1
|
Gulbalkan H, Aksu GO, Ercakir G, Keskin S. Accelerated Discovery of Metal-Organic Frameworks for CO 2 Capture by Artificial Intelligence. Ind Eng Chem Res 2024; 63:37-48. [PMID: 38223500 PMCID: PMC10785804 DOI: 10.1021/acs.iecr.3c03817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024]
Abstract
The existence of a very large number of porous materials is a great opportunity to develop innovative technologies for carbon dioxide (CO2) capture to address the climate change problem. On the other hand, identifying the most promising adsorbent and membrane candidates using iterative experimental testing and brute-force computer simulations is very challenging due to the enormous number and variety of porous materials. Artificial intelligence (AI) has recently been integrated into molecular modeling of porous materials, specifically metal-organic frameworks (MOFs), to accelerate the design and discovery of high-performing adsorbents and membranes for CO2 adsorption and separation. In this perspective, we highlight the pioneering works in which AI, molecular simulations, and experiments have been combined to produce exceptional MOFs and MOF-based composites that outperform traditional porous materials in CO2 capture. We outline the future directions by discussing the current opportunities and challenges in the field of harnessing experiments, theory, and AI for accelerated discovery of porous materials for CO2 capture.
Collapse
Affiliation(s)
| | | | - Goktug Ercakir
- Department of Chemical and Biological
Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Seda Keskin
- Department of Chemical and Biological
Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
2
|
Advances in Metal-Organic Frameworks for Efficient Separation and Purification of Natural Gas. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
3
|
Li D, Jia Y, Li Z, Liu L, Wu N, Hu M. Identification of folic acid and sulfaquinoxaline using a heterometallic Zn-Eu MOF as a sensor. Dalton Trans 2023; 52:696-702. [PMID: 36545891 DOI: 10.1039/d2dt03446h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A d-f heterometallic MOF using the 2,2'-bipyridine-4,4'-dicarboxylic acid ligand (H2LZ) was obtained by solvothermal synthesis, namely [EuZn(LZ)2(HCOO)(H2O)3]n (1). The structure analysis shows that compound 1 comprises heterometallic Zn2+ and Eu3+ ions, which are connected by LZ2- and HCOO- anions to form a three-dimensional framework. MOF 1 exhibited high stability of fluorescence intensity in the scope of pH 2-11 in an aqueous solution. Furthermore, MOF 1 served as an excellent selective sensing material for the detection of folic acid in the presence of some imitating materials of the human body and discerned sulfaquinoxaline in sulfonamide drugs with high sensitivity, selectivity, and reusability. Moreover, we designed and manufactured a sensor paper based on MOF 1 as a portable device for the visual detection of folic acid and sulfaquinoxaline. More crucially, this is the first example in which luminescent MOF is used to identify sulfaquinoxaline molecules in an aqueous solution. In addition, the luminescence sensing mechanisms of MOF 1 for the detection of the above analytes were explored in detail.
Collapse
Affiliation(s)
- Dechao Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Yuejiao Jia
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Zhang Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Lu Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Nan Wu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Ming Hu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
4
|
Wu X, Che Y, Chen L, Amigues EJ, Wang R, He J, Dong H, Ding L. Mapping the Porous and Chemical Structure-Function Relationships of Trace CH 3I Capture by Metal-Organic Frameworks using Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47209-47221. [PMID: 36197758 DOI: 10.1021/acsami.2c10861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Large-scale computational screening has become an indispensable tool for functional materials discovery. It, however, remains a challenge to adequately interrogate the large amount of data generated by a screening study. Here, we computationally screened 1087 metal-organic frameworks (MOFs), from the CoRE MOF 2014 database, for capturing trace amounts (300 ppmv) of methyl iodide (CH3I); as a primary representative of organic iodides, CH3129I is one of the most difficult radioactive contaminants to separate. Furthermore, we demonstrate a simple and general approach for mapping and interrogating the high-dimensional structure-function data obtained by high-throughput screening; this involves learning two-dimensional embeddings of the high-dimensional data by applying unsupervised learning to encoded structural and chemical features of MOFs. The resulting various porous and chemical structure-function maps are human-interpretable, revealing not only top-performing MOFs but also complex structure-function correlations that are hidden when inspecting individual MOF features. These maps also alleviate the need of laborious visual inspection of a large number of MOFs by clustering similar MOFs, per the encoding features, into defined regions on the map. We also show that these structure-function maps are amenable to supervised classification of the performances of MOFs for trace CH3I capture. We further show that the machine-learning models trained on the 1087 CoRE MOFs can be used to predict an unseen set of 250 MOFs randomly selected from a different MOF database, achieving high prediction accuracies.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, P. R. China
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Yu Che
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Linjiang Chen
- School of Chemistry and School of Computer Science, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Eric Jean Amigues
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, P. R. China
| | - Ruiyao Wang
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, P. R. China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, P. R. China
| | - Lifeng Ding
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
