1
|
Chen S, Zhang P, Bai H, Yi W. Recent advances in nano-molybdenum oxide for photothermal cancer therapy. Nanomedicine (Lond) 2025; 20:883-901. [PMID: 40063363 PMCID: PMC11988261 DOI: 10.1080/17435889.2025.2476386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Cancer remains a significant global health challenge, driving the search for innovative treatments. Photothermal therapy (PTT) has emerged as a promising approach, using photothermal agents to convert near-infrared (NIR) light into heat for tumor ablation. Among these agents, nano-molybdenum oxide, particularly non-stoichiometric MoO3-x (0 < x < 1), stands out due to its unique defect structure, strong NIR absorption, high photothermal conversion efficiency (PCE), and pH-responsive degradation. This review summarized recent advancements in nano-molybdenum oxide for PTT, covering its classification, synthesis, surface modification, and tumor-targeting mechanisms. Subsequently, we explored its applications in PTT and combination therapies, evaluated biocompatibility and toxicity, and discussed current achievements, challenges, and future perspectives in cancer treatment.
Collapse
Affiliation(s)
- Shihai Chen
- College of Science, Northwest A&F University, Xianyang, China
| | - Ping Zhang
- College of Science, Northwest A&F University, Xianyang, China
| | - Hongmei Bai
- College of Science, Northwest A&F University, Xianyang, China
| | - Wenhui Yi
- Key Laboratory for Information Photonic Technology of ShaanXi Province & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
2
|
Cai Y, Lv Z, Chen X, Jin K, Mou X. Recent advances in biomaterials based near-infrared mild photothermal therapy for biomedical application: A review. Int J Biol Macromol 2024; 278:134746. [PMID: 39147342 DOI: 10.1016/j.ijbiomac.2024.134746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Mild photothermal therapy (MPTT) generates heat therapeutic effect at the temperature below 45 °C under near-infrared (NIR) irradiation, which has the advantages of controllable treatment efficacy, lower hyperthermia temperatures, reduced dosage, and minimized damage to surrounding tissues. Despite significant progress has been achieved in MPTT, it remains primarily in the stage of basic and clinical research and has not yet seen widespread clinical adoption. Herein, a comprehensive overview of the recent NIR MPTT development was provided, aiming to emphasize the mechanism and obstacles, summarize the used photothermal agents, and introduce various biomedical applications such as anti-tumor, wound healing, and vascular disease treatment. The challenges of MPTT were proposed with potential solutions, and the future development direction in MPTT was outlooked to enhance the prospects for clinical translation.
Collapse
Affiliation(s)
- Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Zhenye Lv
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xiaoyi Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
3
|
Liu Y, Li C, Yang X, Yang B, Fu Q. Stimuli-responsive polymer-based nanosystems for cardiovascular disease theranostics. Biomater Sci 2024; 12:3805-3825. [PMID: 38967109 DOI: 10.1039/d4bm00415a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Stimulus-responsive polymers have found widespread use in biomedicine due to their ability to alter their own structure in response to various stimuli, including internal factors such as pH, reactive oxygen species (ROS), and enzymes, as well as external factors like light. In the context of atherosclerotic cardiovascular diseases (CVDs), stimulus-response polymers have been extensively employed for the preparation of smart nanocarriers that can deliver therapeutic and diagnostic drugs specifically to inflammatory lesions. Compared with traditional drug delivery systems, stimulus-responsive nanosystems offer higher sensitivity, greater versatility, wider applicability, and enhanced biosafety. Recent research has made significant contributions towards designing stimulus-responsive polymer nanosystems for CVDs diagnosis and treatment. This review summarizes recent advances in this field by classifying stimulus-responsive polymer nanocarriers according to different responsiveness types and describing numerous stimuli relevant to these materials. Additionally, we discuss various applications of stimulus-responsive polymer nanomaterials in CVDs theranostics. We hope that this review will provide valuable insights into optimizing the design of stimulus-response polymers for accelerating their clinical application in diagnosing and treating CVDs.
Collapse
Affiliation(s)
- Yuying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Congcong Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Bin Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
4
|
Lu R, Ge Z, Guan Z, Sun Y, Wang X, Liu B. CoS 1.097 nanocrystals as new nanoplatforms for photothermal therapy of arterial inflammation. RSC Adv 2024; 14:21241-21249. [PMID: 38974227 PMCID: PMC11224947 DOI: 10.1039/d4ra04006f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024] Open
Abstract
Cardiovascular diseases caused by atherosclerosis (AS) seriously damage human health. Nano-photothermal technology has been proven to inhibit the development of vascular inflammation by inhibiting the proliferation of inflammatory macrophages. However, photothermal therapy can inhibit the enrichment of AS macrophages in the early stage, but the inhibitory effect is insufficient in the later stage. Herein, we designed and prepared CoS1.097 nanocrystals by a simple hydrothermal method as new nanoplatforms for efficient photothermal therapy of arterial inflammation. CoS1.097 nanocrystals exhibited the degradability to release the cobalt ions, and can inhibit the proliferation of macrophages both in vitro and in vivo resulting from the slowly released cobalt ions. Moreover, CoS1.097 nanocrystals showed intense absorption in the NIR region, thus showing excellent photothermal performance. When irradiated by an 808 nm laser, the photothermal effect of CoS1.097 nanocrystals can more efficiently kill the macrophages which play an important role in the development of atherosclerosis. As far as we know, this is the first work on CoS1.097 nanocrystals for photothermal therapy of arterial inflammation.
Collapse
Affiliation(s)
- Ran Lu
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical University Bengbu 233004 Anhui China
| | - Zaiman Ge
- Department of General Surgery, Baoshan People's Hospital Baoshan 678000 Yunnan China
| | - Zeyu Guan
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical University Bengbu 233004 Anhui China
| | - Yong Sun
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical University Bengbu 233004 Anhui China
- Department of General Surgery, Baoshan People's Hospital Baoshan 678000 Yunnan China
| | - Xiaogao Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical University Bengbu 233004 Anhui China
| | - Bing Liu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 Shandong China
| |
Collapse
|
5
|
He W, Tu S, Han J, Cui H, Lai L, Ye Y, Dai T, Yuan Y, Ji L, Luo J, Ren W, Wu A. Mild phototherapy mediated by IR780-Gd-OPN nanomicelles suppresses atherosclerotic plaque progression through the activation of the HSP27-regulated NF-κB pathway. Acta Biomater 2024; 182:199-212. [PMID: 38734283 DOI: 10.1016/j.actbio.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Reducing plaque lipid content and enhancing plaque stability without causing extensive apoptosis of foam cells are ideal requirements for developing a safe and effective treatment of atherosclerosis. In this study, we synthesized IR780-Gd-OPN nanomicelles by conjugating osteopontin (OPN) and loading a gadolinium-macrocyclic ligand (Gd-DOTA) onto near-infrared dye IR780-polyethylene glycol polymer. The nanomicelles were employed for mild phototherapy of atherosclerotic plaques and dual-mode imaging with near-infrared fluorescence and magnetic resonance. In vitro results reveal that the mild phototherapy mediated by IR780-Gd-OPN nanomicelles not only activates heat shock protein (HSP) 27 to protect foam cells against apoptosis but also inhibits the nuclear factor kappa-B (NF-κB) pathway to regulate lipid metabolism and macrophage polarization, thereby diminishing the inflammatory response. In vivo results further validate that mild phototherapy effectively reduces plaque lipid content and size while simultaneously enhancing plaque stability by regulating the ratio of M1 and M2-type macrophages. In summary, this study presents a promising approach for developing a safe and highly efficient method for the precise therapeutic visualization of atherosclerosis. STATEMENT OF SIGNIFICANCE: The rupture of unstable atherosclerotic plaques is a major cause of high mortality rates in cardiovascular diseases. Therefore, the ideal outcome of atherosclerosis treatment is to reduce plaque size while enhancing plaque stability. To address this challenge, we designed IR780-Gd-OPN nanomicelles for mild phototherapy of atherosclerosis. This treatment can effectively reduce plaque size while significantly improving plaque stability by increasing collagen fiber content and elevating the ratio of M2/M1 macrophages, which is mainly attributed to the inhibition of the NF-κB signaling pathway by mild phototherapy-activated HSP27. In summary, our proposed mild phototherapy strategy provides a promising approach for safe and effective treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wenming He
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Shuangshuang Tu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Jinru Han
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haijing Cui
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Liangxue Lai
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Yonglong Ye
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Ting Dai
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Yannan Yuan
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Lili Ji
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Jiayong Luo
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China.
