1
|
Polivanovskaia DA, Abdulaeva IA, Birin KP, Gorbunova YG, Tsivadze AY. Phosphonate-Substituted Pyrazinoporphyrin - a General Photocatalyst for Efficient Sulfoxidation. Chempluschem 2024:e202400469. [PMID: 39259034 DOI: 10.1002/cplu.202400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
An exceptional efficiency of pyrazine-annelated porphyrin as a general photocatalyst for the oxidation of organic sulfides is demonstrated. It is shown that phosphonate-substituted pyrazinoporphyrin 2H-1 brings together sufficient photostability and high efficiency in the aerobic photooxidation of a series of various sulfides. The influence of the reaction conditions onto the efficiency of homogeneous sulfide photooxidation in the presence of the photosensitizer (PS) was investigated and strong dependence on the solvent system was observed. The use of methanol is required for the photocatalytic sulfoxidation and the ratio of the alcohol/other solvent can significantly affect the conversion and selectivity of the reaction. The application of the prepared PS in 0.001 mol % loading allowed achieving complete conversion (97-100 %, turnover number up to 1,00,000, turnover frequency up to 6250 h-1) of substrates bearing substituents of different nature, namely aromatic and aliphatic sulfides with donor or acceptor substituents and substituents prone to oxidation, as well as cyclic sulfides. The selectivity of the of the corresponding sulfoxides formation of 96-100 % was revealed. Finally, a gram-scale synthesis of several sulfoxides was successfully performed with the PS under investigation, providing desired products in 66-96 % yield with over 98 % purity.
Collapse
Affiliation(s)
- Daria A Polivanovskaia
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky pr., 31, bldg. 4, Moscow, 119071, Russia
| | - Inna A Abdulaeva
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky pr., 31, bldg. 4, Moscow, 119071, Russia
| | - Kirill P Birin
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky pr., 31, bldg. 4, Moscow, 119071, Russia
| | - Yulia G Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky pr., 31, bldg. 4, Moscow, 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninsky pr., 31, Moscow, 119991, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky pr., 31, bldg. 4, Moscow, 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninsky pr., 31, Moscow, 119991, Russia
| |
Collapse
|
2
|
Gao Y, Zheng L, Duan L, Bi J. Separable Metal-Organic Framework-Based Materials for the Adsorption of Emerging Contaminants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39024504 DOI: 10.1021/acs.langmuir.4c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Thousands of chemicals have been released into the environment in recent decades. The presence of emerging contaminants (ECs) in water has emerged as a pressing concern. Adsorption is a viable solution for the removal of ECs. Metal-organic frameworks (MOFs) have shown great potential as efficient adsorbents, but their dispersed powder form limits their practical applications. Recently, researchers have developed various separable MOF-based adsorbents to improve their recyclability. The purpose of this review is to summarize the latest developments in the construction of separable MOF-based adsorbents and their applications in adsorbing ECs. The construction strategies for separable MOFs are classified into four categories: magnetic MOFs, MOF-fiber composites, MOF gels, and binder-assisted shaping. Typical emerging contaminants include pesticides, pharmaceuticals and personal care products, and endocrine-disrupting compounds. The adsorption performance of different materials is evaluated based on the results of static and dynamic adsorption experiments. Additionally, the regeneration methods of MOF-based adsorbents are discussed in detail to facilitate effective recycling and reuse. Finally, challenges and potential future research opportunities are proposed, including reducing performance losses during the shaping process, developing assessment systems based on dynamic purification and real polluted water, optimizing regeneration methods, designing multifunctional MOFs, and low-cost, large-scale synthesis of MOFs.
Collapse
Affiliation(s)
- Yanxin Gao
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, P. R. China
| | - Lisi Zheng
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, P. R. China
| | - Longying Duan
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, P. R. China
| | - Jinhong Bi
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Minhou, Fujian 350108, P. R. China
| |
Collapse
|
3
|
Yin X, Sun Y, Geng K, Cui Y, Huang J, Hou H. Ingenious Modulation of Third-Order Nonlinear Optical Response of Zr-MOFs through Defect Engineering Based on a Mixed-Linker Strategy. Inorg Chem 2024; 63:6723-6733. [PMID: 38569126 DOI: 10.1021/acs.inorgchem.3c04651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Defect engineering plays a pivotal role in regulating electronic structure and facilitating charge transfer, yielding captivating effects on third-order nonlinear optical (NLO) properties. In this work, we utilized a mixed-linker strategy to intentionally disrupt the initial periodic arrangement of UiO-66 and construct defects. Specifically, we incorporated tetrakis(4-carboxyphenyl)porphyrin (TCPP) with an exceptionally electron-rich delocalization system into the framework of UiO-66 using a one-pot solvothermal method, ingeniously occupying the partial distribution sites of the Zr6 clusters. Compared to UiO-66, the NLO absorption and refraction performance of TCPP/UiO-66 were significantly improved. Additionally, due to the presence of nitrogen-rich sites that can accommodate metal ions in the porphyrin ring of TCPP, Co(II), Ni(II), Cu(II), and Zn(II) are introduced into TCPP/UiO-66, extending the d-π conjugation effect to further regulate the defects. The NLO absorption behavior transforms saturation absorption (SA) to reverse saturation absorption (RSA), while the refraction behavior shifts from self-defocusing to self-focusing. This work shows that defects can effectively regulate the electronic structure, while TCPP plays a crucial role in significantly enhancing electron delocalization.
Collapse
Affiliation(s)
- Xiaoyu Yin
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yupei Sun
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangshuai Geng
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yang Cui
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing Huang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hongwei Hou
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
4
|
Xiao W, Huang W, Zhou Y, Jin Z, Wei X, Li J. Ti 3C 2@UiO-TCPP Schottky junction photoelectrochemical sensor for detecting alkaline phosphatase through the steric hindrance effect of phosphopeptide. Anal Chim Acta 2024; 1289:342210. [PMID: 38245201 DOI: 10.1016/j.aca.2024.342210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024]
Abstract
Alkaline phosphatase (ALP) is a major biomarker for clinical diagnosis, but detection methods of ALP are limited in sensitivity and selectivity. In this paper, a novel method for ALP determination is proposed. A photoelectrochemical (PEC) sensor was prepared by growing UiO-tetratopic tetrakis (4-carbox-yphenyl) porphyrin (TCPP) in situ between layered Ti3C2 through a one-pot hydrothermal method. The obtained Schottky heterojunction photoelectric material Ti3C2@UiO-TCPP not only has a large light absorption range but also greatly improves the efficiency of photogenerated electron hole separation and thereby enhances sensitivity for PEC detection. The phosphate group on the phosphorylated polypeptide was utilized to form a Zr-O-P bond with the zirconium ion on UiO-66, and then photocurrent decreases due to the steric hindrance effect of phosphorylated polypeptides, that is, the hindrance of electron transfer between the photoelectric material and a solution. The specific interaction between ALP and phosphorylated polypeptides shears the bond between phosphate and zirconium ion on UiO-66 in the peptides then weakens the hindrance effect and increases the photocurrent, thus realizing ALP detection. The linear range of ALP is 0.03-10,000 U·L-1, and the detection limit is 0.012 U·L-1. The method is highly sensitive and selective, and has been applied in detection of ALP in serum samples.
