1
|
Hu H, Liang H, Fan J, Guo L, Li H, de Rooij NF, Umar A, Algarni H, Wang Y, Zhou G. Assembling Hollow Cactus-Like ZnO Nanorods with Dipole-Modified Graphene Nanosheets for Practical Room-Temperature Formaldehyde Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13186-13195. [PMID: 35275633 DOI: 10.1021/acsami.1c20680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Formaldehyde (HCHO) sensing plays a critical role for indoor environment monitoring in smart home systems. Inspired by the unique hierarchical structure of cactus, we have prepared a ZnO/ANS-rGO composite for room-temperature (RT) HCHO sensing, through assembling hollow cactus-like ZnO nanorods with 5-aminonaphthalene-1-sulfonic acid (ANS)-modified graphene nanosheets in a facile and template-free manner. Interestingly, it was found that the ZnO morphology could be simply tuned from flower clusters to hollow cactus-like nanostructures, along with the increase of the reaction time during the assembly process. The ZnO/ANS-rGO-based sensors exhibited superior RT HCHO-sensing performance with an ultrahigh response (68%, 5 ppm), good repeatability, long-term stability, and an outstanding practical limit of detection (LOD: 0.25 ppm) toward HCHO, which is the lowest practical LOD reported so far. Furthermore, for the first time, a 30 m3 simulation test cabinet was adapted to evaluate the practical gas-sensing performance in an indoor environment. As a result, an instantaneous response of 5% to 0.4 ppm HCHO was successfully achieved in the simulation test. The corresponding sensing mechanism was interpreted from two aspects including high charge transport capability of ANS-rGO and the distinct gas adsorbability derived from nanostructures, respectively. The combination of a biomimetic hierarchical structure and supramolecular assembly provides a promising strategy to design HCHO-sensing materials with high practicability.
Collapse
Affiliation(s)
- Huiyun Hu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Hongping Liang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Jincheng Fan
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Lanpeng Guo
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Hao Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Nicolaas Frans de Rooij
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Ahmad Umar
- Promising Centre for Sensors and Electronic Devices, Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Hamed Algarni
- Department of Physics, King Khalid University, Abha 61421, Kingdom of Saudi Arabia
| | - Yao Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
2
|
Yuan X, Pei F, Luo X, Hu H, Qian H, Wen P, Miao K, Guo S, Wang W, Feng G. Fabrication of ZnO/Au@Cu2O heterojunction towards deeply oxidative photodegradation of organic dyes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Zhou W, Fu L, Zhao L, Xu X, Li W, Wen M, Wu Q. Novel Core-Sheath Cu/Cu 2O-ZnO-Fe 3O 4 Nanocomposites with High-Efficiency Chlorine-Resistant Bacteria Sterilization and Trichloroacetic Acid Degradation Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10878-10890. [PMID: 33635062 DOI: 10.1021/acsami.0c21336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In order to solve two issues of chlorine-resistant bacteria (CRB) and disinfection byproducts (DBPs) in tap water after the chlorine-containing treatment process, an innovative core-sheath nanostructured Cu/Cu2O-ZnO-Fe3O4 was designed and synthesized. The fabrication mechanism of the materials was then systematically analyzed to determine the component and valence state. The properties of CRB inactivation together with trichloroacetic acid (TCAA) photodegradation by Cu/Cu2O-ZnO-Fe3O4 were investigated in detail. It was found that Cu/Cu2O-ZnO-Fe3O4 displayed excellent antibacterial activity with a relatively low cytotoxicity concentration due to its synergism of nanowire structure, ion release, and reactive oxygen species generation. Furthermore, the Cu/Cu2O-ZnO-Fe3O4 nanocomposite also exhibited outstanding photocatalytic degradation activity on TCAA under simulated sunlight irradiation, which was verified to be dominated by the surface reaction through kinetic analysis. More interestingly, the cell growth rate of Cu/Cu2O-ZnO-Fe3O4 was determined to be 50% and 10% higher than those of Cu/Cu2O and Cu/Cu2O-ZnO after 10 h incubation, respectively, manifesting a weaker cytotoxicity. Therefore, the designed Cu/Cu2O-ZnO-Fe3O4 could be a promising agent for tap water treatment.