| |
Collapse
|
6
|
Liu Y, Jiang Z, Yang X, Wang Y, Yang B, Fu Q. Engineering Nanoplatforms for Theranostics of Atherosclerotic Plaques. Adv Healthc Mater 2024; 13:e2303612. [PMID: 38564883 DOI: 10.1002/adhm.202303612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Atherosclerotic plaque formation is considered the primary pathological mechanism underlying atherosclerotic cardiovascular diseases, leading to severe cardiovascular events such as stroke, acute coronary syndromes, and even sudden cardiac death. Early detection and timely intervention of plaques are challenging due to the lack of typical symptoms in the initial stages. Therefore, precise early detection and intervention play a crucial role in risk stratification of atherosclerotic plaques and achieving favorable post-interventional outcomes. The continuously advancing nanoplatforms have demonstrated numerous advantages including high signal-to-noise ratio, enhanced bioavailability, and specific targeting capabilities for imaging agents and therapeutic drugs, enabling effective visualization and management of atherosclerotic plaques. Motivated by these superior properties, various noninvasive imaging modalities for early recognition of plaques in the preliminary stage of atherosclerosis are comprehensively summarized. Additionally, several therapeutic strategies are proposed to enhance the efficacy of treating atherosclerotic plaques. Finally, existing challenges and promising prospects for accelerating clinical translation of nanoplatform-based molecular imaging and therapy for atherosclerotic plaques are discussed. In conclusion, this review provides an insightful perspective on the diagnosis and therapy of atherosclerotic plaques.
Collapse
Affiliation(s)
- Yuying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zeyu Jiang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Bin Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
7
|
Pan W, Cheng J, Cao X, Zheng Y, Yang Z, Feng W, Chen Y, Wu R. Niobium carbide MXenzyme-Driven comprehensive cholesterol regulation for photoacoustic image-guided and anti-inflammatory photothermal ablation in atherosclerosis. Bioact Mater 2024; 36:565-579. [PMID: 39072287 PMCID: PMC11276926 DOI: 10.1016/j.bioactmat.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Foam cells play a pivotal role in the progression of atherosclerosis progression by triggering inflammation within arterial walls. They release inflammatory molecules that attract additional immune cells, leading to further macrophage recruitment and plaque development. In this study, we develop an osteopontin (OPN) antibody-conjugated niobium carbide (Nb2C-aOPN) MXenzyme designed to selectively target and mildly ablate foam cells while reducing inflammation in the plaque microenvironment. This approach utilizes photonic hyperthermia to decrease plaque size by enhancing cholesterol regulation through both passive cholesterol outflow and positive cholesterol efflux. Nb2C-aOPN MXenzyme exhibits multiple enzyme-mimicking properties, including catalase, superoxide dismutase, peroxidase and glutathione peroxidase, and acts as a scavenger for reactive oxygen and nitrogen species. The inhibition of reactive oxygen and nitrogen species synergizes with photothermal ablation to promote positive cholesterol efflux, leading to reduced macrophage recruitment and a shift in macrophage phenotype from M1 to M2. This integrative strategy on cholesterol regulation and anti-inflammation highlights the potential of multifunctional 2D MXenzyme-based nanomedicine in advancing atherosclerotic regression.
Collapse
Affiliation(s)
- Wenqi Pan
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Jingyun Cheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Xinyue Cao
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Zhenyu Yang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
- Shanghai Institute of Materdicine, Shanghai, 200051, PR China
| | - Rong Wu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| |
Collapse
|
8
|
Wang S, He H, Mao Y, Zhang Y, Gu N. Advances in Atherosclerosis Theranostics Harnessing Iron Oxide-Based Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308298. [PMID: 38368274 PMCID: PMC11077671 DOI: 10.1002/advs.202308298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Atherosclerosis, a multifaceted chronic inflammatory disease, has a profound impact on cardiovascular health. However, the critical limitations of atherosclerosis management include the delayed detection of advanced stages, the intricate assessment of plaque stability, and the absence of efficacious therapeutic strategies. Nanotheranostic based on nanotechnology offers a novel paradigm for addressing these challenges by amalgamating advanced imaging capabilities with targeted therapeutic interventions. Meanwhile, iron oxide nanoparticles have emerged as compelling candidates for theranostic applications in atherosclerosis due to their magnetic resonance imaging capability and biosafety. This review delineates the current state and prospects of iron oxide nanoparticle-based nanotheranostics in the realm of atherosclerosis, including pivotal aspects of atherosclerosis development, the pertinent targeting strategies involved in disease pathogenesis, and the diagnostic and therapeutic roles of iron oxide nanoparticles. Furthermore, this review provides a comprehensive overview of theranostic nanomedicine approaches employing iron oxide nanoparticles, encompassing chemical therapy, physical stimulation therapy, and biological therapy. Finally, this review proposes and discusses the challenges and prospects associated with translating these innovative strategies into clinically viable anti-atherosclerosis interventions. In conclusion, this review offers new insights into the future of atherosclerosis theranostic, showcasing the remarkable potential of iron oxide-based nanoparticles as versatile tools in the battle against atherosclerosis.