Collapse
Affiliation(s)
- Wei Xiao
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - WanJin Huang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Yu Zhou
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Zhenhuan Jin
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Xiaoping Wei
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China.
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China.
| |
Collapse
|
5
|
Wang B, Zhao L, Ma H, Ren X, Wang H, Fan D, Wu D, Wei Q. One master and two servants: One Zr(Ⅳ) with two ligands of TCPP and NH 2-BDC form the MOF as the electrochemiluminescence emitter for the biosensing application. Talanta 2024; 266:124961. [PMID: 37480821 DOI: 10.1016/j.talanta.2023.124961] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Here we put forward an innovative "one master and two servants" strategy for enhancing the ECL performance. A novel ECL luminophore named Zr-TCPP/NH2-BDC (TCPP@UiO-66-NH2) was synthesized by self-assembly of meso-tetra(4-carboxyphenyl)porphine (TCPP) and 4-aminobenzoic acid (NH2-BDC) with Zr clusters. TCPP@UiO-66-NH2 has a porous structure and a highly ordered structure, which allows the molecular motion of TCPP to be effectively confined, thereby inhibiting nonradiative energy transfer. Importantly, TCPP@UiO-66-NH2 has a higher and more stable ECL signal. To further improve the sensitivity of the sensor, we use polydopamine-coated manganese dioxide (PDA@MnO2), which has a double quenching effect, as the quencher. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2-N) is one of the ideal markers for the early diagnosis of COVID-19, and its sensitivity detection is of great significance for the prevention and treatment of COVID-19. Thus, we constructed a quenching-type ECL sensor for the ultrasensitive detection of the SARS-CoV-2-N. Its linear range is 10 fg/mL∼1 μg/mL and the calculated detection limit is 1.4 fg/mL (S/N = 3). The spiked recoveries are 97.40-103.8%, with the relative standard deviations (RSD) under 3.0%. More importantly, the technique offers a viable way to identify and diagnose viral infections early.
Collapse
Affiliation(s)
- Beibei Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lu Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
6
|
Ma L, Cheng Y, Feng X, Zhang X, Lei J, Wang H, Xu Y, Tong B, Zhu D, Wu D, Zhou X, Liang H, Zhao K, Wang K, Tan L, Zhao Y, Yang C. A Janus-ROS Healing System Promoting Infectious Bone Regeneration via Sono-Epigenetic Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307846. [PMID: 37855420 DOI: 10.1002/adma.202307846] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Elimination of bacterial infections and simultaneously promoting osteogenic differentiation are highly required for infectious bone diseases. Massive reactive oxygen species (ROS) can damage cells, while low ROS concentrations as a molecular signal can regulate cellular fate. In this study, a Janus-ROS healing system is developed for infectious bone regeneration. An alendronate (ALN)-mediated defective metal-organic framework (MOF) sonosensitizer is prepared, which can effectively clear Methicillin-resistant Staphylococcus aureus (MRSA) infections and promote osteogenic differentiation under differential ultrasonic irradiation. In the presence of zirconium-phosphate coordination, the ALN-mediated porphyrin-based MOF (HN25) with a proper defect has great sonodynamic antibacterial efficiency (98.97%, 15 min) and bone-targeting ability. Notably, under low-power ultrasound irradiation, HN25 can increase the chromatin accessibility of ossification-related genes and FOXO1 to promote bone repair through low ROS concentrations. Animal models of paravertebral infection, fracture with infection, and osteomyelitis demonstrate that HN25 successfully realizes the targeted and potent repair of various infectious bone tissues through rapid MRSA elimination, inhibiting osteoclast activity and promoting bone regeneration. The results show that high catalytic efficiency and bioactive MOF can be constructed using pharmaceutical-mediated defect engineering. The Janus-ROS treatment is also a promising therapeutic mode for infectious tissue regeneration.
Collapse
Affiliation(s)
- Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoguang Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongchuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bide Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dingchao Zhu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Di Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xingyu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kangcheng Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Tan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
7
|
Saroa A, Singh A, Jindal N, Kumar R, Singh K, Guleria P, Boopathy R, Kumar V. Nanotechnology-assisted treatment of pharmaceuticals contaminated water. Bioengineered 2023; 14:2260919. [PMID: 37750751 PMCID: PMC10524801 DOI: 10.1080/21655979.2023.2260919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
The presence of pharmaceutical compounds in wastewater due to an increase in industrialization and urbanization is a serious health concern. The demand for diverse types of pharmaceutical compounds is expected to grow as there is continuous improvement in the global human health standards. Discharge of domestic pharmaceutical personal care products and hospital waste has aggravated the burden on wastewater management. Further, the pharmaceutical water is toxic not only to the aquatic organism but also to terrestrial animals coming in contact directly or indirectly. The pharmaceutical wastes can be removed by adsorption and/or degradation approach. Nanoparticles (NPs), such as 2D layers materials, metal-organic frameworks (MOFs), and carbonaceous nanomaterials are proven to be more efficient for adsorption and/or degradation of pharmaceutical waste. In addition, inclusion of NPs to form various composites leads to improvement in the waste treatment efficacy to a greater extent. Overall, carbonaceous nanocomposites have advantage in the form of being produced from renewable resources and the nanocomposite material is biodegradable either completely or to a great extent. A comprehensive literature survey on the recent advancement of pharmaceutical wastewater is the focus of the present article.