5
|
Theoretical studies of metal-organic frameworks: Calculation methods and applications in catalysis, gas separation, and energy storage. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Daglar H, Altintas C, Erucar I, Heidari G, Zare EN, Moradi O, Srivastava V, Iftekhar S, Keskin S, Sillanpää M. Metal-organic framework-based materials for the abatement of air pollution and decontamination of wastewater. CHEMOSPHERE 2022; 303:135082. [PMID: 35618068 DOI: 10.1016/j.chemosphere.2022.135082] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Developing new and efficient technologies for environmental remediation is becoming significant due to the increase in global concerns such as climate change, severe epidemics, and energy crises. Air pollution, primarily due to increased levels of H2S, SOx, NH3, NOx, CO, volatile organic compounds (VOC), and particulate matter (PM) in the atmosphere, has a significant impact on public health, and exhaust gases harm the natural sulfur, nitrogen, and carbon cycles. Similarly, wastewater discharged to the environment with metal ions, herbicides, pharmaceuticals, personal care products, dyes, and aromatics/organic compounds is a risk for health since it may lead to an outbreak of waterborne pathogens and increase the exposure to endocrine-disrupting agents. Therefore, developing new and efficient air and water quality management systems is critical. Metal-organic frameworks (MOFs) are novel materials for which the main application areas include gas storage and separation, water harvesting from the atmosphere, chemical sensing, power storage, drug delivery, and food preservation. Due to their versatile structural motifs that can be modified during synthesis, MOFs also have a great promise for green applications including air and water pollution remediation. The motivation to use MOFs for environmental applications prompted the modification of their structures via the addition of metal and functional groups, as well as the creation of heterostructures by mixing MOFs with other nanomaterials, to effectively remove hazardous contaminants from wastewater and the atmosphere. In this review, we focus on the state-of-the-art environmental applications of MOFs, particularly for water treatment and air pollution, by highlighting the groundbreaking studies in which MOFs have been used as adsorbents, membranes, and photocatalysts for the abatement of air and water pollution. We finally address the opportunities and challenges for the environmental applications of MOFs.
Collapse
Affiliation(s)
- Hilal Daglar
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Cigdem Altintas
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Ilknur Erucar
- Department of Natural and Mathematical Sciences, Faculty of Engineering, Ozyegin University, Cekmekoy, 34794, Istanbul, Turkey
| | - Golnaz Heidari
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, 41938-33697, Iran
| | | | - Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Varsha Srivastava
- Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, Oulu, 90014, Finland
| | - Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, Kuopio, 70120, Finland
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang, 314213, PR China; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
7
|
Exploring covalent organic frameworks for H2S+CO2 separation from natural gas using efficient computational approaches. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Wang G, Wang Z, Cao W, Liu Y, Zheng B, Deng Y. Identifying promising covalent organic frameworks for HCHO/O2 + N2 adsorption from indoor air pollution using high-throughput computational screening. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Wang F, Bi Z, Ding L, Yang Q. Large-Scale Computational Screening of Metal–Organic Frameworks for D2/H2 Separation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Demir H, Keskin S. Computational insights into efficient CO2 and H2S capture through zirconium MOFs. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Effect of linker configuration and functionalization on the seawater desalination performance of Zr-MOF membrane. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Demir H, Keskin S. Zr-MOFs for CF 4/CH 4, CH 4/H 2, and CH 4/N 2 separation: towards the goal of discovering stable and effective adsorbents. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2021; 6:627-642. [PMID: 34381619 PMCID: PMC8327127 DOI: 10.1039/d1me00060h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Zirconium metal-organic frameworks (MOFs) can be promising adsorbents for various applications as they are highly stable in different chemical environments. In this work, a collection of Zr-MOFs comprised of more than 100 materials is screened for CF4/CH4, CH4/H2, and CH4/N2 separations using atomistic-level simulations. The top three MOFs for the CF4/CH4 separation are identified as PCN-700-BPDC-TPDC, LIFM-90, and BUT-67 exhibiting CF4/CH4 adsorption selectivities of 4.8, 4.6, and 4.7, CF4 working capacities of 2.0, 2.0, and 2.1 mol kg-1, and regenerabilities of 85.1, 84.2, and 75.7%, respectively. For the CH4/H2 separation, MOF-812, BUT-67, and BUT-66 are determined to be the top performing MOFs demonstrating CH4/H2 selectivities of 61.6, 36.7, and 46.2, CH4 working capacities of 3.0, 4.1, and 3.4 mol kg-1, and CH4 regenerabilities of 70.7, 82.7, and 74.7%, respectively. Regarding the CH4/N2 separation, BUT-67, Zr-AbBA, and PCN-702 achieving CH4/N2 selectivities of 4.5, 3.4, and 3.8, CH4 working capacities of 3.6, 3.9, and 3.5 mol kg-1, and CH4 regenerabilities of 81.1, 84.0, and 84.5%, in successive order, show the best overall separation performances. To further elucidate the adsorption in top performing adsorbents, the adsorption sites in these materials are analyzed using radial distribution functions and adsorbate density profiles. Finally, the water affinities of Zr-MOFs are explored to comment on their practical use in real gas separation applications. Our findings may inspire future studies probing the adsorption/separation mechanisms and performances of Zr-MOFs for different gases.
