
- Institute of Material Chemistry and Research Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna, 1090, Austria
| | - Alexander Bismarck
- Institute of Material Chemistry and Research Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna, 1090, Austria.,Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|