Collapse
Affiliation(s)
- Amandeep Saroa
- Department of Chemistry, Sri Guru Teg Bahadur Khalsa College, Sri Anandpur Sahib, India
| | - Amrit Singh
- Department of Physics, Sri Guru Teg Bahadur Khalsa College, Sri Anandpur Sahib, India
| | - Neha Jindal
- Department of Chemistry, DAV College, Bathinda, India
| | - Raj Kumar
- Department of Chemistry, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi, India
| | | | - Praveen Guleria
- Department of Biotechnology, DAV University, Jalandhar, India
| | - Raj Boopathy
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA, USA
| | - Vineet Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
8
|
Xie BX, Wang HS, Zheng HQ, Xu J, Chen L, Zhang FZ, Wang YL, Lin ZJ, Lin RG. Boosting Antibacterial Photodynamic Therapy in a Nanosized Zr MOF by the Combination of Ag NP Encapsulation and Porphyrin Doping. Inorg Chem 2023; 62:13892-13901. [PMID: 37587720 DOI: 10.1021/acs.inorgchem.3c01785] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Antibacterial photodynamic therapy (aPDT) is regarded as one of the most promising antibacterial therapies due to its nonresistance, noninvasion, and rapid sterilization. However, the development of antibacterial materials with high aPDT efficacy is still a long-standing challenge. Herein, we develop an effective antibacterial photodynamic composite UiO-66-(SH)2@TCPP@AgNPs by Ag encapsulation and 4,4',4″,4‴-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) (TCPP) dopant. Through a mix-and-match strategy in the self-assembly process, 2,5-dimercaptoterephthalic acid containing -SH groups and TCPP were uniformly decorated into the UiO-66-type framework to form UiO-66-(SH)2@TCPP. After Ag(I) impregnation and in situ UV light reduction, Ag NPs were formed and encapsulated into UiO-66-(SH)2@TCPP to get UiO-66-(SH)2@TCPP@AgNPs. In the resulting composite, both Ag NPs and TCPP can effectively enhance the visible light absorption, largely boosting the generation efficiency of reactive oxygen species. Notably, the nanoscale size enables it to effectively contact and be endocytosed into bacteria. Consequently, UiO-66-(SH)2@TCPP@AgNPs show a very high aPDT efficacy against Gram-negative and Gram-positive bacteria as well as drug-resistant bacteria (MRSA). Furthermore, the Ag NPs were firmly anchored at the framework by the high density of -SH moieties, avoiding the cytotoxicity caused by the leakage of Ag NPs. By in vitro experiments, UiO-66-(SH)2@TCPP@AgNPs show a very high antibacterial activity and good biocompatibility as well as the potentiality to promote cell proliferation.
Collapse
Affiliation(s)
- Bao-Xuan Xie
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Hai-Shuang Wang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Hui-Qian Zheng
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Jin Xu
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Li Chen
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Fang-Zhong Zhang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Yu-Lin Wang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Zu-Jin Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Rong-Guang Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| |
Collapse
|
9
|
Xiong D, Cheng J, Ai F, Wang X, Xiao J, Zhu F, Zeng K, Wang K, Zhang Z. Insight into the Sensing Behavior of DNA Probes Based on MOF-Nucleic Acid Interaction for Bioanalysis. Anal Chem 2023; 95:5470-5478. [PMID: 36921316 DOI: 10.1021/acs.analchem.3c00832] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Adsorption of DNA probes onto nanomaterials is a promising strategy for bioassay establishment typically using fluorescence or catalytic activities to generate signals. Albeit important, there is currently a lack of systematic understanding of the sensing behaviors building on nanomaterial-DNA interactions, which greatly limits the rational method design and their subsequent applications. Herein, the issue was investigated by employing multifunctional metal-organic frameworks (MOFs) (FeTCPP⊂UiO-66) as a model that was synthesized via integrating heme-like ligand FeTCPP into commonly used MOFs (UiO-66). Our results demonstrated that the fluorescently labeled DNA adsorbed onto FeTCPP⊂UiO-66 was quenched through photoinduced electron transfer, fluorescence resonance energy transfer, and the internal filtration effect. Among different DNA structures, double-stranded DNA and hybridization chain reaction products largely retained their fluorescence due to desorption and conformational variation, respectively. In addition, ssDNA could maximally inhibit the peroxidase activity of FeTCPP⊂UiO-66, and this inhibition was strongly dependent on the strand length but independent of base composition. On the basis of these discoveries, a fluorescence/colorimetric dual-modal detection was designed against aflatoxin B1 with satisfactory performances obtained to further verify our results. This study provided some new insights into the sensing behaviors based on MOF-DNA interactions, indicating promising applications for rational bioassay design and its performance improvement.
Collapse
Affiliation(s)
- Dinghui Xiong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technologies for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengxiang Ai
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiaxuan Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fang Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kun Zeng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
Wang W, Song Y, Tian Y, Chen B, Liang Y, Liang Y, Li C, Li Y. TCPP/MgO-loaded PLGA microspheres combining photodynamic antibacterial therapy with PBM-assisted fibroblast activation to treat periodontitis. Biomater Sci 2023; 11:2828-2844. [PMID: 36857622 DOI: 10.1039/d2bm01959k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Bacteria eradication and subsequent periodontal tissue reconstruction is the primary task for periodontitis treatment. Commonly used antibiotic therapy suffers from antibiotic resistance. Meanwhile, promoting fibroblast activity is crucial for re-establishing a damaged periodontal structure. In addition to the fibroblast activation property of Mg2+, photobiomodulation (PBM) has recently attracted increasing attention in wound healing. Using the same 635 nm laser resource, PBM could simultaneously work with antibacterial photodynamic therapy (aPDT) to achieve antibacterial function and fibroblast activation effect. Herein, multifunctional microspheres were designed by employing poly (lactic-co-glycolic acid) (PLGA) microspheres to load tetrakis (4-carboxyphenyl) porphyrin (TCPP) and magnesium oxide (MgO) nanoparticles, named as PMT, with sustained Mg2+ release for 20 days. PMT achieved excellent antibacterial photodynamic effect for periodontal pathogens F. nucleatum and P. gingivalis by generating reactive oxygen species, which increases cell membrane permeability and destroys bacteria integrity to cause bacteria death. Meanwhile, PMT itself exhibited improved fibroblast viability and adhesion, with the PMT + light group revealing further activation of fibroblast cells, suggesting the coordinated action of Mg2+ and PBM effects. The underlying molecular mechanism might be the elevated gene expressions of Fibronectin 1, Col1a1, and Vinculin. In addition, the in vivo rat periodontitis model proved the superior therapeutic effects of PMT with laser illumination using micro-computed tomography analysis and histological staining, which presented decreased inflammatory cells, increased collagen production, and higher alveolar bone level in the PMT group. Our study sheds light on a promising strategy to fight periodontitis using versatile microspheres, which combine aPDT and PBM-assisted fibroblast activation functions.
