1
|
Bashir R, Bilal MK, Bashir A, Asif SU, Peng Y. ZnO/SrTiO 3, ZnO/WO 3, and ZnO/Zn 2SnO 4 Bilayer as Electron Transport Layers for Lead Sulfide Colloidal Quantum Dots Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402500. [PMID: 39246184 DOI: 10.1002/smll.202402500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/21/2024] [Indexed: 09/10/2024]
Abstract
In order to enhance the overall efficiency of colloidal quantum dots solar cells, it is crucial to suppress the recombination of charge carriers and minimize energy loss at the interfaces between the transparent electrode, electron transport layer (ETL), and colloidal quantum dots (CQDs) light-absorbing material. In the current study, ZnO/SrTiO3 (STO), ZnO/WO3 (TO), and ZnO/Zn2SnO4 (ZTO) bilayers are introduced as an ETL using a spin-coating technique. The ZTO interlayer exhibits a smoother surface with a root-mean-square (RMS) value of ≈ 3.28 nm compared to STO and TO interlayers, which enables it to cover the surface of the ITO/ZnO substrate entirely and helps to prevent direct contact between the CQDs absorber layer and the ITO/ZnO substrate, thereby effectively preventing efficient charge recombination at the interfaces of the ETL/CQDs. Furthermore, the ZTO interlayer possesses superior electron mobility, a higher visible light transmission, and a suitable energy band structure compared to STO and TO. These characteristics are advantageous for extracting charge carriers and facilitating electron transport. The PbS CQDs solar cell based on the ITO/ZnO/ZTO/PbS-FABr/PbS-EDT/NiO/Au device configuration exhibits the highest efficiency of 15.28%, which is significantly superior than the ITO/ZnO/PbS-FABr/PbS-EDT/NiO/Au solar cell device (PCE = 14.38%). This study is anticipated to offer a practical approach to develop ultrathin and compact ETL for highly efficient CQDSCs.
Collapse
Affiliation(s)
- Rabia Bashir
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Muhammad Kashif Bilal
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Amna Bashir
- Department of Chemistry, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan
| | - Sana Ullah Asif
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Yicheng Peng
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
2
|
Shinde DD, Sharma A, Dambhare NV, Mahajan C, Biswas A, Mitra A, Rath AK. Synthesis and Processing Strategy for High-Bandgap PbS Quantum Dots: A Promising Candidate for Harvesting High-Energy Photons in Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42522-42533. [PMID: 39087921 DOI: 10.1021/acsami.4c09364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The wide tunability of the energy bandgap of colloidal lead sulfide (PbS) quantum dots (QDs) has uniquely positioned them for the development of single junction and tandem solar cells. While there have been substantial advancements in moderate and narrow bandgap PbS QDs-ideal for single junction solar cells and the bottom cell in tandem solar cells, respectively; progress has been limited in high-bandgap PbS QDs that are ideally suited for the formation of the top cell in tandem solar cells. The development of appropriate high bandgap PbS QDs would be a major advancement toward realizing efficient all-QD tandem solar cells utilizing different sizes of PbS QDs. Here, we report a comprehensive approach encompassing synthetic strategy, ligand engineering, and hole transport layer (HTL) modification to implement high-bandgap PbS QDs into solar cell devices. We achieved a greater degree of size homogeneity in high-bandgap PbS QDs through the use of a growth retarding agent and a partial passivation strategy. By adjusting the ligand polarity, we successfully grow HTL over the QD film to fabricate solar cells. With the aid of an interface modifying layer, we incorporated an organic HTL for the realization of high-performance solar cells. These solar cells exhibited an impressive open-circuit voltage of 0.824 V and a power conversion efficiency of 10.7%, marking a 360% improvement over previous results.
