1
|
Zhang X, Gao H, Kan Y, Wang X, Zhang W, Zhou K, Xu H, Ye L, Yang R, Yang Y, Hao X, Sun Y, Gao K. End-Extended Conjugation Strategy to Reduce the Efficiency-Stability-Mechanical Robustness Gap in Binary All-Polymer Solar Cells. Angew Chem Int Ed Engl 2024:e202415583. [PMID: 39385038 DOI: 10.1002/anie.202415583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Concurrently achieving high efficiency, mechanical robustness and thermal stability is critical for the commercialization of all-polymer solar cells (APSCs). However, APSCs usually demonstrate complicated morphology, primarily attributed to the polymer chain entanglement which has a detrimental effect on their fill factors (FF) and morphology stability. To address these concerns, an end-group extended polymer acceptor, PY-NFT, was synthesized and studied. The morphology analysis showed a tightly ordered molecular packing mode and a favorable phase separation was formed. The PM6 : PY-NFT-based device achieved an exceptional PCE of 19.12 % (certified as 18.45 %), outperforming the control PM6 : PY-FT devices (17.14 %). This significant improvement highlights the record-high PCE for binary APSCs. The thermal aging study revealed that the PM6 : PY-NFT blend exhibited excellent morphological stability, thereby achieving superior device stability, retaining 90 % of initial efficiency after enduring thermal stress (65 °C) for 1500 hours. More importantly, the PM6 : PY-NFT blend film exhibited outstanding mechanical ductility with a crack onset strain of 24.1 %. Overall, rational chemical structure innovation, especially the conjugation extension strategy to trigger appropriate phase separation and stable morphology, is the key to achieving high efficiency, improved thermal stability and robust mechanical stability of APSCs.
Collapse
Affiliation(s)
- Xu Zhang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, 518057, China
| | - Huanhuan Gao
- College of New Energy, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, China
| | - Yuanyuan Kan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, 518057, China
| | - Xunchang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - Wenqing Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Kangkang Zhou
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Huajun Xu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, 518057, China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - Yingguo Yang
- School of Microelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Yanna Sun
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, 518057, China
| | - Ke Gao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, 518057, China
| |
Collapse
|
2
|
Lin C, Peng R, Shi J, Ge Z. Research progress and application of high efficiency organic solar cells based on benzodithiophene donor materials. EXPLORATION (BEIJING, CHINA) 2024; 4:20230122. [PMID: 39175891 PMCID: PMC11335474 DOI: 10.1002/exp.20230122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/07/2024] [Indexed: 08/24/2024]
Abstract
In recent decades, the demand for clean and renewable energy has grown increasingly urgent due to the irreversible alteration of the global climate change. As a result, organic solar cells (OSCs) have emerged as a promising alternative to address this issue. In this review, we summarize the recent progress in the molecular design strategies of benzodithiophene (BDT)-based polymer and small molecule donor materials since their birth, focusing on the development of main-chain engineering, side-chain engineering and other unique molecular design paths. Up to now, the state-of-the-art power conversion efficiency (PCE) of binary OSCs prepared by BDT-based donor materials has approached 20%. This work discusses the potential relationship between the molecular changes of donor materials and photoelectric performance in corresponding OSC devices in detail, thereby presenting a rational molecular design guidance for stable and efficient donor materials in future.
Collapse
Affiliation(s)
- Congqi Lin
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
- Faculty of Materials and Chemical EngineeringNingbo UniversityNingboPeople's Republic of China
| | - Ruixiang Peng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| | - Jingyu Shi
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| |
Collapse
|
4
|
Lv M, Tang Y, Qiu D, Zou W, Zhou R, Liu L, Huang Z, Zhang J, Lu K, Wei Z. Single-bond-linked oligomeric donors for high performance organic solar cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Han J, Wang X, Huang D, Yang C, Yang R, Bao X. Employing Asymmetrical Thieno[3,4-d]pyridazin-1(2H)-one Block Enables Efficient Ternary Polymer Solar Cells with Improved Light-Harvesting and Morphological Properties. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00459] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jianhua Han
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xunchang Wang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Da Huang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Renqiang Yang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Xichang Bao
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
9
|
An L, Huang Y, Wang X, Liang Z, Li J, Tong J. Fluorination Effect for Highly Conjugated Alternating Copolymers Involving Thienylenevinylene-Thiophene-Flanked Benzodithiophene and Benzothiadiazole Subunits in Photovoltaic Application. Polymers (Basel) 2020; 12:E504. [PMID: 32106540 PMCID: PMC7254375 DOI: 10.3390/polym12030504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 01/28/2023] Open
Abstract
Two two-dimensional (2D) donor-acceptor (D-A) type conjugated polymers (CPs), namely, PBDT-TVT-BT and PBDT-TVT-FBT, in which two ((E)-(4,5-didecylthien-2-yl)vinyl)- 5-thien-2-yl (TVT) side chains were introduced into 4,8-position of benzo[1,2-b:4,5-b']dithiophene (BDT) to synthesize the highly conjugated electron-donating building block BDT-TVT, and benzothiadiazole (BT) and/or 5,6-difluoro-BT as electron-accepting unit, were designed to systematically ascertain the impact of fluorination on thermal stability, optoelectronic property, and photovoltaic performance. Both resultant copolymers exhibited the lower bandgap (1.60 ~ 1.69 eV) and deeper highest occupied molecular orbital energy level (EHOMO, -5.17 ~ -5.37 eV). It was found that the narrowed absorption, deepened EHOMO and weakened aggregation in solid film but had insignificant influence on thermal stability after fluorination in PBDT-TVT-FBT. Accordingly, a PBDT-TVT-FBT-based device yielded 16% increased power conversion efficiency (PCE) from 4.50% to 5.22%, benefited from synergistically elevated VOC, JSC, and FF, which was mainly originated from deepened EHOMO, increased μh, μe, and more balanced μh/μe ratio, higher exciton dissociation probability and improved microstructural morphology of the photoactive layer as a result of incorporating fluorine into the polymer backbone.
Collapse
Affiliation(s)
- Lili An
- Key Laboratory for Utility of Environment- Friendly Composite Materials and Biomass in University of Gansu Province, School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Yubo Huang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (Y.H.); (X.W.); (Z.L.); (J.L.); (J.T.)
| | - Xu Wang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (Y.H.); (X.W.); (Z.L.); (J.L.); (J.T.)
| | - Zezhou Liang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (Y.H.); (X.W.); (Z.L.); (J.L.); (J.T.)
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Jianfeng Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (Y.H.); (X.W.); (Z.L.); (J.L.); (J.T.)
| | - Junfeng Tong
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (Y.H.); (X.W.); (Z.L.); (J.L.); (J.T.)
| |
Collapse
|