Collapse
Affiliation(s)
- Wanmeng Wang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Yunjia Song
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Yuan Tian
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Bo Chen
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Yunkai Liang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Yu Liang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Changyi Li
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Ying Li
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
11
|
Lian X, Cheng L, Shan J, Wu M, Zheng F, Niu H. Nonsteroidal anti-inflammatory drug monitoring in serum: a Tb-MOF-based luminescent mixed matrix membrane detector with high sensitivity and reliability. Dalton Trans 2023; 52:644-651. [PMID: 36533903 DOI: 10.1039/d2dt03426c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The identification of drugs or biomolecules for public health monitoring requires facile analytical technologies with excellent sensitivity, portability and reliability. In the past decades, different sensing materials have inspired the development of various bioanalytical strategies. However, sensing platforms based on powder materials are not suitable for medical diagnosis, which limits further exploration and application of biosensors. Herein, a point-of-care testing (POCT) membrane was designed from an energy competition mechanism and achieved the detection of the nonsteroidal antiphlogistic diclofenac, and exhibited remarkable testing efficacy at the ppb level. The mixed matrix membrane (MMM) sensor consists of electrospun polyacrylonitrile nanofibers and luminescent Tb-MOFs and possess the advantages of high stability, outstanding anti-interference ability, efficient detection (LOD = 98.5 ppb) and easy visual recognition. Furthermore, this MMM sensor exhibits excellent recyclability in serum, which is beneficial for developing a portable and convenient device to distinguish diclofenac in practical sensing applications. Meanwhile, the feasibility and mechanism of this recyclable sensor were verified by theory and experiments, indicating that it is a promising device for diclofenac detection in biological environments to evaluate the toxic effect caused by the accumulation of nonsteroidal drugs.
Collapse
Affiliation(s)
- Xiao Lian
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei 230601, P. R. China. .,Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University, Hefei 230601, P. R. China
| | - Lele Cheng
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei 230601, P. R. China.
| | - Jingrui Shan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei 230601, P. R. China.
| | - Mingzai Wu
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, School of Physics and Materials Science, Anhui University, Hefei 230039, P. R. China
| | - Fangcai Zheng
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Helin Niu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei 230601, P. R. China.
| |
Collapse
|
12
|
Cao Y, Li X, Yu G, Wang B. Regulating defective sites for pharmaceuticals selective removal: Structure-dependent adsorption over continuously tunable pores. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130025. [PMID: 36166908 DOI: 10.1016/j.jhazmat.2022.130025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Developing efficient adsorbents with proper pore size for pharmaceutical removal is challenging. Water stable metal-organic frameworks (MOFs) are crystalline materials within the three-dimensional frameworks, which have already aroused increasing attention for their potential advantages with high surface area and abundant channels. However, whether or not the existing ones are performing their full capacities needs to be seriously considered. Herein, we precisely designed a series of fine-tuning hierarchically porous materials based on the water-stable Zr-based MOFs. The adsorption capacity and uptake rate of as-synthesized materials for pharmaceuticals are significantly improved. Fifteen isostructural frameworks with increasing finely tuned pore structures were successfully constructed with seven monocarboxylic modulators of increasing alkyl chain lengths. A strong correlated relationship between the mesoporous proportion and trapping kinetics can be found. Adsorption performance of 17 pharmaceuticals with various typical categories has been systematically studied over these as-synthesized materials. Competitors in natural wastewater were studied systematically. The competitive adsorption can selectively trap the target compounds in HA (humic acid), BSA (bovine serum albumin), and BHB (bovine hemoglobin) by an efficient size exclusion effect. Thus, this study offers helpful guidance for MOF modification to enhance the removal of micropollutants in natural wastewater and a fundamental understanding of the porosity-performance relationships.
Collapse
Affiliation(s)
- Yuhua Cao
- School of Chemistry and Chemical engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100084, China
| | - Xiang Li
- School of Chemistry and Chemical engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100084, China.
| | - Gang Yu
- School of Environment, Tsinghua University, Beijing 100081, China
| | - Bo Wang
- School of Chemistry and Chemical engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100084, China
| |
Collapse
|
13
|
Liu M, Xing Z, Zhao H, Song S, Wang Y, Li Z, Zhou W. An efficient photo Fenton system for in-situ evolution of H 2O 2via defective iron-based metal organic framework@ZnIn 2S 4 core-shell Z-scheme heterojunction nanoreactor. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129436. [PMID: 35897176 DOI: 10.1016/j.jhazmat.2022.129436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/08/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The fabrication of an efficient photoFenton system without the addition of H2O2 is still a challenge and is cost-effective and favorable for practical applications. In this work, a core@shell Z-scheme heterojunction nanoreactor was successfully fabricated, in which hierarchical two-dimensional (2D) ZnIn2S4 nanosheets are coated on defective iron-based metal-organic frameworks (MOFs) (NH2-MIL-88B(Fe)), realizing efficient in-situ evolution of H2O2 and constructing an optimal heterogeneous Fenton platform. The degradation rates of defective NH2-MIL-88B(Fe)@ZnIn2S4 (0.4 g L-1) for bisphenol A and ofloxacin under visible light irradiation within 180 min reached 99.4% and 98.5%, respectively, and the photocatalytic hydrogen production efficiency was approximately 502 μmol h-1 g-1. The excellent photoFenton performance was attributed to the introduction of ligand defects into the MOF, which can adjust the band structure to enhance the light absorption capacity, and the in-situ generation of H2O2 accelerating the Fe3+/Fe2+ conversion. In addition, the formation of the core@shell nanoreactor Z-scheme heterojunction structure promoted spatial charge separation. This strategy offers new ideas for constructing efficient photocatalysis and photoFenton systems.
