1
|
Buchheit R, Niebuur BJ, González-García L, Kraus T. Surface polarization, field homogeneity, and dielectric breakdown in ordered and disordered nanodielectrics based on gold-polystyrene superlattices. NANOSCALE 2023; 15:7526-7536. [PMID: 37022092 DOI: 10.1039/d3nr01038d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hybrid dielectrics were prepared from dispersions of nanoparticles with gold cores (diameters from 2.9 nm to 8.2 nm) and covalently bound thiol-terminated polystyrene shells (5000 Da and 11 000 Da) in toluene. Their microstructure was investigated with small angle X-ray scattering and transmission electron microscopy. The particles arranged in nanodielectric layers with either face-centered cubic or random packing, depending on the ligand length and core diameter. Thin film capacitors were prepared by spin-coating inks on silicon substrates, contacted with sputtered aluminum electrodes, and characterized with impedance spectroscopy between 1 Hz and 1 MHz. The dielectric constants were dominated by polarization at the gold-polystyrene interfaces that we could precisely tune via the core diameter. There was no difference in the dielectric constant between random and supercrystalline particle packings, but the dielectric losses depended on the layer structure. A model that combines Maxwell-Wagner-Sillars theory and percolation theory described the relationship of the specific interfacial area and the dielectric constant quantitatively. The electric breakdown of the nanodielectric layers sensitively depended on particle packing. A highest breakdown field strength of 158.7 MV m-1 was found for the sample with 8.2 nm cores and short ligands that had a face-centered cubic structure. Breakdown apparently is initiated at the microscopic maxima of the electric field that depends on particle packing. The relevance of the results for industrially produced devices was demonstrated on inkjet printed thin film capacitors with an area of 0.79 mm2 on aluminum coated PET foils that retained their capacity of 1.24 ± 0.01 nF@10 kHz during 3000 bending cycles.
Collapse
Affiliation(s)
- Roman Buchheit
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Bart-Jan Niebuur
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Lola González-García
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany.
| | - Tobias Kraus
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Colloid and Interface Chemistry, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany.
| |
Collapse
|
2
|
Reinheimer T, Mach TP, Häuser K, Hoffmann MJ, Binder JR. Dielectric Behavior of Thin Polymerized Composite Layers Fabricated by Inkjet-Printing. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:441. [PMID: 36770402 PMCID: PMC9921083 DOI: 10.3390/nano13030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
A detailed study of the dielectric behavior of printed capacitors is given, in which the dielectric consists of a thin (<1 µm) ceramic/polymer composite layer with high permittivities of εr 20-69. The used ink contains surface-modified Ba0.6Sr0.4TiO3 (BST), a polymeric crosslinking agent and a thermal initiator, which allows the immediate polymerization of the ink during printing, leading to homogenous layers. To validate the results of the calculated permittivities, different layer thicknesses of the dielectric are printed and the capacitances, as well as the loss factors, are measured. Afterwards, the exact layer thicknesses are determined with cross sectional SEM images of ion-etched samples. Then, the permittivities are calculated with the known effective area of the capacitors. Furthermore, the ink composition is varied to obtain different ceramic/polymer ratios and thus different permittivities. The packing density of all composites is analyzed via SEM to show possible pores and validate the target ratio, respectively. The correlation between the chosen ratio and the measured permittivity is discussed using models from the literature. In addition, the leakage current of some capacitors is measured and discussed. For that, the dielectric was printed on different bottom electrodes as the nature of the electrode was found to be crucial for the performance.
Collapse
|
3
|
Recent Advances in Multi-Material 3D Printing of Functional Ceramic Devices. Polymers (Basel) 2022; 14:polym14214635. [PMID: 36365628 PMCID: PMC9654317 DOI: 10.3390/polym14214635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
In recent years, functional ceramic devices have become smaller, thinner, more refined, and highly integrated, which makes it difficult to realize their rapid prototyping and low-cost manufacturing using traditional processing. As an emerging technology, multi-material 3D printing offers increased complexity and greater freedom in the design of functional ceramic devices because of its unique ability to directly construct arbitrary 3D parts that incorporate multiple material constituents without an intricate process or expensive tools. Here, the latest advances in multi-material 3D printing methods are reviewed, providing a comprehensive study on 3D-printable functional ceramic materials and processes for various functional ceramic devices, including capacitors, multilayer substrates, and microstrip antennas. Furthermore, the key challenges and prospects of multi-material 3D-printed functional ceramic devices are identified, and future directions are discussed.