Collapse
Affiliation(s)
| | - Anjali Sharma
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Neha V Dambhare
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chandan Mahajan
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arindam Biswas
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Anurag Mitra
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arup K Rath
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Guan X, Li Z, Geng X, Lei Z, Karakoti A, Wu T, Kumar P, Yi J, Vinu A. Emerging Trends of Carbon-Based Quantum Dots: Nanoarchitectonics and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207181. [PMID: 36693792 DOI: 10.1002/smll.202207181] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Carbon-based quantum dots (QDs) have emerged as a fascinating class of advanced materials with a unique combination of optoelectronic, biocompatible, and catalytic characteristics, apt for a plethora of applications ranging from electronic to photoelectrochemical devices. Recent research works have established carbon-based QDs for those frontline applications through improvements in materials design, processing, and device stability. This review broadly presents the recent progress in the synthesis of carbon-based QDs, including carbon QDs, graphene QDs, graphitic carbon nitride QDs and their heterostructures, as well as their salient applications. The synthesis methods of carbon-based QDs are first introduced, followed by an extensive discussion of the dependence of the device performance on the intrinsic properties and nanostructures of carbon-based QDs, aiming to present the general strategies for device designing with optimal performance. Furthermore, diverse applications of carbon-based QDs are presented, with an emphasis on the relationship between band alignment, charge transfer, and performance improvement. Among the applications discussed in this review, much focus is given to photo and electrocatalytic, energy storage and conversion, and bioapplications, which pose a grand challenge for rational materials and device designs. Finally, a summary is presented, and existing challenges and future directions are elaborated.
Collapse
Affiliation(s)
- Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Zhixuan Li
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xun Geng
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zhihao Lei
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
4
|
Zhao Q, Han R, Marshall AR, Wang S, Wieliczka BM, Ni J, Zhang J, Yuan J, Luther JM, Hazarika A, Li GR. Colloidal Quantum Dot Solar Cells: Progressive Deposition Techniques and Future Prospects on Large-Area Fabrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107888. [PMID: 35023606 DOI: 10.1002/adma.202107888] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Colloidally grown nanosized semiconductors yield extremely high-quality optoelectronic materials. Many examples have pointed to near perfect photoluminescence quantum yields, allowing for technology-leading materials such as high purity color centers in display technology. Furthermore, because of high chemical yield, and improved understanding of the surfaces, these materials, particularly colloidal quantum dots (QDs) can also be ideal candidates for other optoelectronic applications. Given the urgent necessity toward carbon neutrality, electricity from solar photovoltaics will play a large role in the power generation sector. QDs are developed and shown dramatic improvements over the past 15 years as photoactive materials in photovoltaics with various innovative deposition properties which can lead to exceptionally low-cost and high-performance devices. Once the key issues related to charge transport in optically thick arrays are addressed, QD-based photovoltaic technology can become a better candidate for practical application. In this article, the authors show how the possibilities of different deposition techniques can bring QD-based solar cells to the industrial level and discuss the challenges for perovskite QD solar cells in particular, to achieve large-area fabrication for further advancing technology to solve pivotal energy and environmental issues.
Collapse
Affiliation(s)
- Qian Zhao
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Rui Han
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, China
| | - Ashley R Marshall
- Condensed Matter Physics Department of Physics, University of Oxford, Parks Road, Oxford, OX13PU, UK
| | - Shuo Wang
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | | | - Jian Ni
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, China
| | - Jianjun Zhang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, China
| | - Jianyu Yuan
- Institute of Functional Nano and Soft Materials Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Joseph M Luther
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Abhijit Hazarika
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India
| | - Guo-Ran Li
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
5
|
Madan J, Singh K, Pandey R. Comprehensive device simulation of 23.36% efficient two-terminal perovskite-PbS CQD tandem solar cell for low-cost applications. Sci Rep 2021; 11:19829. [PMID: 34615903 PMCID: PMC8494808 DOI: 10.1038/s41598-021-99098-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
The major losses that limit the efficiency of a single-junction solar cell are thermalization loss and transmission loss. Thus, to efficiently utilize the full solar spectrum and to mitigate these losses, tandem solar cells (TSC) have significantly impacted the photovoltaic (PV) landscape. In this context, the research on perovskite/silicon tandems is currently dominating the research community. The stability improvements of perovskite materials and mature fabrication techniques of silicon have underpinned the rapid progress of perovskite/silicon TSC. However, the low absorption coefficient and high module cost of the silicon are the tailbacks for the mass production of perovskite/silicon TSCs. Therefore, PV technology demands to explore some new materials other than Si to be used as absorber layer in the bottom cell. Thus, here in this work, to mitigate the aforementioned losses and to reduce cost, a 23.36% efficient two-terminal perovskite-PbS CQD monolithic tandem solar cell has been designed through comprehensive device simulations. Before analyzing the performance of the proposed TSC, the performance of perovskite top cells has been optimized in terms of variation in optical properties, thickness, and interface defect density under standalone conditions. Thereafter, filtered spectrum and associated integrated filtered power by the top cell at different perovskite thickness from 50 to 500 nm is obtained to conceive the presence of the top cell above the bottom cell with different perovskite thickness. The current matching by concurrently varying the thickness of both the top and bottom subcell has also been done to obtain the maximum deliverable tandem JSC for the device under consideration. The top/bottom subcell with current matched JSC of 16.68 mA cm-2/16.62 mA cm-2 showed the conversion efficiency of 14.60%/9.07% under tandem configuration with an optimized thickness of 143 nm/470 nm, where the top cell is simulated under AM1.5G spectrum, and bottom cell is exposed to the spectrum filtered by 143 nm thick top cell. Further, the voltages at equal current points are added together to generate tandem J-V characteristics. This work concludes a 23.36% efficient perovskite-PbS CQD tandem design with 1.79 V (VOC), 16.67 mA cm-2 (JSC) and 78.3% (FF). The perovskite-PbS CQD tandem device proposed in this work may pave the way for the development of high-efficiency tandem solar cells for low-cost applications.