Collapse
Affiliation(s)
- Wei Zhou
- College of Environmental Science and Engineering, School of Chemical Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, PR China
| | - Lin Fu
- College of Environmental Science and Engineering, School of Chemical Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, PR China
| | - Long Zhao
- College of Environmental Science and Engineering, School of Chemical Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, PR China
| | - Xiaojuan Xu
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Weiying Li
- College of Environmental Science and Engineering, School of Chemical Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, PR China
| | - Ming Wen
- College of Environmental Science and Engineering, School of Chemical Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, PR China
| | - Qingsheng Wu
- College of Environmental Science and Engineering, School of Chemical Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
5
|
Wang X, Hu W, Qiu Y, Huang Y, Wang X, Xu M, Ma J, Miao F, Cui X, Jin C, Ruterana P. Directional charge transportation and Rayleigh scattering for the optimal in-band quantum yield of a composite semiconductor nano-photocatalyst. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02316g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The work propose a novel technique based on wavelength dispersive in situ photoluminescence spectroscopy for diagnosing the wavelength dependent directional charge transportation and Rayleigh scattering enhanced in-band quantum yield.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Key Laboratory of Electronic and Information Engineering
- State Ethnic Affairs Commission
- Southwest Minzu University
- Chengdu 610041
- China
| | - Wenyu Hu
- Key Laboratory of Electronic and Information Engineering
- State Ethnic Affairs Commission
- Southwest Minzu University
- Chengdu 610041
- China
| | - Yang Qiu
- Materials Characterization and Preparation Center and Department of Physics
- Southern University of Science and Technology
- Shenzhen 518055
- China
| | - Yi Huang
- Key Laboratory of Electronic and Information Engineering
- State Ethnic Affairs Commission
- Southwest Minzu University
- Chengdu 610041
- China
| | | | - Min Xu
- Key Laboratory of Electronic and Information Engineering
- State Ethnic Affairs Commission
- Southwest Minzu University
- Chengdu 610041
- China
| | - Jian Ma
- Key Laboratory of Electronic and Information Engineering
- State Ethnic Affairs Commission
- Southwest Minzu University
- Chengdu 610041
- China
| | - Feng Miao
- Key Laboratory of Electronic and Information Engineering
- State Ethnic Affairs Commission
- Southwest Minzu University
- Chengdu 610041
- China
| | - Xudong Cui
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang 621900
- China
| | - Chaoyuan Jin
- Institute of Microelectronics and Nanoelectronics
- College of Information Science and Electronic Engineering
- Zhejiang University
- Hangzhou 310007
- China
| | | |
Collapse
|
6
|
Abstract
Electroless Ni-Mo-P coatings were deposited onto ceramic tiles in order to be employed as electrodes for the electrodeposition of ZnO and Cu2O heterojunction layers. Varying conditions, such as duration, annealing of the electroless coating and applied potential, and duration for ZnO electrodeposition were studied in order to optimize the properties of the ZnO/Cu2O heterojunctions toward improved photoelectrical performance. The coatings were evaluated in terms of morphology, crystalline structure, and by electrochemical and photoelectrical means. The obtained results indicated that a prolonged annealing treatment at low temperature is beneficial to improve the roughness and electrical conductivity of the Ni-Mo-P coating to further enhance the electrodeposition of ZnO. The morphology analysis revealed continuous and homogeneous Ni-Mo-P coatings. The formation of cube-like Cu2O crystals with larger grain size was induced by increasing the deposition duration of ZnO. The properties of ZnO layer are much improved when a higher cathodic potential is applied (−0.8 V) for 1 h, resulting in optimum photoelectric parameters as 1.44 mA·cm−2 for the JSC and 760.23 µV for the VOC value, respectively, for the corresponding heterojunction solar cell.
Collapse
|
7
|
Jia M, Zhang Y, Li Z, Crouch E, Doble S, Avenoso J, Yan H, Ni C, Gundlach L. A versatile strategy for controlled assembly of plasmonic metal/semiconductor hemispherical nano-heterostructure arrays. NANOSCALE 2020; 12:17530-17537. [PMID: 32812597 DOI: 10.1039/d0nr03551c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent advances in manipulating plasmonic properties of metal/semiconductor heterostructures have opened up new avenues for basic research and applications. Herein, we present a versatile strategy for the assembly of arrays of plasmonic metal/semiconductor hemispherical nano-heterostructures (MSHNs) with control over spacing and size of the metal/semiconductor heterostructure array, which can facilitate a wide range of scientific studies and applications. The strategy combines nanosphere lithography for generating the metal core array with solution-based chemical methods for the semiconductor shell that are widely available and kinetically controllable. Periodic arrays of Au/Cu2O and Ag/Cu2O heterostructures are synthesized to demonstrate the approach and highlight the versatility and importance of the tunability of plasmonic properties. The morphology, structure, optical properties, and elemental compositions of the heterostructures were analyzed. This strategy can be important for understanding and manipulating fundamental nanoscale solid-state physical and chemical properties, as well as assembling heterostructures with desirable structure and functionality for applications.
Collapse
Affiliation(s)
- Meng Jia
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|