1
|
Chen L, Hu K, Lu M, Chen Z, Chen X, Zhou T, Liu X, Yin W, Casiraghi C, Song X. Wearable Sensors for Breath Monitoring Based on Water-Based Hexagonal Boron Nitride Inks Made with Supramolecular Functionalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312621. [PMID: 38168037 DOI: 10.1002/adma.202312621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 01/05/2024]
Abstract
Wearable humidity sensors are attracting strong attention as they allow for real-time and continuous monitoring of important physiological information by enabling activity tracking as well as air quality assessment. Amongst 2Dimensional (2D) materials, graphene oxide (GO) is very attractive for humidity sensing due to its tuneable surface chemistry, high surface area, processability in water, and easy integration onto flexible substrates. However, strong hysteresis, low sensitivity, and cross-sensitivity issues limit the use of GO in practical applications, where continuous monitoring is preferred. Herein, a wearable and wireless impedance-based humidity sensor made with pyrene-functionalized hexagonal boron nitride (h-BN) nanosheets is demonstrated. The device shows enhanced sensitivity towards relative humidity (RH) (>1010 Ohms/%RH in the range from 5% to 100% RH), fast response (0.1 ms), no appreciable hysteresis, and no cross-sensitivity with temperature in the range of 25-60 °C. The h-BN-based sensor is able to monitor the whole breathing cycle process of exhaling and inhaling, hence enabling to record in real-time the subtlest changes of respiratory signals associated with different daily activities as well as various symptoms of flu, without requiring any direct contact with the individual.
Collapse
Affiliation(s)
- Liming Chen
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Kui Hu
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Mingyang Lu
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Ziqi Chen
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Xiwen Chen
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Tianqi Zhou
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Xuqing Liu
- Department of Materials Science, University of Manchester, Manchester, M13 9PL, UK
| | - Wuliang Yin
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Xiuju Song
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
2
|
Li Y, Fang R, Wang D. A Reversible Moisture-Responsive Plasmonic Color-Raman and Transmittance Modulation Device by Dispersing Hyaluronan-Functionalized Ag into Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2219-2229. [PMID: 34962377 DOI: 10.1021/acsami.1c18259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plasmonic physical color generation, which mostly depends on selective absorption, creates unique colors by light transmission and scattering. Based on this, regulating plasmon and transparency with external stimulation is a promising approach for fabricating optical devices with enhanced visual displays; however, few studies have addressed the implementation of dual-optical modulation. In addition, developing a color response to environmental stimuli through the highly shape-sensitive plasmon depth modulation has long remained a significant challenge once the nanostructure is determined. Some stimulations also require high amounts of electricity, which can be costly. In this study, strategically designed hyaluronan-functionalized triangular silver nanoparticles (AgNPs) were embedded in polyvinyl alcohol-polyethylene nanofiber films to achieve a breakthrough in the moisture-responsive dual-optical modulation of the plasmonic color-Raman and transparency. Switchable colors that are reversible were induced in plasmon-resonance-modulation AgNPs via moisture stimulation, adjusting the expansion-tunable dielectric constant of hyaluronan-functionalized AgNPs and varying the electron density due to electron transfer. Furthermore, a moisture gradient was used to decrease the Raman scattering and increase the photoluminescence, which is a significant demonstration of smart-plasmonic evolution. This effect occurred due to the gradual transition from plasmon-driven photoluminescence quenching to photoluminescence enhancement as the interval of the Ag and hyaluronic acid molecules was increased. The transparency of the composite film was also dynamically regulated by turning moisture on/off. This occurred because of the significant difference in hygroscopic expansion between hyaluronan and the nanofibers, which generated a large variation in the total refractive index and caused changes in the surface roughness.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Ranran Fang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Song L, Chen J, Xu BB, Huang Y. Flexible Plasmonic Biosensors for Healthcare Monitoring: Progress and Prospects. ACS NANO 2021; 15:18822-18847. [PMID: 34841852 DOI: 10.1021/acsnano.1c07176] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The noble metal nanoparticle has been widely utilized as a plasmonic unit to enhance biosensors, by leveraging its electric and/or optical properties. Integrated with the "flexible" feature, it further enables opportunities in developing healthcare products in a conformal and adaptive fashion, such as wrist pulse tracers, body temperature trackers, blood glucose monitors, etc. In this work, we present a holistic review of the recent advance of flexible plasmonic biosensors for the healthcare sector. The technical spectrum broadly covers the design and selection of a flexible substrate, the process to integrate flexible and plasmonic units, the exploration of different types of flexible plasmonic biosensors to monitor human temperature, blood glucose, ions, gas, and motion indicators, as well as their applications for surface-enhanced Raman scattering (SERS) and colorimetric detections. Their fundamental working principles and structural innovations are scoped and summarized. The challenges and prospects are articulated regarding the critical importance for continued progress of flexible plasmonic biosensors to improve living quality.