Collapse
|
4
|
Chen Z, Gengenbach U, Liu X, Scholz A, Zimmermann L, Aghassi-Hagmann J, Koker L. An Automated Room Temperature Flip-Chip Mounting Process for Hybrid Printed Electronics. MICROMACHINES 2022; 13:mi13040583. [PMID: 35457888 PMCID: PMC9028054 DOI: 10.3390/mi13040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
Abstract
Printing technology and mounting technology enable the novel field of hybrid printed electronics. To establish a hybrid printed system, one challenge is that the applied mounting process meets the requirements of functional inks and substrates. One of the most common requirements is low process temperature. Many functional inks and substrates cannot withstand the high temperatures required by traditional mounting processes. In this work, a standardized interconnection and an automated bump-less flip-chip mounting process using a room temperature curing conductive adhesive are realised. With the proposed process, the conductive adhesive selected for the standardized interconnection can be dispensed uniformly, despite its increase of viscosity already during pot time. Electrical and mechanical performance of the interconnection are characterized by four terminal resistance measurement and shear test. The herein proposed automated process allows for fabrication of hybrid printed devices in larger batch sizes than manual assembly processes used beforehand and thus, more comprehensive evaluation of device parameters. This is successfully demonstrated in a first application, a novel hybrid printed security device. The room temperature mounting process eliminates any potentially damaging thermal influence on the performance of the printed circuits that might result from other assembly techniques like soldering.
Collapse
Affiliation(s)
- Zehua Chen
- Institute of Automation and Applied Informatics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (U.G.); (X.L.); (L.K.)
- Correspondence:
| | - Ulrich Gengenbach
- Institute of Automation and Applied Informatics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (U.G.); (X.L.); (L.K.)
| | - Xinnan Liu
- Institute of Automation and Applied Informatics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (U.G.); (X.L.); (L.K.)
| | - Alexander Scholz
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (A.S.); (J.A.-H.)
| | - Lukas Zimmermann
- Hahn-Schickard-Gesellschaft für angewandte Forschung e.V., Wilhelm-Schickard-Straße 10, 78052 Villingen-Schwenningen, Germany;
| | - Jasmin Aghassi-Hagmann
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (A.S.); (J.A.-H.)
| | - Liane Koker
- Institute of Automation and Applied Informatics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (U.G.); (X.L.); (L.K.)
| |
Collapse
|
5
|
Park Y, Yun I, Chung WG, Park W, Lee DH, Park J. High-Resolution 3D Printing for Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104623. [PMID: 35038249 PMCID: PMC8922115 DOI: 10.1002/advs.202104623] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/04/2021] [Indexed: 05/17/2023]
Abstract
The ability to form arbitrary 3D structures provides the next level of complexity and a greater degree of freedom in the design of electronic devices. Since recent progress in electronics has expanded their applicability in various fields in which structural conformability and dynamic configuration are required, high-resolution 3D printing technologies can offer significant potential for freeform electronics. Here, the recent progress in novel 3D printing methods for freeform electronics is reviewed, with providing a comprehensive study on 3D-printable functional materials and processes for various device components. The latest advances in 3D-printed electronics are also reviewed to explain representative device components, including interconnects, batteries, antennas, and sensors. Furthermore, the key challenges and prospects for next-generation printed electronics are considered, and the future directions are explored based on research that has emerged recently.
Collapse
Affiliation(s)
- Young‐Geun Park
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Insik Yun
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Won Gi Chung
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Wonjung Park
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Dong Ha Lee
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Jang‐Ung Park
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
6
|
Buchheit R, Kuttich B, González‐García L, Kraus T. Hybrid Dielectric Films of Inkjet-Printable Core-Shell Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103087. [PMID: 34425032 PMCID: PMC11468688 DOI: 10.1002/adma.202103087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/05/2021] [Indexed: 05/27/2023]
Abstract
A new type of hybrid core-shell nanoparticle dielectric that is suitable for inkjet printing is introduced. Gold cores (dcore ≈ 4.5 nm diameter) are covalently grafted with thiol-terminated polystyrene (Mn = 11000 Da and Mn = 5000 Da) and used as inks to spin-coat and inkjet-print dielectric films. The dielectric layers have metal volume fractions of 5 to 21 vol% with either random or face-centered-cubic structures depending on the polymer length and grafting density. Films with 21 vol% metal have dielectric constants of 50@1 Hz. Structural and electrical characterization using transmission electron microscopy, small-angle X-ray scattering, and impedance spectroscopy indicates that classical random capacitor-resistor network models partially describe this hybrid material but fail at high metal fractions, where the covalently attached shell prevents percolation and ensures high dielectric constants without the risk of dielectric breakdown. A comparison of disordered to ordered films indicates that the network structure affects dielectric properties less than the metal content. The applicability of the new dielectric material is demonstrated by formulating inkjet inks and printing devices. An inkjet-printed capacitor with an area of 0.79 mm2 and a 17 nm thick dielectric had a capacitance of 2.2 ± 0.1 n F @ 1 k H z .