Collapse
Affiliation(s)
- Shi Wang
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Hongliang He
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Yu Mao
- School of MedicineNanjing UniversityNanjing210093P. R. China
| | - Yu Zhang
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Ning Gu
- School of MedicineNanjing UniversityNanjing210093P. R. China
| |
Collapse
|
9
|
He J, Gao Y, Yang C, Guo Y, Liu L, Lu S, He H. Navigating the landscape: Prospects and hurdles in targeting vascular smooth muscle cells for atherosclerosis diagnosis and therapy. J Control Release 2024; 366:261-281. [PMID: 38161032 DOI: 10.1016/j.jconrel.2023.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/02/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Vascular smooth muscle cells (VSMCs) have emerged as pivotal contributors throughout all phases of atherosclerotic plaque development, effectively dispelling prior underestimations of their prevalence and significance. Recent lineage tracing studies have unveiled the clonal nature and remarkable adaptability inherent to VSMCs, thereby illuminating their intricate and multifaceted roles in the context of atherosclerosis. This comprehensive review provides an in-depth exploration of the intricate mechanisms and distinctive characteristics that define VSMCs across various physiological processes, firmly underscoring their paramount importance in shaping the course of atherosclerosis. Furthermore, this review offers a thorough examination of the significant strides made over the past two decades in advancing imaging techniques and therapeutic strategies with a precise focus on targeting VSMCs within atherosclerotic plaques, notably spotlighting meticulously engineered nanoparticles as a promising avenue. We envision the potential of VSMC-targeted nanoparticles, thoughtfully loaded with medications or combination therapies, to effectively mitigate pro-atherogenic VSMC processes. These advancements are poised to contribute significantly to the pivotal objective of modulating VSMC phenotypes and enhancing plaque stability. Moreover, our paper also delves into recent breakthroughs in VSMC-targeted imaging technologies, showcasing their remarkable precision in locating microcalcifications, dynamically monitoring plaque fibrous cap integrity, and assessing the therapeutic efficacy of medical interventions. Lastly, we conscientiously explore the opportunities and challenges inherent in this innovative approach, providing a holistic perspective on the potential of VSMC-targeted strategies in the evolving landscape of atherosclerosis research and treatment.
Collapse
Affiliation(s)
- Jianhua He
- School of Pharmacy, Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China.
| | - Yu Gao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Can Yang
- School of Pharmacy, Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Yujie Guo
- School of Pharmacy, Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Lisha Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Shan Lu
- School of Pharmacy, Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China.
| | - Hongliang He
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
10
|
Cheng J, Huang H, Chen Y, Wu R. Nanomedicine for Diagnosis and Treatment of Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304294. [PMID: 37897322 PMCID: PMC10754137 DOI: 10.1002/advs.202304294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/11/2023] [Indexed: 10/30/2023]
Abstract
With the changing disease spectrum, atherosclerosis has become increasingly prevalent worldwide and the associated diseases have emerged as the leading cause of death. Due to their fascinating physical, chemical, and biological characteristics, nanomaterials are regarded as a promising tool to tackle enormous challenges in medicine. The emerging discipline of nanomedicine has filled a huge application gap in the atherosclerotic field, ushering a new generation of diagnosis and treatment strategies. Herein, based on the essential pathogenic contributors of atherogenesis, as well as the distinct composition/structural characteristics, synthesis strategies, and surface design of nanoplatforms, the three major application branches (nanodiagnosis, nanotherapy, and nanotheranostic) of nanomedicine in atherosclerosis are elaborated. Then, state-of-art studies containing a sequence of representative and significant achievements are summarized in detail with an emphasis on the intrinsic interaction/relationship between nanomedicines and atherosclerosis. Particularly, attention is paid to the biosafety of nanomedicines, which aims to pave the way for future clinical translation of this burgeoning field. Finally, this comprehensive review is concluded by proposing unresolved key scientific issues and sharing the vision and expectation for the future, fully elucidating the closed loop from atherogenesis to the application paradigm of nanomedicines for advancing the early achievement of clinical applications.
Collapse
Affiliation(s)
- Jingyun Cheng
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Hui Huang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou Institute of Shanghai UniversityWenzhouZhejiang325088P. R. China
| | - Rong Wu
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| |
Collapse
|
11
|
Guo J, Wang H, Li Y, Zhu S, Hu H, Gu Z. Nanotechnology in coronary heart disease. Acta Biomater 2023; 171:37-67. [PMID: 37714246 DOI: 10.1016/j.actbio.2023.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Coronary heart disease (CHD) is one of the major causes of death and disability worldwide, especially in low- and middle-income countries and among older populations. Conventional diagnostic and therapeutic approaches have limitations such as low sensitivity, high cost and side effects. Nanotechnology offers promising alternative strategies for the diagnosis and treatment of CHD by exploiting the unique properties of nanomaterials. In this review, we use bibliometric analysis to identify research hotspots in the application of nanotechnology in CHD and provide a comprehensive overview of the current state of the art. Nanomaterials with enhanced imaging and biosensing capabilities can improve the early detection of CHD through advanced contrast agents and high-resolution imaging techniques. Moreover, nanomaterials can facilitate targeted drug delivery, tissue engineering and modulation of inflammation and oxidative stress, thus addressing multiple aspects of CHD pathophysiology. We discuss the application of nanotechnology in CHD diagnosis (imaging and sensors) and treatment (regulation of macrophages, cardiac repair, anti-oxidative stress), and provide insights into future research directions and clinical translation. This review serves as a valuable resource for researchers and clinicians seeking to harness the potential of nanotechnology in the management of CHD. STATEMENT OF SIGNIFICANCE: Coronary heart disease (CHD) is the one of leading cause of death and disability worldwide. Nanotechnology offers new strategies for diagnosing and treating CHD by exploiting the unique properties of nanomaterials. This review uses bibliometric analysis to uncover research trends in the use of nanotechnology for CHD. We discuss the potential of nanomaterials for early CHD detection through advanced imaging and biosensing, targeted drug delivery, tissue engineering, and modulation of inflammation and oxidative stress. We also offer insights into future research directions and potential clinical applications. This work aims to guide researchers and clinicians in leveraging nanotechnology to improve CHD patient outcomes and quality of life.
Collapse
Affiliation(s)
- Junsong Guo
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Hao Wang
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Ying Li
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano-safety, Institute of High Energy Physics, Beijing 100049, China; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Houxiang Hu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China.
| | - Zhanjun Gu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano-safety, Institute of High Energy Physics, Beijing 100049, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Zheng Z, Yang X, Fang M, Tian J, Zhang S, Lu L, Zhou C, Xu C, Qi Y, Li L. Photothermal effective CeO 2NPs combined in thermosensitive hydrogels with enhanced antibacterial, antioxidant and vascularization performance to accelerate infected diabetic wound healing. Regen Biomater 2023; 10:rbad072. [PMID: 37719926 PMCID: PMC10503268 DOI: 10.1093/rb/rbad072] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
Chronic diabetic wound healing remains a formidable challenge due to susceptibility to bacterial infection, excessive oxidative stress, and poor angiogenesis. To address these issues, a sodium alginate (SA) based photothermal hydrogel dressing with multifunction was fabricated to facilitate wound treatment. Ceria nanoparticles (CeO2NPs) was synthesized, and their antibacterial performance by near-infrared light triggered photothermal effects was first studied and verified in this work. In addition, to release CeO2NPs to achieve antioxidation and pro-vascularization, thermosensitive gelatin (Gel) was utilized to embed the nanoparticles in advance and then composited in SA hydrogel networks. SA network was finally strengthened by acid soaking to form partially crystalline regions to act as natural crosslinkers. Results showed that the Gel/SA/CeO2 hydrogel displayed temperature-responsive release of CeO2NPs, significant antibacterial and antioxidative activity, as well as the ability to remove without injury and promote infected diabetic wound healing with low cytotoxicity, according to antibacterial investigations, cell studies, and in vivo animal studies. This research offers not only a successful method for quickening the healing of diabetic wounds but also a fresh approach to the general use of CeO2NPs.