Collapse
Affiliation(s)
- Liping Song
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, People's Republic of China
- National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering, Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei 230026, China
| | - Jing Chen
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chines Academy of Sciences, Ningbo 315300, China
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, People's Republic of China
| |
Collapse
|
4
|
Zhang Z, Lu T, Yang D, Lu S, Cai R, Tan W. A High-Wet-Strength Biofilm for Readable and Highly Sensitive Humidity Sensors. NANO LETTERS 2021; 21:9030-9037. [PMID: 34699244 DOI: 10.1021/acs.nanolett.1c02452] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Low-cost and flexible biofilm humidity sensors with good wet strength are crucial for humidity detection. However, it remains a great challenge to integrate good reversibility, rapid humidity response, and robust humid mechanical strength in one sensor. In this respect, we report a facile method to prepare a sustainable biofilm (named MC film) from sisal cellulose microcrystals (MSF-g-COOH) and citric acid (CA). After cross-linking with CA, the MC film exhibits excellent wet strength and rapid humidity response. More importantly, MC film can be used over a wide temperature range with excellent durability and reversibility for humidity detection. A highly sensitive humidity sensor fabricated from the MC film exhibits high reversibility and excellent water resistance and can be applied in humidity and personalized breath health monitoring. Our work fills the gap between biomaterial design and high-performance sensing devices.
Collapse
Affiliation(s)
- Zuocai Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Tianyun Lu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Dan Yang
- RMIT University, Melbourne, Victoria 3000, Australia
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Xu J, Xiao X, Zhang W, Xu R, Kim SC, Cui Y, Howard TT, Wu E, Cui Y. Air-Filtering Masks for Respiratory Protection from PM 2.5 and Pandemic Pathogens. ONE EARTH (CAMBRIDGE, MASS.) 2020; 3:574-589. [PMID: 33748744 PMCID: PMC7962856 DOI: 10.1016/j.oneear.2020.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Air-filtering masks, also known as respirators, protect wearers from inhaling fine particulate matter (PM2.5) in polluted air, as well as airborne pathogens during a pandemic, such as the ongoing COVID-19 pandemic. Fibrous medium, used as the filtration layer, is the most essential component of an air-filtering mask. This article presents an overview of the development of fibrous media for air filtration. We first synthesize the literature on several key factors that affect the filtration performance of fibrous media. We then concentrate on two major techniques for fabricating fibrous media, namely, meltblown and electrospinning. In addition, we underscore the importance of electret filters by reviewing various methods for imparting electrostatic charge on fibrous media. Finally, this article concludes with a perspective on the emerging research opportunities amid the COVID-19 crisis.
Collapse
Affiliation(s)
- Jinwei Xu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Xin Xiao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Wenbo Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Rong Xu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Sang Cheol Kim
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tyler T Howard
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Esther Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
6
|
Luo W, Wu C, Huang S, Luo X, Yuan R, Yang X. Liquid Phase Interfacial Surface-Enhanced Raman Scattering Platform for Ratiometric Detection of MicroRNA 155. Anal Chem 2020; 92:15573-15578. [PMID: 33166461 DOI: 10.1021/acs.analchem.0c03633] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The self-assembly of gold nanoparticles (Au NPs) on a liquid phase interface is often employed as a surface-enhanced Raman scattering (SERS) platform with advantages of simple preparation, high reproducibility, and a defect-free character, but they are limited to only detect a target with Raman signals. To overcome this problem, microRNA 155 without a Raman signal can be detected by a liquid phase interfacial ratiometric SERS platform. Compared with the typical solid phase SERS platform, we propose a distinctive strategy not only owning the advantages of the liquid phase interfacial platform but also breaking the limitation of recent liquid-liquid interfacial SERS analysis. This platform presents a fabulous sensitivity with a limit of detection (LOD) of 1.10 aM for microRNA 155. By simply altering the duplex-specific nuclease (DSN) enzyme amplification, our strategy can realize detection of a variety of microRNAs, paving the way to practical applications of a liquid phase SERS platform.
Collapse
Affiliation(s)
- Wei Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Caijun Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Siqi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xiliang Luo
- Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
7
|
Hu W, Xie L, Zeng H. Novel sodium alginate-assisted MXene nanosheets for ultrahigh rejection of multiple cations and dyes. J Colloid Interface Sci 2020; 568:36-45. [DOI: 10.1016/j.jcis.2020.02.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 02/09/2020] [Indexed: 12/15/2022]
|
8
|
Song L, Huang Y, Nie Z, Chen T. Macroscopic two-dimensional monolayer films of gold nanoparticles: fabrication strategies, surface engineering and functional applications. NANOSCALE 2020; 12:7433-7460. [PMID: 32219290 DOI: 10.1039/c9nr09420b] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the last few decades, two-dimensional monolayer films of gold nanoparticles (2D MFGS) have attracted increasing attention in various fields, due to their superior attributes of macroscopic size and accessible fabrication, controllable electromagnetic enhancement, distinctive optical harvesting and electron transport capabilities. This review will focus on the recent progress of 2D monolayer films of gold nanoparticles in construction approaches, surface engineering strategies and functional applications in the optical and electric fields. The research challenges and prospective directions of 2D MFGS are also discussed. This review would promote a better understanding of 2D MFGS and establish a necessary bridge among the multidisciplinary research fields.