Collapse
Affiliation(s)
- Roman Buchheit
- INM – Leibniz Institute for New MaterialsCampus D2 2Saarbrücken66123Germany
| | - Björn Kuttich
- INM – Leibniz Institute for New MaterialsCampus D2 2Saarbrücken66123Germany
| | | | - Tobias Kraus
- INM – Leibniz Institute for New MaterialsCampus D2 2Saarbrücken66123Germany
- Colloid and Interface ChemistrySaarland UniversityCampus D2 2Saarbrücken66123Germany
| |
Collapse
|
7
|
Kim I, Ju B, Zhou Y, Li BM, Jur JS. Microstructures in All-Inkjet-Printed Textile Capacitors with Bilayer Interfaces of Polymer Dielectrics and Metal-Organic Decomposition Silver Electrodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24081-24094. [PMID: 33988966 DOI: 10.1021/acsami.1c01827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Soft printed electronics exhibit unique structures and flexibilities suited for a plethora of wearable applications. However, forming scalable, reliable multilayered electronic devices with heterogeneous material interfaces on soft substrates, especially on porous and anisotropic structures, is highly challenging. In this study, we demonstrate an all-inkjet-printed textile capacitor using a multilayered structure of bilayer polymer dielectrics and particle-free metal-organic decomposition (MOD) silver electrodes. Understanding the inherent porous/anisotropic microstructure of textiles and their surface energy relationship was an important process step for successful planarization. The MOD silver ink formed a foundational conductive layer through the uniform encapsulation of individual fibers without blocking fiber interstices. Urethane-acrylate and poly(4-vinylphenol)-based bilayers were able to form a planarized dielectric layer on polyethylene terephthalate textiles. A unique chemical interaction at the interfaces of bilayer dielectrics performed a significant role in insulating porous textile substrates resulting in high chemical and mechanical durability. In this work, we demonstrate how textiles' unique microstructures and bilayer dielectric layer designs benefit reliability and scalability in the inkjet process as well as the use in wearable electronics with electromechanical performance.
Collapse
Affiliation(s)
- Inhwan Kim
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Beomjun Ju
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Ying Zhou
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Braden M Li
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Jesse S Jur
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
8
|
Fabrication of Flexible Multilayer Composite Capacitors Using Inkjet Printing. NANOMATERIALS 2020; 10:nano10112302. [PMID: 33233838 PMCID: PMC7699911 DOI: 10.3390/nano10112302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022]
Abstract
This paper shows a straightforward method for printing multilayer composite capacitors with three dielectric layers on flexible substrates. As known from multilayer ceramic chip capacitors (MLCCs), it is possible to create a parallel connection of the layers without enlarging the needed area. Hence, the overall capacitance is increased, as the capacitances of the single dielectric layers add up. To realize printed capacitors, a special ceramic/polymer composite ink is used. The ink consists of surface-modified Ba0.6Sr0.4TiO3 (BST), a polymeric crosslinking agent and a thermal initiator, which allows an immediate polymerization of the ink, leading to very homogenous layers. The dielectric behavior of the capacitors is examined for each completed dielectric layer (via impedance spectroscopy) so that the changes with every following layer can be analyzed. It is demonstrated that the concept works, and capacitors with up to 3420 pF were realized (permittivity of ~40). However, it was also shown that the biggest challenge is the printing of the needed silver electrodes. They show a strong coffee stain effect, leading to thicker edge areas, which are difficult to overprint. Only with the help of printed supporting structures was it possible to lower the failure rate when printing thin dielectric layers.
Collapse
|