Collapse
Affiliation(s)
- Zexiang Zheng
- College of Chemistry and Materials Science, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 511486, China
| | - Xing Yang
- College of Chemistry and Materials Science, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 511486, China
| | - Min Fang
- College of Chemistry and Materials Science, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 511486, China
| | - Jinhuan Tian
- College of Chemistry and Materials Science, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 511486, China
| | - Shuyun Zhang
- Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Basic Medicine, School of Medicine, Jinan University, Guangdong 510632, PR China
| | - Lu Lu
- College of Chemistry and Materials Science, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 511486, China
| | - Changren Zhou
- College of Chemistry and Materials Science, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 511486, China
| | - Changpeng Xu
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510317, China
| | - Yong Qi
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510317, China
| | - Lihua Li
- College of Chemistry and Materials Science, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 511486, China
- Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Basic Medicine, School of Medicine, Jinan University, Guangdong 510632, PR China
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510317, China
| |
Collapse
|
13
|
Li X, Li B, Zhang W, Chen Z, Liu J, Shi Y, Xu H, Shan L, Liu X, Dong L. NIR-II responsive PEGylated MoO 2 nanocrystals with LSPR for efficient photothermal and photodynamic performance enhancement. Dalton Trans 2023; 52:11458-11464. [PMID: 37551454 DOI: 10.1039/d3dt01868g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Phototherapy, including photothermal and photodynamic therapy, has gained extensive attention in the tumor treatment field recently, while synergistic therapy can significantly improve curative effects. However, a complicated photo-responsive nanosystem, different excitation wavelengths, and low tissue depth hindered its actual application. Herein, single near-infrared responsive PEGylated defective MoO2 nanocrystals were fabricated by a green hydrothermal method. The photothermal and photodynamic performances of the samples were presented in detail under a safe power of 1064 nm (NIR-II, 1.0 W cm-2). Interestingly, the photodynamic properties were prompted by the localized surface plasmon resonance (LSPR) photothermal effect obviously, and the collaborative enhancement mechanism was explored in depth. Subsequently, the in vitro cytotoxicity was evaluated on the 4T1 cancer cells under NIR-II irradiation. This work may provide guidance for the facile fabrication of TMOs for NIR-II responsive and enhanced dual-modal phototherapy.
Collapse
Affiliation(s)
- Xuejiao Li
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Bo Li
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Wenbo Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Zimo Chen
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Jinping Liu
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Yu Shi
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Huanyan Xu
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Lianwei Shan
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Xin Liu
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Limin Dong
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| |
Collapse
|
14
|
Wu G, Yu G, Zheng M, Peng W, Li L. Recent Advances for Dynamic-Based Therapy of Atherosclerosis. Int J Nanomedicine 2023; 18:3851-3878. [PMID: 37469455 PMCID: PMC10352141 DOI: 10.2147/ijn.s402678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/06/2023] [Indexed: 07/21/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, which may lead to high morbidity and mortality. Currently, the clinical treatment strategy for AS is administering drugs and performing surgery. However, advanced therapy strategies are urgently required because of the deficient therapeutic effects of current managements. Increased number of energy conversion-based organic or inorganic materials has been used in cancer and other major disease treatments, bringing hope to patients with the development of nanomedicine and materials. These treatment strategies employ specific nanomaterials with specific own physiochemical properties (external stimuli: light or ultrasound) to promote foam cell apoptosis and cholesterol efflux. Based on the pathological characteristics of vulnerable plaques, energy conversion-based nano-therapy has attracted increasing attention in the field of anti-atherosclerosis. Therefore, this review focuses on recent advances in energy conversion-based treatments. In addition to summarizing the therapeutic effects of various techniques, the regulated pathological processes are highlighted. Finally, the challenges and prospects for further development of dynamic treatment for AS are discussed.
Collapse
Affiliation(s)
- Guanghao Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Guanye Yu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Meiling Zheng
- Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, 101121, People’s Republic of China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Lei Li
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, People’s Republic of China
| |
Collapse
|
15
|
Zhang X, Centurion F, Misra A, Patel S, Gu Z. Molecularly targeted nanomedicine enabled by inorganic nanoparticles for atherosclerosis diagnosis and treatment. Adv Drug Deliv Rev 2023; 194:114709. [PMID: 36690300 DOI: 10.1016/j.addr.2023.114709] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/20/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Atherosclerosis, a chronic cardiovascular disease caused by plaque development in arteries, remains a leading cause of morbidity and mortality. Atherosclerotic plaques are characterized by the expression and regulation of key molecules such as cell surface receptors, cytokines, and signaling pathway proteins, potentially facilitating precise diagnosis and treatment on a molecular level by specifically targeting the characteristic molecules. In this review, we highlight the recent progress in the past five years on developing molecularly targeted nanomedicine for imaging detection and treatment of atherosclerosis with the use of inorganic nanoparticles. Through targeted delivery of imaging contrast nanoparticles to specific molecules in atherogenesis, atherosclerotic plaque development at different stages could be identified and monitored via various molecular imaging modalities. We also review molecularly targeted therapeutic approaches that target and regulate molecules associated with lipid regulation, inflammation, and apoptosis. The review is concluded with discussion on current challenges and future development of nanomedicine for atherosclerotic diagnosis and treatment.
Collapse
Affiliation(s)
- Xiuwen Zhang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Franco Centurion
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ashish Misra
- Heart Research Institute, Sydney, NSW 2042, Australia; Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Sanjay Patel
- Heart Research Institute, Sydney, NSW 2042, Australia; Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia; Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Zi Gu
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia; Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia; UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
16
|
Tu S, He W, Han J, Wu A, Ren W. Advances in imaging and treatment of atherosclerosis based on organic nanoparticles. APL Bioeng 2022; 6:041501. [PMCID: PMC9726224 DOI: 10.1063/5.0127835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/31/2022] [Indexed: 12/09/2022] Open
Abstract
Atherosclerosis, a systemic chronic inflammatory disease, can lead to thrombosis and vascular occlusion, thereby inducing a series of serious vascular diseases. Currently, distinguishing unstable plaques early and achieving more effective treatment are the two main clinical concerns in atherosclerosis. Organic nanoparticles have great potential in atherosclerotic imaging and treatment, showing superior biocompatibility, drug-loading capacity, and synthesis. This article illustrates the process of atherosclerosis onset and the key targeted cells, then systematically summarizes recent progress made in organic nanoparticle-based imaging of different types of targeted cells and therapeutic methods for atherosclerosis, including optical and acoustic-induced therapy, drug delivery, gene therapy, and immunotherapy. Finally, we discuss the major impediments that need to be addressed in future clinical practice. We believe this article will help readers to develop a comprehensive and in-depth understanding of organic nanoparticle-based atherosclerotic imaging and treatment, thus advancing further development of anti-atherosclerosis therapies.