Collapse
Affiliation(s)
- Meijie Liu
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Zipeng Xing
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China.
| | - Huanan Zhao
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Sijia Song
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Yichao Wang
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Wei Zhou
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China; Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
14
|
Li D, Liu Y, Wen C, Huang J, Li R, Liu H, Zhong J, Chen P, Lv W, Liu G. Construction of dual transfer channels in graphitic carbon nitride photocatalyst for high-efficiency environmental pollution remediation: Enhanced exciton dissociation and carrier migration. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129171. [PMID: 35605504 DOI: 10.1016/j.jhazmat.2022.129171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Graphitic carbon nitride (g-C3N4) is a promising candidate for photocatalysis, but exhibits moderate activity due to strongly bound excitons and sluggish charge migration. The dissociation of excitons to free electrons and holes is considered an effective strategy to enhance photocatalytic activity. Herein, a novel boron nitride quantum dots (BNQDs) modified P-doped g-C3N4 photocatalyst (BQPN) was successfully prepared by thermal polymerization method. Photoluminescence techniques and photoelectrochemical tests demonstrated that the introduction of P atoms and BNQDs promoted the dissociation of excitons and the migration of photogenerated carriers. Specifically, theoretical calculations revealed that P substitutions were the sites of pooled electrons, while BNQDs were the excellent photogenerated hole extractors. Accordingly, compared with g-C3N4, the BQPN showed improved performance in degrading four non-steroidal anti-inflammatory drugs (NSAIDs) under visible light irradiation. This work not only establishes an in-depth understanding of excitonic regulation in g-C3N4, but also offers a promising photocatalytic technology for environmental remediation.
Collapse
Affiliation(s)
- Daguang Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Chenghui Wen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiaxing Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Ruobai Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Haijin Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Xinxiang 453007, China
| | - Jiapeng Zhong
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenying Lv
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoguang Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
15
|
Synthesis, Attributes and Defect Control of Defect-Engineered Materials as Superior Adsorbents for Aqueous Species: A Review. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Gao Y, Suh MJ, Kim JH, Yu G. Imparting Multifunctionality in Zr-MOFs Using the One-Pot Mixed-Linker Strategy: The Effect of Linker Environment and Enhanced Pollutant Removal. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24351-24362. [PMID: 35587119 DOI: 10.1021/acsami.2c03607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of mixed-linker metal-organic frameworks (MOFs) is an efficient strategy to improve the performance of MOFs. Herein, we successfully integrate tetrakis(4-carboxyphenyl)porphyrin (TCPP) into different Zr-MOFs via a facile one-pot solvothermal synthesis while preserving the integrity of their frameworks. The functional groups, length of primary linkers, and the inner pore structure significantly affected the properties of the synthesized TCPP@MOFs, such as surface area, average pore size, and 1O2 productivity. Among them, TCPP@PCN-777 demonstrated the largest surface area (2386 cm2/g, as measured by N2 uptake) and the highest 1O2 generation rate (1.15 h-1, [1O2]ss = 2.66 × 10-12 M) under irradiation. The TCPP loading was also shown to affect the crystal phase, morphology, surface area, and photochemical properties of the synthesized MOFs. Therefore, TCPP@PCN-777s with various TCPP loadings were synthesized to investigate the optimum loading. The optimized TCPP@MOF, TCPP@PCN-777-30, was evaluated for its removal of model contaminant ranitidine (RND) through both adsorption and photodegradation. TCPP@PCN-777-30 showed a higher adsorption capacity toward RND than both the parent MOF (PCN-777) and commercially available activated carbon, and effectively degraded RND in aqueous solution (>99% photodegradation in 1 h). With irradiation, TCPP@PCN-777-30 showed a minimal loss in adsorption efficiency over four consecutive treatment cycles, confirming the reusability of the material enabled through the incorporation of TCPP into the MOF structure. This work not only developed an efficient multifunctional material for environmental remediation but also forwarded knowledge on the effect of linker environment (i.e., functional groups, framework structure, and linker ratio) on the properties of TCPP@MOFs to guide future research on mixed-linker MOFs.
Collapse
Affiliation(s)
- Yanxin Gao
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China
| | - Min-Jeong Suh
- Department of Chemical and Environmental Engineering and Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering and Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Li Q, Zhao J, Shang H, Ma Z, Cao H, Zhou Y, Li G, Zhang D, Li H. Singlet Oxygen and Mobile Hydroxyl Radicals Co-operating on Gas-Solid Catalytic Reaction Interfaces for Deeply Oxidizing NO x. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5830-5839. [PMID: 35404578 DOI: 10.1021/acs.est.2c00622] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Learning from the important role of porphyrin-based chromophores in natural photosynthesis, a bionic photocatalytic system based on tetrakis (4-carboxyphenyl) porphyrin-coupled TiO2 was designed for photo-induced treating low-concentration NOx indoor gas (550 parts per billion), achieving a high NO removal rate of 91% and a long stability under visible-light (λ ≥ 420 nm) irradiation. Besides the great contribution of the conventional •O2- reactive species, a synergic effect between a singlet oxygen (1O2) and mobile hydroxyl radicals (•OHf) was first illustrated for removing NOx indoor gas (1O2 + 2NO → 2NO2, NO2 + •OHf → HNO3), inhibiting the production of the byproducts of NO2. This work is helpful for understanding the surface mechanism of photocatalytic NOx oxidation and provides a new perspective for the development of highly efficient air purification systems.