Collapse
Affiliation(s)
- Jaya Madan
- VLSI Centre of Excellence, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India.
| | - Karanveer Singh
- Chitkara College of Applied Engineering, Chitkara University, Rajpura, Punjab, India
| | - Rahul Pandey
- VLSI Centre of Excellence, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
6
|
Kim T, Lim S, Yun S, Jeong S, Park T, Choi J. Design Strategy of Quantum Dot Thin-Film Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002460. [PMID: 33079485 DOI: 10.1002/smll.202002460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Quantum dots (QDs) are emerging photovoltaic materials that display exclusive characteristics that can be adjusted through modification of their size and surface chemistry. However, designing a QD-based optoelectronic device requires specialized approaches compared with designing conventional bulk-based solar cells. In this paper, design considerations for QD thin-film solar cells are introduced from two different viewpoints: optics and electrics. The confined energy level of QDs contributes to the adjustment of their band alignment, enabling their absorption characteristics to be adapted to a specific device purpose. However, the materials selected for this energy adjustment can increase the light loss induced by interface reflection. Thus, management of the light path is important for optical QD solar cell design, whereas surface modification is a crucial issue for the electrical design of QD solar cells. QD thin-film solar cell architectures are fabricated as a heterojunction today, and ligand exchange provides suitable doping states and enhanced carrier transfer for the junction. Lastly, the stability issues and methods on QD thin-film solar cells are surveyed. Through these strategies, a QD solar cell study can provide valuable insights for future-oriented solar cell technology.
Collapse
Affiliation(s)
- Taewan Kim
- Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Department of Energy Science and Center for Artificial Atoms, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seyeong Lim
- Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sunhee Yun
- Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sohee Jeong
- Department of Energy Science and Center for Artificial Atoms, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Taiho Park
- Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jongmin Choi
- Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, Republic of Korea
| |
Collapse
|
7
|
Liu S, Hu L, Huang S, Zhang W, Ma J, Wang J, Guan X, Lin CH, Kim J, Wan T, Lei Q, Chu D, Wu T. Enhancing the Efficiency and Stability of PbS Quantum Dot Solar Cells through Engineering an Ultrathin NiO Nanocrystalline Interlayer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46239-46246. [PMID: 32929953 DOI: 10.1021/acsami.0c14332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Significant progress in PbS quantum dot solar cells has been achieved through designing device architecture, engineering band alignment, and optimizing the surface chemistry of colloidal quantum dots (CQDs). However, developing a highly stable device while maintaining the desirable efficiency is still a challenging issue for these emerging solar cells. In this study, by introducing an ultrathin NiO nanocrystalline interlayer between Au electrodes and the hole-transport layer of the PbS-EDT, the resulting PbS CQD solar cell efficiency is improved from 9.3 to 10.4% because of the improved hole-extraction efficiency. More excitingly, the device stability is significantly enhanced owing to the passivation effect of the robust NiO nanocrystalline interlayer. The solar cells with the NiO nanocrystalline interlayer retain 95 and 97% of the initial efficiency when heated at 80 °C for 120 min and treated with oxygen plasma irradiation for 60 min, respectively. In contrast, the control devices without the NiO nanocrystalline interlayer retain only 75 and 63% of the initial efficiency under the same testing conditions.
Collapse
Affiliation(s)
- Shanqin Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, Henan, P. R. China
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
- School of Engineering, Macquarie University Sustainable Energy Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Shujuan Huang
- School of Engineering, Macquarie University Sustainable Energy Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Wanqing Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, Henan, P. R. China
| | - Jingjing Ma
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, Henan, P. R. China
| | - Jichao Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, Henan, P. R. China
| | - Xinwei Guan
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jiyun Kim
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Tao Wan
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Qi Lei
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|