Collapse
Affiliation(s)
| | - Wenming He
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, Zhejiang Province 315020, China,Authors to whom correspondence should be addressed:; ; and
| | | | - Aiguo Wu
- Authors to whom correspondence should be addressed:; ; and
| | - Wenzhi Ren
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
17
|
Lu R, Wang W, Dong B, Xu C, Li B, Sun Y, Liu J, Hong B. Self-Assembled CuCo 2S 4 Nanoparticles for Efficient Chemo-Photothermal Therapy of Arterial Inflammation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238134. [PMID: 36500227 PMCID: PMC9737671 DOI: 10.3390/molecules27238134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
Cardiovascular disease caused by atherosclerosis (AS) seriously affects human health. Photothermal therapy (PTT) brings hope to the diagnosis and treatment of AS, with the development of nanotechnology. To improve treatment efficiency, self-assembled CuCo2S4 nanocrystals (NCs) were developed as a drug-delivery nanocarrier, triggered by near-infrared (NIR) light for efficient chemophotothermal therapy of arterial inflammation. The as-prepared self-assembled CuCo2S4 NCs exhibited excellent biocompatibility and a very high chloroquine (CL)-loading content. In addition, the self-assembled CuCo2S4 NCs/CL nanocomposites showed good photothermal performance, due to strong absorption in the NIR region, and the release of CL from the NCs/CL nanocomposites was driven by NIR light. When illuminated by NIR light, both PTT from the NCs and chemotherapy from the CL were simultaneously triggered, resulting in killing macrophages with a synergistic effect. Moreover, chemo-photothermal therapy with CuCo2S4 NCs/CL nanocomposites showed an effective therapeutic effect for arterial inflammation, in vivo. Our work demonstrated that chemo-photothermal therapy could be a promising strategy for the treatment of arterial inflammation against atherosclerosis.
Collapse
Affiliation(s)
- Ran Lu
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Wei Wang
- Department of Vascular Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Bo Dong
- Department of Vascular Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Chao Xu
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yong Sun
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Correspondence: (Y.S.); (B.H.)
| | - Junchao Liu
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Biao Hong
- Department of Vascular Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
- Correspondence: (Y.S.); (B.H.)
| |
Collapse
|
18
|
Dai T, He W, Tu S, Han J, Yuan B, Yao C, Ren W, Wu A. Black TiO2 nanoprobe-mediated mild phototherapy reduces intracellular lipid levels in atherosclerotic foam cells via cholesterol regulation pathways instead of apoptosis. Bioact Mater 2022; 17:18-28. [PMID: 35386468 PMCID: PMC8958315 DOI: 10.1016/j.bioactmat.2022.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/08/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Given that apoptosis increases the risk of plaque rupture, strategies that reduce intracellular lipid levels without killing foam cells are warranted for safe and effective treatment of atherosclerosis. In this study, a mild phototherapy strategy is carried out to achieve the hypothesis. Foam cell-targeted nanoprobes that allow photothermal therapy (PTT) and/or photodynamic therapy (PDT) were prepared by loading hyaluronan and porphine onto black TiO2 nanoparticles. The results showed that when temperatures below 45 °C, PTT alone and PTT + PDT significantly reduced the intracellular lipid burden without inducing evidently apoptosis or necrosis. In contrast, the use of PDT alone resulted in only a slight reduction in lipid levels and induced massive apoptosis or necrosis. The protective effect against apoptosis or necrosis after mild-temperature PTT and PTT + PDT was correlated with the upregulation of heat shock protein 27. Further, mild-temperature PTT and PTT + PDT attenuated intracellular cholesterol biosynthesis and excess cholesterol uptake via the SREBP2/LDLR pathway, and also triggered ABCA1-mediated cholesterol efflux, ultimately inhibiting lipid accumulation in foam cells. Our results offer new insights into the mechanism of lipid regulation in foam cells and indicate that the black TiO2 nanoprobes could allow safer and more effective phototherapy of atherosclerosis. Mild phototherapy reduced the intracellular lipid in foam cells without inducing obvious apoptosis or necrosis. HSP27 was upregulated in foam cells treated by mild phototherapy, which could protect cells against apoptosis or necrosis. Mild phototherapy attenuated intracellular cholesterol biosynthesis and excess uptake, also boosted cholesterol efflux.
Collapse
Affiliation(s)
- Ting Dai
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, Zhejiang Province, 315020, China
| | - Wenming He
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, Zhejiang Province, 315020, China
| | - Shuangshuang Tu
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, Zhejiang Province, 315020, China
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China
| | - Jinru Han
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing, 101408, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Bo Yuan
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Chenyang Yao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Wenzhi Ren
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
- Corresponding author. Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
- Corresponding author. Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China.
| |
Collapse
|
19
|
Hu PP, Luo SX, Fan XQ, Li D, Tong XY. Macrophage-targeted nanomedicine for the diagnosis and management of atherosclerosis. Front Pharmacol 2022; 13:1000316. [PMID: 36160452 PMCID: PMC9501673 DOI: 10.3389/fphar.2022.1000316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Atherosclerosis is the primary cause of cardiovascular diseases, such as myocardial infarction and stroke, which account for the highest death toll worldwide. Macrophage is the major contributor to atherosclerosis progression, and therefore, macrophage-associated pathological process is considered an extremely important target for the diagnosis and treatment of atherosclerosis. However, the existing clinical strategies still have many bottlenecks and challenges in atherosclerosis’s early detection and management. Nanomedicine, using various nanoparticles/nanocarriers for medical purposes, can effectively load therapeutic agents, significantly improve their stability and accurately deliver them to the atherosclerotic plaques. In this review, we summarized the latest progress of the macrophage-targeted nanomedicine in the diagnosis and treatment of atherosclerosis, and their potential applications and clinical benefits are also discussed.
Collapse
Affiliation(s)
- Ping Ping Hu
- Chongqing Engineering Research Center for Pharmacodynamics Evaluation, College of Pharmacy, Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ping Hu, ; Xiao Yong Tong,
| | - Shuang Xue Luo
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiao Qing Fan
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Di Li
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Yong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- *Correspondence: Ping Ping Hu, ; Xiao Yong Tong,
| |
Collapse
|
20
|
Chen W, Schilperoort M, Cao Y, Shi J, Tabas I, Tao W. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat Rev Cardiol 2022; 19:228-249. [PMID: 34759324 PMCID: PMC8580169 DOI: 10.1038/s41569-021-00629-x] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Nanotechnology could improve our understanding of the pathophysiology of atherosclerosis and contribute to the development of novel diagnostic and therapeutic strategies to further reduce the risk of cardiovascular disease. Macrophages have key roles in atherosclerosis progression and, therefore, macrophage-associated pathological processes are important targets for both diagnostic imaging and novel therapies for atherosclerosis. In this Review, we highlight efforts in the past two decades to develop imaging techniques and to therapeutically manipulate macrophages in atherosclerotic plaques with the use of rationally designed nanoparticles. We review the latest progress in nanoparticle-based imaging modalities that can specifically target macrophages. Using novel molecular imaging technology, these modalities enable the identification of advanced atherosclerotic plaques and the assessment of the therapeutic efficacy of medical interventions. Additionally, we provide novel perspectives on how macrophage-targeting nanoparticles can deliver a broad range of therapeutic payloads to atherosclerotic lesions. These nanoparticles can suppress pro-atherogenic macrophage processes, leading to improved resolution of inflammation and stabilization of plaques. Finally, we propose future opportunities for novel diagnostic and therapeutic strategies and provide solutions to challenges in this area for the purpose of accelerating the clinical translation of nanomedicine for the treatment of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Wei Chen
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maaike Schilperoort
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yihai Cao
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Hu Q, Fang Z, Ge J, Li H. Nanotechnology for cardiovascular diseases. Innovation (N Y) 2022; 3:100214. [PMID: 35243468 PMCID: PMC8866095 DOI: 10.1016/j.xinn.2022.100214] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular diseases have become the major killers in today's world, among which coronary artery diseases (CADs) make the greatest contributions to morbidity and mortality. Although state-of-the-art technologies have increased our knowledge of the cardiovascular system, the current diagnosis and treatment modalities for CADs still have limitations. As an emerging cross-disciplinary approach, nanotechnology has shown great potential for clinical use. In this review, recent advances in nanotechnology in the diagnosis of CADs will first be elucidated. Both the sensitivity and specificity of biosensors for biomarker detection and molecular imaging strategies, such as magnetic resonance imaging, optical imaging, nuclear scintigraphy, and multimodal imaging strategies, have been greatly increased with the assistance of nanomaterials. Second, various nanomaterials, such as liposomes, polymers (PLGA), inorganic nanoparticles (AuNPs, MnO2, etc.), natural nanoparticles (HDL, HA), and biomimetic nanoparticles (cell-membrane coating) will be discussed as engineered as drug (chemicals, proteins, peptides, and nucleic acids) carriers targeting pathological sites based on their optimal physicochemical properties and surface modification potential. Finally, some of these nanomaterials themselves are regarded as pharmaceuticals for the treatment of atherosclerosis because of their intrinsic antioxidative/anti-inflammatory and photoelectric/photothermal characteristics in a complex plaque microenvironment. In summary, novel nanotechnology-based research in the process of clinical transformation could continue to expand the horizon of nanoscale technologies in the diagnosis and therapy of CADs in the foreseeable future.