Collapse
Affiliation(s)
- Qian Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Jingjing Zhao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Huan Shang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry,Central China Normal University, Wuhan 430079, P. R. China
| | - Zhong Ma
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Haiyan Cao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Yue Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Guisheng Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Dieqing Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P. R. China
| |
Collapse
|
18
|
Liu H, Cheng M, Liu Y, Zhang G, Li L, Du L, Li B, Xiao S, Wang G, Yang X. Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214428] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Jin X, Lee T, Tamakloe W, Patil SB, Soon A, Kang Y, Hwang S. In Situ Defect Engineering Route to Optimize the Cationic Redox Activity of Layered Double Hydroxide Nanosheet via Strong Electronic Coupling with Holey Substrate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103368. [PMID: 34713617 PMCID: PMC8728845 DOI: 10.1002/advs.202103368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Indexed: 06/13/2023]
Abstract
A defect engineering of inorganic solids garners great deal of research activities because of its high efficacy to optimize diverse energy-related functionalities of nanostructured materials. In this study, a novel in situ defect engineering route to maximize electrocatalytic redox activity of inorganic nanosheet is developed by using holey nanostructured substrate with strong interfacial electronic coupling. Density functional theory calculations and in situ spectroscopic analyses confirm that efficient interfacial charge transfer takes place between holey TiN and Ni-Fe-layered double hydroxide (LDH), leading to the feedback formation of nitrogen vacancies and a maximization of cation redox activity. The holey TiN-LDH nanohybrid is found to exhibit a superior functionality as an oxygen electrocatalyst and electrode for Li-O2 batteries compared to its non-holey homologues. The great impact of hybridization-driven vacancy introduction on the electrochemical performance originates from an efficient electrochemical activation of both Fe and Ni ions during electrocatalytic process, a reinforcement of interfacial electronic coupling, an increase in electrochemical active sites, and an improvement in electrocatalysis/charge-transfer kinetics.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Materials Science and EngineeringCollege of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Taehun Lee
- Center for Artificial Synesthesia Materials DiscoveryDepartment of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Wilson Tamakloe
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Sharad B. Patil
- Department of Chemistry and NanoscienceCollege of Natural SciencesEwha Womans UniversitySeoul03760Republic of Korea
| | - Aloysius Soon
- Center for Artificial Synesthesia Materials DiscoveryDepartment of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Yong‐Mook Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Seong‐Ju Hwang
- Department of Materials Science and EngineeringCollege of EngineeringYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
20
|
Zhang W, Li T, Dong B. Characterizing dissolved organic matter in Taihu Lake with PARAFAC and SOM method. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:706-718. [PMID: 35100148 DOI: 10.2166/wst.2022.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The three-dimensional fluorescence spectrum has a significantly greater amount of information than the single-stage scanning fluorescence spectrum. At the same time, the parallel factor (PARAFAC) analysis and neural network method can help explore the fluorescence characteristics further, thus could be used to analyse multiple sets of three-dimensional matrix data. In this study, the PARAFAC analysis and the self-organizing mapping (SOM) neural network method are firstly introduced comprehensively. They are then adopted to extract information of the three-dimensional fluorescence spectrum data set for fluorescence characteristics analysis of dissolved organic matter (DOM) in Taihu Lake water. Forty water samples with DOM species were taken from different seasons with the fluorescence information obtained through three-dimensional fluorescence spectrum analysis, PARAFAC analysis and SOM analysis. The PARAFAC analysis results indicated that the main fluorescence components of dissolved organic matter in Taihu Lake water were aromatic proteins, fulvic acids, and dissolved microorganisms. The SOM analysis results showed that the fluorescence characteristics of the dissolved organics in Taihu Lake varied seasonally. Therefore, the combined method of three-dimensional fluorescence spectrum analysis, PARAFAC and SOM analysis can provide important information for characterization of the fluorescence properties of dissolved organic matter in surface water bodies.
Collapse
Affiliation(s)
- W Zhang
- Beijing General Municipal Engineering Design & Research Institute Co., Ltd., Beijing 100082, China
| | - T Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China E-mail: ; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - B Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China E-mail: ; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
21
|
Han L, Zhang X, Li D, Li M, Qin P, Tian S, Wang Y, Lu M, Cai Z. Fabrication of stable multivariate metal-organic frameworks with excellent adsorption performance toward bisphenols from environmental samples. Talanta 2021; 235:122818. [PMID: 34517674 DOI: 10.1016/j.talanta.2021.122818] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022]
Abstract
As a type of environmental endocrine disrupting chemicals, bisphenols (BPs) have a certain embryonic toxicity and teratogenicity, which can significantly increase the risks of breast cancer, prostate cancer, leukemia and other cancers. In this work, stable multivariate metal-organic frameworks (UiO-66-NH2/TCPPx) were synthesized via in situ one-pot method and used as miniaturized dispersive solid-phase extraction (dμSPE) sorbents for extraction of trace BPs from environmental samples. The phase purity, crystal morphology and physical properties of UiO-66-NH2/TCPPx samples were varied by adjusting the mass ratio of TCPP. The extraction performance of UiO-66-NH2/TCPPx samples were investigated and UiO-66-NH2/TCPP1.0 exhibited the highest adsorption efficiency. Besides, UiO-66-NH2/TCPP1.0 possessed excellent recycling stability for the adsorption and desorption of BPs more than 20 cycles. The experimental parameters including amount of adsorbent, adsorption time, sample solution pH, temperature, desorption time and desorption solvents which affecting the efficiency of dμSPE were studied, respectively. Good linearity (R2 > 0.9992) in range of 0.1-200 ng mL-1 was obtained. The detection limits (S/N = 3) and quantification limits (S/N = 10) were achieved at 0.03-0.08 ng mL-1 and 0.1-0.5 ng mL-1, respectively. The relative standard deviations (RSDs) of intra-day and inter-day ranged from 2.5 to 5.5% and 1.1-6.8%. Enrichment factors were calculated in the range of 303-338. The obtained recoveries of bisphenol F (BPF), bisphenol A (BPA), bisphenol B (BPB) and bisphenol AF (BPAF) were 81.26-91.03% (RSDs = 0.96-6.47%), 82.2-97.27% (RSDs = 0.45-6.15%), 87.56-97.26% (RSDs = 1.1-6.22%) and 82.2-100.8% (RSDs = 0.46-4.07%). The UiO-66-NH2/TCPP1.0 can be employed as potential dμSPE sorbents for the enrichment of trace BPs in the environmental samples.
Collapse
Affiliation(s)
- Lizhen Han
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Xiaowan Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Dan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Mengyuan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Peige Qin
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Shufang Tian
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China.
| | - Youmei Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Minghua Lu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
22
|
Abstract
Nowadays, society’s widespread consumption of pharmaceutical drugs and the consequent accumulation of such compounds or their metabolites in effluents requires the development of efficient strategies and systems that lead to their effective degradation. This can be done through oxidative processes, in which tetrapyrrolic macrocycles (porphyrins, phthalocyanines) deserve special attention since they are among the most promising degradation catalysts. This paper presents a review of the literature over the past ten years on the major advances made in the development of oxidation processes of pharmaceuticals in aqueous solutions using tetrapyrrole-based catalysts. The review presents a brief discussion of the mechanisms involved in these oxidative processes and is organized by the degradation of families of pharmaceutical compounds, namely antibiotics, analgesics and neurological drugs, among others. For each family, a critical analysis and discussion of the fundamental roles of tetrapyrrolic macrocycles are presented, regarding both photochemical degradative processes and direct oxidative chemical degradation.