Collapse
Affiliation(s)
- Liping Song
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| | - Youju Huang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China. and College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China and National Engineering Research Centre for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| |
Collapse
|
9
|
Lin H, Song L, Huang Y, Cheng Q, Yang Y, Guo Z, Su F, Chen T. Macroscopic Au@PANI Core/Shell Nanoparticle Superlattice Monolayer Film with Dual-Responsive Plasmonic Switches. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11296-11304. [PMID: 32043861 DOI: 10.1021/acsami.0c01983] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The self-assembled gold nanoparticle (NP) superlattice displays unusual but distinctive features such as high mechanical and free-standing performance, electrical conductivity, and plasmonic properties, which are widely employed in various applications especially in biological diagnostics and optoelectronic devices. For a two-dimensional (2D) superlattice monolayer film composed of a given metal nanostructure, it is rather challenging to tune either its plasmonic properties or its optical properties in a reversible way, and it has not been reported. It is therefore of significant value to construct a free-standing 2D superlattice monolayer film of gold nanoparticles with an intelligent response and desired functions. Herein, we developed an easy and efficient approach to construct a gold nanoparticle superlattice film with a dual-responsive plasmonic switch. In this system, gold nanoparticles were coated by polyaniline (PANI) and then interracially self-assembled into a monolayer film at the air-liquid interface. The PANI shell plays two important roles in the superlattice monolayer film. First, the PANI shell acts as a physical spacer to provide a steric hindrance to counteract the van der Waals (vdW) attraction between densely packed nanoparticles (NPs), resulting in the formation of a superlattice by adjusting the thickness of the PANI shell. Second, the PANI shells provide the superlattice film with multiple stimuli such as electrical potential and pH change, leading to reversible optical and plasmonic responsiveness. The superlattice monolayer film can show a vivid color change from olive green to pink, or from olive green to violet by the change of the corresponding stimuli. Also, the localized surface plasmonic resonance (LSPR) of the superlattice monolayer film can be reversibly modulated by both by changing the local pH and applying an electric potential. Notably, a significant plasmonic shift of 157 nm can be achieved in the superlattice monolayer film when the PANI shell with a thickness of 35 nm and gold nanorods as a core were used. The superlattice monolayer film with dual-responsive plasmonic switches is promising for a range of potential applications in optoelectronic devices, plasmonic and colorimetric sensors, and surface-enhanced Raman scattering (SERS).
Collapse
Affiliation(s)
- Han Lin
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
- China State Key Laboratory for Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Liping Song
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Youju Huang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qian Cheng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yanping Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhiyong Guo
- China State Key Laboratory for Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Fengmei Su
- National Engineering Research Centre for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
10
|
Cheng Q, Song L, Lin H, Yang Y, Huang Y, Su F, Chen T. Free-Standing 2D Janus Gold Nanoparticles Monolayer Film with Tunable Bifacial Morphologies via the Asymmetric Growth at Air-Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:250-256. [PMID: 31697894 DOI: 10.1021/acs.langmuir.9b03189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Large scaled two-dimensional free-standing monolayer films of gold nanoparticles show distinctive optical, electrical, and chem-physical propertie making them a new class of advanced plasmonic materials differing from bulk materials and individual nanoparticles in solution. The conventional 2D gold nanoparticle films usually possess symmetric structures and identical properties of gold nanoparticles on both sides. Herein, we developed an easy and efficient approach to construct a new type of free-standing 2D gold nanoparticle monolayer film with asymmetric gold nanoparticle structures and functions, called a 2D Janus gold nanoparticle film. The remarkable feature of our method is the subsequent asymmetric growth on one side of the interfacial self-assembled gold nanoparticle monolayer film at the air-liquid interface. It is very easy to control the morphology of the Janus film by simply and precisely adjusting the size and shape of the gold nanoparticles on the top side, and selectively tuning the structure and composition on the bottom side of the film by growing gold nanoparticles or other noble metals such as Ag, Pt, and Pd. Unlike the conventionally prepared Janus films at solid substrate that require long-time etching and transfer procedures, other features of our method include the short time in which the interfacial self-assembly and the subsequent asymmetric growth are completed as well as the easily transferable property of the Janus film onto different substrates, such as quartz glass sheets, silicon wafers, and PDMS. The obtained Janus gold nanoparticle film shows asymmetric wettabilities, optical properties, and surface-enhanced Raman scattering (SERS) effects, which is promising for a range of potential applications in optical devices, sensors, and asymmetric catalysis.
Collapse
Affiliation(s)
- Qian Cheng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
- School of Chemical Sciences, University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Liping Song
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
- School of Chemical Sciences, University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Han Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
| | - Yanping Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
| | - Youju Huang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
- School of Chemical Sciences, University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou , Zhejiang 311121 , China
| | - Fengmei Su
- National Engineering Research Centre for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education , Zhengzhou University , Zhengzhou 450002 , P.R. China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
- School of Chemical Sciences, University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| |
Collapse
|