Collapse
Affiliation(s)
- Qinqin Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zheyan Fang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Ren X, Yuan W, Ma J, Wang P, Sun S, Wang S, Zhao R, Liang X. Magnetic nanoclusters mediated photothermal effect and macrophage modulation for synergistically photothermal immunotherapy of cancer. Biomater Sci 2022; 10:3188-3200. [PMID: 35579248 DOI: 10.1039/d1bm01770e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In tumor microenvironment, macrophages predominately exhibit M2-type functionalities which promote malignant progression and cancer metastasis, thus bring big hurdle to current anticancer strategies. Different approaches had been exploited to reverse...
Collapse
Affiliation(s)
- Xiaoqing Ren
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China.
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Jing Ma
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| | - Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| | - Rongsheng Zhao
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China.
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
23
|
Yang Z, Yao J, Wang J, Zhang C, Cao Y, Hao L, Yang C, Wu C, Zhang J, Wang Z, Ran H, Tian Y. Ferrite-encapsulated nanoparticles with stable photothermal performance for multimodal imaging-guided atherosclerotic plaque neovascularization therapy. Biomater Sci 2021; 9:5652-5664. [PMID: 34259244 DOI: 10.1039/d1bm00343g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pathological angiogenesis is a critical contributor to atherosclerotic plaque rupture. However, there are few effective theranostic strategies to stabilize plaques by suppressing neovascularization. In this study, we fabricated a polymeric nanosystem using 3 nm manganese ferrite (MnFe2O4) and perfluorohexane (PFH) stabilized by polylactic acid-glycolic acid (PLGA) shells and conjugated to the surface of an anti-vascular endothelial growth factor receptor 2 (VEGFR2) antibody [ramucirumab (Ram)]. The PFH@PLGA/MnFe2O4-Ram nanoparticles (NPs) were used as atherosclerotic plaque angiogenesis theranostics for multimodal imaging-guided photothermal therapy (PTT). Three-nanometer MnFe2O4 is an excellent magnetic resonance imaging T1 and photoacoustic imaging contrast agent. Upon exposure to near-infrared (NIR) light, MnFe2O4 in the NPs could transform NIR light into thermal energy for the photothermal elimination of plaque angiogenesis. Additionally, optical droplet vaporization of PFH in the NPs triggered by the thermal effect to form gas bubbles enhanced ultrasound imaging. Our in vitro experiments revealed that PFH@PLGA/MnFe2O4-Ram NPs actively accumulated in rabbit aortic endothelial cells, and NP-mediated PTT promoted endothelial cell apoptosis while inhibiting their proliferation, migration, and tubulogenesis. Notably, the PFH@PLGA/MnFe2O4-Ram NPs possessed excellent photostability and biocompatibility. In the rabbit advanced atherosclerotic plaque model, PFH@PLGA/MnFe2O4-Ram NP-guided PTT significantly induced apoptosis of neovascular endothelial cells and improved the hypoxia status in the plaque 3 days after treatment. On day 28, PTT significantly reduced the density of neovessels and subsequently stabilized rabbit plaques by inhibiting plaque hemorrhage and macrophage infiltration. Collectively, these results suggest that PFH@PLGA/MnFe2O4-Ram NP-guided PTT is a safe and effective theranostic strategy for inhibiting atherosclerotic plaque angiogenesis.
Collapse
Affiliation(s)
- Zhuowen Yang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin 150001, P. R. China. and Department of Gerontology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, P. R. China
| | - Jianting Yao
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Jianxin Wang
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P. R. China
| | - Cong Zhang
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P. R. China
| | - Yang Cao
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Lan Hao
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Chao Yang
- Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400014, P. R. China
| | - Changjun Wu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P. R. China
| | - Jingqi Zhang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin 150001, P. R. China.
| | - Zhigang Wang
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Haitao Ran
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Ye Tian
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin 150001, P. R. China. and Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin 150086, P. R. China
| |
Collapse
|
24
|
Liu J, Zhou B, Guo Y, Zhang A, Yang K, He Y, Wang J, Cheng Y, Cui D. SR-A-Targeted Nanoplatform for Sequential Photothermal/Photodynamic Ablation of Activated Macrophages to Alleviate Atherosclerosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29349-29362. [PMID: 34133141 DOI: 10.1021/acsami.1c06380] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cardiovascular and cerebrovascular diseases induced by atherosclerosis (AS) have become the dominant cause of disability and mortality throughout the world. The typical early pathological process of AS involves the activation of inflammatory macrophages in the vulnerable plaque. In this work, we first employed chitosan-coated carbon nanocages (CS-CNCs) as nanocarriers to load Chlorin e6 (Ce6) and then linked dextran sulfate (DS) to the outermost layer by electrostatic adsorption to create a multifunctional therapeutic nanoplatform, CS-CNCs@Ce6/DS. The DS of the nanoplatform can recognize and bind to the type A scavenger receptor (SR-A), which is expressed only on the activated macrophages of the arterial plaque, so the proposed nanoplatform selectively targets these macrophages and accumulates there. Furthermore, DS can competitively inhibit cellular endocytosis of oxidized low-density lipoproteins via blocking of SR-A. The rapid photothermal conversion capability of CS-CNCs enables efficient therapeutic delivery during photothermal therapy (PTT). Interestingly, near-infrared-accelerated drug release induced by initial 808-nm laser irradiation was observed, thus enhancing the Ce6 concentration in the atherosclerotic plaque area and the efficiency of photodynamic therapy (PDT). Sequential photothermal/photodynamic ablation of the activated macrophages reduced pro-inflammatory cytokine secretion and alleviated the proliferation and migration of smooth muscle cells. These finally resulted in the stabilization and shrinkage of atherosclerotic plaques, further inhibiting the development and exacerbation of AS. Therefore, this work achieved a "1 + 1 greater than 2" effect by providing a novel approach to the treatment of atherosclerotic plaques, which is promising for the prevention of AS-related diseases.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P. R. China
| | - Bi Zhou
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P. R. China
| | - Yuliang Guo
- Rehabilitation Department at Shanghai Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Amin Zhang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Kai Yang
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P. R. China
| | - Yu He
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P. R. China
| | - Jianbo Wang
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P. R. China
| | - Yingsheng Cheng
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
25
|
Wang Y, Meng HM, Li Z. Near-infrared inorganic nanomaterial-based nanosystems for photothermal therapy. NANOSCALE 2021; 13:8751-8772. [PMID: 33973616 DOI: 10.1039/d1nr00323b] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of robust materials for treating diseases through non-invasive photothermal therapy (PTT) has attracted increasing attention in recent years. Among various types of nanomaterials, inorganic nanomaterials with strong absorption in the near-infrared (NIR) window can be employed as high-efficiency photothermal agents to treat cancer and bacterial infections. In addition, inorganic nanomaterials can be easily combined with other drugs or chemical reagents to construct multifunctional nanomaterials to cascade stimulation responses, enhance therapeutic effects, and perform precise medical treatments. In this review, focusing on the latest developments of inorganic nanomaterials in photothermal therapy, we firstly introduced the light-to-heat conversion mechanism of inorganic nanomaterials. Secondly, we summarized the application of common inorganic nanomaterials, such as metallic nanoparticles, transition metal oxide nanoparticles and two dimensional (2D) nanosheets. In addition, the strategy of developing multifunctional nano-platforms with excellent biocompatibility as well as good targeted capability was also expounded. Finally, challenges and new perspectives for designing effective inorganic nanomaterial-based nanosystems for photothermal assisted therapy were also discussed.