Collapse
|
23
|
Liu Y, Zhao P, Duan C, He C. A novel 3D terbium metal-organic framework as a heterogeneous Lewis acid catalyst for the cyanosilylation of aldehyde. RSC Adv 2021; 11:34779-34787. [PMID: 35494756 PMCID: PMC9042712 DOI: 10.1039/d1ra06533e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 02/01/2023] Open
Abstract
A novel 3D lanthanide(iii) metal-organic framework (MOF) (namely Tb-MOF), was synthesized by self-assembly from Tb(iii) ion nitrate and the rigid organic ligand H2sbdc (H2sbdc = 5,5-dioxo-5H-dibenzo[b,d]thiophene-3,7-dicarboxylic acid), and could work as an efficient heterogeneous catalyst for the cyanosilylation of aromatic aldehydes at room temperature. The obtained Tb-MOF has been characterized and analysed in detail by single crystal X-ray diffraction, powder X-ray diffraction, thermogravimetric analysis and so on. The pores of Tb-MOF provided a microenvironment that was beneficial for the substrates to be close to the Lewis acid catalytic sites. The IR spectrogram and the fluorescence titration proved that the substrates could be activated inside the channel of Tb-MOF. The heterogeneous Tb-MOF catalyst with fine catalytic efficiency exhibited a high TON (TON = 460), and could be recycled at least three times without significantly reducing its activity.
Collapse
Affiliation(s)
- Yuqian Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 P. R. China
| | - Peiran Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
24
|
Wang N, Liu S, Sun Z, Han Y, Xu J, Xu Y, Wu J, Meng H, Zhang B, Zhang X. Synergistic adsorption and photocatalytic degradation of persist synthetic dyes by capsule-like porphyrin-based MOFs. NANOTECHNOLOGY 2021; 32:465705. [PMID: 34284373 DOI: 10.1088/1361-6528/ac162e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The synergistic effects involving surface adsorption and photocatalytic degradation commonly play significant roles in the removal of persistent synthetic organics from wastewater in the case of porous semiconductors. Inspired by the visible-light harvesting advantages of porphyrin-based MOFs, a capsule-like bimetallic porphyrin-based MOF (PCN-222(Ni/Hf)) has been successfully constructed through a facile hydrothermal method. In which, the Hf (IV) ions were exactly bonded to the carboxyl groups substituted on the porphyrin rings, meanwhile the Ni (II) ions were finely bonded to the -N inside the porphyrin rings. The adsorption/photocatalytic performances were assessed by using four persistent dyes including rhodamine B (RhB), basic violet 14 (BV14), crystal violet, and acid black 210 (AB210) as the target substances, and enhanced total removal efficiency was obtained by the bimetallic PCN-222(Ni/Hf) in comparison with that of single PCN-222(Hf). The electrochemical analyses and the sacrificial agent capture experiments were carried out to elucidate the photocatalytic mechanism, and the adsorption/photocatalytic stability of PCN-222(Ni/Hf) is also investigated. The work has broadened the applications of porphyrin-based MOFs in the removal of organics by combining their excellent surface adsorption capacity and photocatalytic activities.
Collapse
Affiliation(s)
- Na Wang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| | - Siyang Liu
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, People's Republic of China
| | - Zhongqiao Sun
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| | - Yide Han
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| | - Junli Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| | - Yan Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| | - Junbiao Wu
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| | - Hao Meng
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, People's Republic of China
| | - Xia Zhang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| |
Collapse
|
25
|
Cao Y, Mi X, Li X, Wang B. Defect Engineering in Metal‒Organic Frameworks as Futuristic Options for Purification of Pollutants in an Aqueous Environment. Front Chem 2021; 9:673738. [PMID: 34485241 PMCID: PMC8415362 DOI: 10.3389/fchem.2021.673738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
Clean water scarcity is becoming an increasingly important worldwide issue. The water treatment industry is demanding the development of novel effective materials. Defect engineering in nanoparticles is among the most revolutionary of technologies. Because of their high surface area, structural diversity, and tailorable ability, Metal‒Organic Frameworks (MOFs) can be used for a variety of purposes including separation, storage, sensing, drug delivery, and many other issues. The application in wastewater treatment associated with water stable MOF‒based materials has been an emerging research topic in recent decades. Defect engineering is a sophisticated technique used to manufacture defects and to change the geometric framework of target compounds. Since MOFs have a series of designable structures and active sites, tailoring properties in MOFs by defect engineering is a novel concept. Defect engineering can excavate hidden active sites in MOFs, which can lead to better performance in many fields. Therefore, this technology will open new opportunities in water purification processes. However, there has been little effort to comprehensively discuss this topic. In this review, we provide an overview of the development of defect engineered MOFs for water purification processes. Furthermore, we discuss the potential applications of defect engineered materials.
Collapse
Affiliation(s)
| | | | - Xiang Li
- School of Chemistry, China School of Chemistry, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Bo Wang
- School of Chemistry, China School of Chemistry, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
26
|
Wang C, Xiong C, Li Z, Hu L, Wei J, Tian J. Defect-engineered porphyrinic metal-organic framework nanoparticles for targeted multimodal cancer phototheranostics. Chem Commun (Camb) 2021; 57:4035-4038. [PMID: 33885676 DOI: 10.1039/d0cc07903k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Defect-engineered porphyrinic MOF nanoparticles were fabricated with an in situ one-pot protocol using cypate as the co-ligand and modulator. This multifunctional nanoplatform integrated the photothermal and multimodal imaging properties of cypate with the photodynamic effects of porphyrins, thus achieving targeted multimodal cancer phototheranostics after folic acid modification.
Collapse
Affiliation(s)
- Chenyuan Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Chuxiao Xiong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Zhike Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Liefeng Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Jianshuang Wei
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jian Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
27
|
Schlachter A, Asselin P, Harvey PD. Porphyrin-Containing MOFs and COFs as Heterogeneous Photosensitizers for Singlet Oxygen-Based Antimicrobial Nanodevices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26651-26672. [PMID: 34086450 DOI: 10.1021/acsami.1c05234] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Visible-light irradiation of porphyrin and metalloporphyrin dyes in the presence of molecular oxygen can result in the photocatalytic generation of singlet oxygen (1O2). This type II reactive oxygen species (ROS) finds many applications where the dye, also called the photosensitizer, is dissolved (i.e., homogeneous phase) along with the substrate to be oxidized. In contrast, metal-organic frameworks (MOFs) are insoluble (or will disassemble) when placed in a solvent. When stable as a suspension, MOFs adsorb a large amount of O2 and photocatalytically generate 1O2 in a heterogeneous process efficiently. Considering the immense surface area and great capacity for gas adsorption of MOFs, they seem ideal candidates for this application. Very recently, covalent-organic frameworks (COFs), variants where reticulation relies on covalent rather than coordination bonds, have emerged as efficient photosensitizers. This comprehensive mini review describes recent developments in the use of porphyrin-based or porphyrin-containing MOFs and COFs, including nanosized versions, as heterogeneous photosensitizers of singlet oxygen toward antimicrobial applications.