Collapse
Affiliation(s)
- Hakan Demir
- Department of Chemical and Biological Engineering, Koc University 34450 Istanbul Turkey
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koc University 34450 Istanbul Turkey
| |
Collapse
|
13
|
Shan Y, Liu D, Xu C, Zhan P, Wang H, Wang J, He R, Wang W. The synergistic effect of phosphomolybdic acid on rhodium-based metal–organic frameworks for the efficient selective photocatalytic reduction of CO 2 to CO. NEW J CHEM 2021. [DOI: 10.1039/d0nj06053d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PMA@NH2-MIL-68(Rh) with a mangosteen spherical structure were synthesized by a hydrothermal method and used for the highly efficient selective photocatalytic reduction of CO2 to CO.
Collapse
Affiliation(s)
- Yurong Shan
- School of Materials Science and Engineering
- Central South University of Forestry and Technology
- Changsha 410004
- China
| | - Dexiang Liu
- School of Materials Science and Engineering
- Central South University of Forestry and Technology
- Changsha 410004
- China
| | - Chunyan Xu
- School of Materials Science and Engineering
- Central South University of Forestry and Technology
- Changsha 410004
- China
| | - Peng Zhan
- School of Materials Science and Engineering
- Central South University of Forestry and Technology
- Changsha 410004
- China
| | - Hui Wang
- School of Materials Science and Engineering
- Central South University of Forestry and Technology
- Changsha 410004
- China
| | - Jing Wang
- College of Science
- Central South University of Forestry and Technology
- Changsha 410004
- China
| | - Ren He
- College of Science
- Central South University of Forestry and Technology
- Changsha 410004
- China
| | - Wenlei Wang
- College of Science
- Central South University of Forestry and Technology
- Changsha 410004
- China
| |
Collapse
|
14
|
Xu M, Liu Z, Huai X, Lou L, Guo J. Screening of metal-organic frameworks for water adsorption heat transformation using structure-property relationships. RSC Adv 2020; 10:34621-34631. [PMID: 35514380 PMCID: PMC9056766 DOI: 10.1039/d0ra06363k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
It is of great importance to correlate the water adsorption performance of MOFs to their physicochemical features in order to design and prepare MOFs for applications in adsorption heat transformation. In this work, both data analysis from existing studies and Grand Canonical Monte Carlo molecular simulation investigations were carried out. The results indicated that the highest water adsorption capacity was determined by the pore volume of MOF adsorbents, while there was a linear correlation interrelationship between isosteric heats of adsorption and the water adsorption performance at a low relative pressure. More detailed analysis showed that the charge distribution framework and pore size of MOFs contributed together to the hydrophilicity. Electrostatic interaction between water molecules and the framework atoms played a key role at low relative water pressure. A quantitative structure-property relationship model that can correlate the hydrophilicity of MOFs to their pore size and atomic partial charge was established. Along with some qualitative considerations, the screening methodology is proposed and is used to screen proper MOFs in the CoRE database. Seven MOFs were detected, and four of them were synthesized to validate the screening principle. The results indicated that these four MOFs possessed outstanding water adsorption performance and could be considered as promising candidates in applications for adsorption heating and cooling.
Collapse
Affiliation(s)
- Min Xu
- Institute of Engineering Thermophysics, Chinese Academy of Sciences Beijing 100190 China +86-10-82543035 +86-10-82543035
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhangli Liu
- Institute of Engineering Thermophysics, Chinese Academy of Sciences Beijing 100190 China +86-10-82543035 +86-10-82543035
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiulan Huai
- Institute of Engineering Thermophysics, Chinese Academy of Sciences Beijing 100190 China +86-10-82543035 +86-10-82543035
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lanting Lou
- Institute of Engineering Thermophysics, Chinese Academy of Sciences Beijing 100190 China +86-10-82543035 +86-10-82543035
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiangfeng Guo
- Institute of Engineering Thermophysics, Chinese Academy of Sciences Beijing 100190 China +86-10-82543035 +86-10-82543035
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|