Collapse
Affiliation(s)
- Yufei Wang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Hong-Min Meng
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
26
|
Fu D, Fang Q, Yuan F, Liu J, Ding H, Chen X, Cui C, Ding J. Thrombolysis Combined Therapy Using CuS@SiO 2-PEG/uPA Nanoparticles. Front Chem 2021; 9:643411. [PMID: 33777903 PMCID: PMC7991581 DOI: 10.3389/fchem.2021.643411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/18/2021] [Indexed: 11/25/2022] Open
Abstract
Massive hemorrhage caused by the uncontrolled release of thrombolysis drugs is a key issue of thrombolysis therapy in clinical practice. In this study, we report a near-infrared (NIR) light-triggered drug delivery system, i.e., CuS@mSiO2-PEG (CSP) nanoparticles, for the loading of a thrombolytic drug (urokinase plasminogen activators, uPA). CSP nanoparticles with the CuS nanoparticles as photothermal agents and mesoporous SiO2 for the loading of uPA were synthesized using a facile hydrothermal method. The CSP core-shell nanoparticles were demonstrated to possess excellent photothermal performance, exhibiting a photothermal conversion efficiency of up to 52.8%. Due to the mesoporous SiO2 coating, the CSP core-shell nanoparticles exhibited appropriate pore size, high pore volume, and large surface area; thus, they showed great potential to be used as drug carriers. Importantly, the release of uPA from CuS@mSiO2-PEG/uPA (CSPA) carriers can be promoted by the NIR laser irradiation. The drug loading content of uPA for the as-prepared NIR-triggered drug delivery system was calculated to be 8.2%, and the loading efficiency can be determined to be as high as 89.6%. Due to the excellent photothermal effect of CSP nanocarriers, the NIR-triggered drug delivery system can be used for infrared thermal imaging in vivo. The in vivo thrombolysis assessment demonstrated that the NIR-triggered drug delivery system showed excellent thrombolytic ability under the irradiation of an 808 nm laser, showing the combined therapy for thrombolysis. As far as we know, the CSPA core-shell nanoparticles used as NIR-triggered drug delivery systems for thrombolysis have not been reported.
Collapse
Affiliation(s)
- Dapeng Fu
- Department of Vascular Surgery, The Second People's Hospital of Anhui, Province, Hefei, China
| | - Qingbo Fang
- Department of Vascular Surgery, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Fukang Yuan
- Department of Vascular Surgery, Fengcheng Hospital of Fengxian District, Shanghai, China.,Department of Vascular Surgery, Fengcheng Branch, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery of Xuzhou Central Hospital, Xuzhou, China.,Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junle Liu
- Department of Vascular Surgery, Karamay Central Hospital, Karamay, China
| | - Heyi Ding
- Department of Vascular Surgery, Karamay Central Hospital, Karamay, China
| | - Xuan Chen
- Department of Vascular Surgery, Karamay Central Hospital, Karamay, China
| | - Chaoyi Cui
- Department of Vascular Surgery, Fengcheng Hospital of Fengxian District, Shanghai, China.,Department of Vascular Surgery, Fengcheng Branch, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhui Ding
- Department of Vascular Surgery, The Second People's Hospital of Anhui, Province, Hefei, China
| |
Collapse
|
27
|
Wu X, Liu K, Wang R, Yang G, Lin J, Liu X. Multifunctional CuBiS 2 Nanoparticles for Computed Tomography Guided Photothermal Therapy in Preventing Arterial Restenosis After Endovascular Treatment. Front Bioeng Biotechnol 2020; 8:585631. [PMID: 33195149 PMCID: PMC7609917 DOI: 10.3389/fbioe.2020.585631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/18/2020] [Indexed: 11/13/2022] Open
Abstract
Chronic inflammation mediated by artery infiltrated macrophages plays critical role in artery restenosis after endovascular therapy. Evidence has demonstrated the potential ability of photothermal therapy (PTT) in eliminating chronic inflammation by targeting inflammatory cells including macrophages. Recently, increasing attention has been payed to copper chalcogenide nanocrystals doped of radiocontrast agent, e.g., bismuth (Bi) for computed tomography (CT) guided PTT. However, the application of imaging guided PTT in preventing artery restenosis is lacking and limited. Herein, a novel multifunctional CuBiS2 nanoparticles (CuBiS2 NPs) were synthesized for CT imaging guided PTT in artery re-stenosis prevention. The optimum amount and other conditions of CuBiS2 NPs were optimized to exert the maximum ablation effect on macrophages with good biocompatibility. In vivo carotid injury model revealed that CuBiS2 NPs exhibited promising therapeutic effect on inhibition of artery stenosis by eliminating macrophages with excellent CT imaging ability. The recent study highlights a new cost-effective metal nanostructures-based nanotechnology in prevention of artery restenosis after endovascular therapy.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruihua Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanglin Yang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaying Lin
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobing Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Vascular Surgery, Fengcheng Hospital Affiliated to Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Lu R, Zhu J, Yu C, Nie Z, Gao Y. Cu 3BiS 3 Nanocrystals as Efficient Nanoplatforms for CT Imaging Guided Photothermal Therapy of Arterial Inflammation. Front Bioeng Biotechnol 2020; 8:981. [PMID: 32923437 PMCID: PMC7457067 DOI: 10.3389/fbioe.2020.00981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Cardio-cerebrovascular diseases caused by chronic inflammatory atherosclerosis seriously damage human health. Nano-photothermal technology has been proven to inhibit the development of vascular inflammation, but the currently reported photothermal agents cannot efficient monitor it during the development of the disease. Herein, we designed and prepared an efficient bifunctional nanoplatform for CT imaging guided photothermal therapy of arterial inflammation. Cu3BiS3 nanocrystals with a size of about 12 nm were synthesized by a simple hydrothermal method. The as-prepared Cu3BiS3 nanocrystals showed intense absorption in the NIR region, thus exhibited amazing photothermal effect. The photothermal conversion efficiency of Cu3BiS3 nanocrystals was reach up to 58.6% under the excitation of an 808 nm laser with a power density of 0.4 W cm–2. Cu3BiS3 nanocrystals can efficiently kill the macrophages both in vitro and in vivo, which plays an important role in the development of atherosclerosis, thus can be used as an effective way to inhibit the occurrence of hypertension. Importantly, Cu3BiS3 nanocrystals can be used as an efficient CT contrast agent to monitor carotid inflammation. Our work provides an insight for imaging guided photothermal therapy of arterial inflammation.