Collapse
Affiliation(s)
- Adrien Schlachter
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Paul Asselin
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
28
|
Du C, Zhang Z, Yu G, Wu H, Chen H, Zhou L, Zhang Y, Su Y, Tan S, Yang L, Song J, Wang S. A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis. CHEMOSPHERE 2021; 272:129501. [PMID: 33486457 DOI: 10.1016/j.chemosphere.2020.129501] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 05/24/2023]
Abstract
Antibiotic abuse has led to serious water pollution and severe harm to human health; therefore, there is an urgent need for antibiotic removal from water sources. Adsorption and photodegradation are two ideal water treatment methods because they are cheap, simple to operate, and reusable. Metal organic frameworks (MOFs) are excellent adsorbents and photocatalysts because of their high porosity, adaptability, and good crystal form. The aim of this study is to suggest ways to overcome the limitations of adsorption and photocatalysis treatment methods by reviewing previous applications of MOFs to antibiotic adsorption and photocatalysis. The different factors influencing these processes are also discussed, as well as the various adsorption and photocatalysis mechanisms. This study provides a valuable resource for researchers intending to use MOFs to remove antibiotics from water bodies.
Collapse
Affiliation(s)
- Chunyan Du
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China
| | - Zhuo Zhang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Guanlong Yu
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China.
| | - Haipeng Wu
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China
| | - Hong Chen
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China
| | - Lu Zhou
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China
| | - Yin Zhang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Yihai Su
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Shiyang Tan
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Lu Yang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Jiahao Song
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Shitao Wang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| |
Collapse
|
29
|
Harvey PD. Porphyrin-based MOFs as heterogeneous photocatalysts for the eradication of organic pollutants and toxins. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621300020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Water and air pollution are among the major environmental challenges of this era. Waste management, economic sustainable development and renewable energy are unavoidable concomitant considerations. Over the past five years, nanosized metal-organic frameworks (nano-MOFs) have been developed for the elimination of pollutants in wet media and air-born toxins using the highly efficient reactive oxygen species (ROS) of type I (H2O2, •OH, O[Formula: see text] and of type II (1O[Formula: see text]. The ROS are catalytically and efficiently generated through photosensitization, and porphyrins and metalloporphyrins are pigments of choice for this purpose. This short review summarizes the fundamentals of ROS generation by porphyrin-based nano-MOFs (mainly through the formation of ROS type II) and their composites (leading to ROS type I), which includes energy and electron transfer processes, and their applications in these environmental issues.
Collapse
Affiliation(s)
- Pierre D. Harvey
- Département de chimie, Université de Sherbrooke, Sherbrooke, PQ, Canada, J1K 2R1, Canada
| |
Collapse
|
30
|
Hu Z, Wang Y, Zhao D. The chemistry and applications of hafnium and cerium(iv) metal-organic frameworks. Chem Soc Rev 2021; 50:4629-4683. [PMID: 33616126 DOI: 10.1039/d0cs00920b] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The coordination connection of organic linkers to the metal clusters leads to the formation of metal-organic frameworks (MOFs), where the metal clusters and ligands are spatially entangled in a periodic manner. The immense availability of tuneable ligands of different length and functionalities gives rise to robust molecular porosity ranging from several angstroms to nanometres. Among the large family of MOFs, hafnium (Hf) based MOFs have been demonstrated to be highly promising for practical applications due to their unique and outstanding characteristics such as chemical, thermal, and mechanical stability, and acidic nature. Since the report of UiO-66(Hf) and DUT-51(Hf) in 2012, less than 200 Hf-MOFs (ca. 50 types of structures) have been reported. Besides, tetravalent cerium [Ce(iv)] has been proven to be capable of forming similar topological MOF structures to Zr and Hf since its first discovery in 2015. So far, ca. 40 Ce(iv) MOFs with 60% having UiO-66-type structure have been reported. This review will offer a holistic summary of the chemistry, uniqueness, synthesis, and applications of Hf/Ce(iv)-MOFs with a focus on presenting the development in the Hf/Ce(iv)-clusters, topologies, ligand structures, synthetic strategies, and practical applications of Hf/Ce(iv)-MOFs. In the end, we will present the research outlook for the development of Hf/Ce(iv)-MOFs in the future, including fundamental design of Hf/Ce(iv)-clusters, defect engineering, and various applications including membrane development, diversified types of catalytic reactions, irradiation absorption in nuclear waste treatment, water production and wastewater treatment, etc. We will also present the emerging computational approaches coupled with machine-learning algorithms that can be applied in screening Hf and Ce(iv) based MOF structures and identifying the best-performing MOFs for tailor-made applications in future practice.
Collapse
Affiliation(s)
- Zhigang Hu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | | | | |
Collapse
|
31
|
Birin KP, Abdulaeva IA, Polivanovskaya DA, Sinel’shchikova AA, Demina LI, Baranchikov AE, Gorbunova YG, Tsivadze AY. Immobilization of Heterocycle-Appended Porphyrins on UiO-66 and UiO-67 MOFs. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621020029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Tong X, Wang S, Gao H, Ge Y, Zuo J, Liu F, Ding J, Xiong J. Hydrothermal synthesis of two 2D uranyl coordination polymers: structure, luminescence, and photocatalytic degradation of rhodamine B. CrystEngComm 2020. [DOI: 10.1039/d0ce01091j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two hydrothermal synthesized uranyl-organic coordination polymers showing effective photocatalytic activities for RhB degradation with quick equilibrium time in water.
Collapse
Affiliation(s)
- Xiaolan Tong
- State Key Laboratory of Nuclear Resources and Environment
- School of Chemistry, Biology and Materials Science
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Shan Wang
- State Key Laboratory of Nuclear Resources and Environment
- School of Chemistry, Biology and Materials Science
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - HongXia Gao
- School of Earth Science
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Yingchong Ge
- State Key Laboratory of Nuclear Resources and Environment
- School of Chemistry, Biology and Materials Science
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Jun Zuo
- State Key Laboratory of Nuclear Resources and Environment
- School of Chemistry, Biology and Materials Science
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Fen Liu
- State Key Laboratory of Nuclear Resources and Environment
- School of Chemistry, Biology and Materials Science
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Jianhua Ding
- State Key Laboratory of Nuclear Resources and Environment
- School of Chemistry, Biology and Materials Science
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Jianbo Xiong
- State Key Laboratory of Nuclear Resources and Environment
- School of Chemistry, Biology and Materials Science
- East China University of Technology
- Nanchang 330013
- P. R. China
| |
Collapse
|