Collapse
Affiliation(s)
- Ran Lu
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jingyi Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Chaowen Yu
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhonglin Nie
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yong Gao
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
29
|
Dai T, He W, Yao C, Ma X, Ren W, Mai Y, Wu A. Applications of inorganic nanoparticles in the diagnosis and therapy of atherosclerosis. Biomater Sci 2020; 8:3784-3799. [PMID: 32469010 DOI: 10.1039/d0bm00196a] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atherosclerosis is a chronic progressive disease, which may result in serious clinical outcomes, such as acute heart events or stroke with high mortality. At present, the clinical problems of atherosclerosis mainly consist of the difficulty in confirming the plaques or identifying the stability of the plaques in the early phase and the shortage of valid treatments. Fortunately, with the development of nanotechnology, various inorganic nanoparticles with imaging enhancement and noninvasive therapy functions have been studied in the imaging and treatment of atherosclerosis, which has brought new hope to patients. This review focuses on the recent progress in the use of inorganic nanoparticles in the diagnosis and therapy of atherosclerosis, including the key processes in the development of atherosclerosis and the mainly involved cells, inorganic nanoparticle-based dual-mode imaging methods classified by the types of targeting cells, and inorganic nanoparticle-based therapeutic approaches, such as photothermal therapy (PTT), photodynamic therapy (PDT), sonodynamic therapy (SDT), drug delivery, gene therapy and imaging-guided therapy for atherosclerosis. Finally, this review discusses the challenges and directions of inorganic nanoparticles in potential clinical translation of anti-atherosclerosis in future. We believe this review will enable readers to systematically understand the progress of the inorganic nanoparticle-based imaging and therapy of atherosclerosis and therefore promote the further development of anti-atherosclerosis.
Collapse
Affiliation(s)
- Ting Dai
- Department of Cardiology, The Affiliated Hospital of Medical school of Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, Zhejiang Province 315020, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Peng X, Liu J, Ming C, Li B, Zhao Z, Ye K, Zeng M, Zou R, Lu X, Hu J. AgFeS 2 nanoparticles as a novel photothermal platform for effective artery stenosis therapy. NANOSCALE 2020; 12:11288-11296. [PMID: 32420577 DOI: 10.1039/d0nr01587c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ternary I-III-VI2 semiconductors usually have narrow band gaps and large absorption coefficients arising from the unique characteristics of their outer-d valence electrons, which are intimately connected with the photothermal conversion properties. AgFeS2 is known as one such material that has the potential to absorb near-infrared light. In this work, we utilized density functional theory (DFT) calculations to evaluate the electronic structure and optical absorption properties of AgFeS2. Strong absorptions were predicted over a wide Vis-NIR region due to the localized 3d electron of Fe atoms, which agree quite well with the UV-Vis-NIR spectra measured by experiment. The as-prepared AgFeS2 nanoparticles were then modified with mPEG-DSPE, an efficient photothermal agent for artery stenosis therapy. Its photothermal conversion effect has been systematically studied, indicating the potential for causing the hyperthermia of macrophages, an essential part of the artery inflammation response. More importantly, both in vitro cell experiments and in vivo mouse-model studies show that the induction of hyperthermia in artery stenosis by using AgFeS2 nanoparticles is safe and effective when injected at a very low concentration. This study provides a novel photothermal platform derived from the inheritability of bandgap structure and also promotes the process of artery inflammation and stenosis therapy.
Collapse
Affiliation(s)
- Xuan Peng
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Junchao Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Chen Ming
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Kaichuang Ye
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Min Zeng
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rujia Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China.
| |
Collapse
|
31
|
Zhao Z, Qiu P, Lu H, Yin M, Liu X, Li F, Liu K, Li D, Lu X, Li B. Near-infrared -triggered release of tirofiban from nanocarriers for the inhibition of platelet integrin αIIbβ3 to decrease early-stage neointima formation. NANOSCALE 2020; 12:4676-4685. [PMID: 32048702 DOI: 10.1039/d0nr00555j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Platelets play an important role in the early stage of arterial remodeling after injury. Integrin GPIIb/IIIα (αIIbβ3) regulates platelet activation in the inside-out and outside-in signaling pathways. The use of tirofiban, an integrin αIIbβ3 inhibitor, in clinical therapy is limited by its short in vivo circulation time. Herein, a controlled drug-release system was formulated using CuS@mSiO2-PEG core-shell nanoparticles as near-infrared-triggered nanocarriers to release tirofiban on demand. The nanocarriers possessed good colloidal stability and very high loading efficiency for the integrin αIIbβ3 inhibitor (14.5 wt% for tirofiban). Local application of αIIbβ3 antagonist-tirofiban on an injured arterial wall inhibited platelet activation, which was accelerated by laser irradiation. Ex vivo platelet-promoted monocyte transmigration trans-well assays revealed decreased monocyte transmigration after platelet activation was inhibited by tirofiban. Two weeks after the wire-induced injury, the intimal area and cellular content were analyzed. The neointimal area was decreased in ApoE-/- mice with CuS@mSiO2-PEG/tirofiban and laser irradiation-promoted tirofiban release, which had limited the neointima formation. The lesions showed a decreased content of macrophages and smooth muscle cells compared with ApoE-/- mice without tirofiban inhibition. Therefore, the action of platelet-integrin αIIbβ3 in neointima formation after vascular injury was successfully inhibited in vivo through the controlled release of tirofiban using a near-infrared-triggered nanocarrier, leading to the decrease of early-stage neointima formation. This study also emphasizes the role of platelets in vascular remodeling and provides a new target, namely integrin αIIbβ3, for the inhibition of neointimal hyperplasia during vascular inflammation.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Peng Qiu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Huaxiang Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Minyi Yin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Xiaobing Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Fengshi Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Kai Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China. and Department of Vascular Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University Medical College, Qingdao 266000, China
| | - Dalin Li
- Department of Vascular Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University Medical College, Qingdao 266000, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
32
|
Huang Y, Li T, Gao W, Wang Q, Li X, Mao C, Zhou M, Wan M, Shen J. Platelet-derived nanomotor coated balloon for atherosclerosis combination therapy. J Mater Chem B 2020; 8:5765-5775. [DOI: 10.1039/d0tb00789g] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A nanorobot is used to realize deep penetration of drugs in atherosclerotic plaque, photothermal ablation of inflammatory macrophages and long-term anti-proliferation effects.
Collapse
Affiliation(s)
- Yangyang Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Wentao Gao
- Department of Vascular Surgery
- Nanjing Drum Tower Hospital
- The Affiliated Hospital of Nanjing University Medical School
- P. R. China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Xiaoyun Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Min Zhou
- Department of Vascular Surgery
- Nanjing Drum Tower Hospital
- The Affiliated Hospital of Nanjing University Medical School
- P. R. China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| |
Collapse
|