1
|
Qiu Y, Wei X, Lam JWY, Qiu Z, Tang BZ. Chiral Nanostructures from Artificial Helical Polymers: Recent Advances in Synthesis, Regulation, and Functions. ACS NANO 2025. [PMID: 39754598 DOI: 10.1021/acsnano.4c14797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Helical structures such as right-handed double helix for DNA and left-handed α-helix for proteins in biological systems are inherently chiral. Importantly, chirality at the nanoscopic level plays a vital role in their macroscopic chiral functionalities. In order to mimic the structures and functions of natural chiral nanoarchitectures, a variety of chiral nanostructures obtained from artificial helical polymers are prepared, which can be directly observed by atomic force microscopy (AFM), scanning tunneling microscopy (STM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). This review mainly focuses on the formation of chiral nanostructures and the morphology regulation triggered by polymer chain length, concentration, solvent, temperature, photoirradiation, and chemical additives. In addition, the distinct chiral functions including chiral recognition, circularly polarized luminescence, drug release, cell imaging, and antibiosis are also discussed.
Collapse
Affiliation(s)
- Yuan Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 230026, China
| | - Xilong Wei
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 230026, China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 230026, China
| |
Collapse
|
2
|
Sharma A, Zhu Y, Spangler EJ, Hoang TB, Laradji M. Highly Ordered Nanoassemblies of Janus Spherocylindrical Nanoparticles Adhering to Lipid Vesicles. ACS NANO 2024; 18:12957-12969. [PMID: 38720633 DOI: 10.1021/acsnano.4c01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In recent years, there has been a heightened interest in the self-assembly of nanoparticles (NPs) that is mediated by their adsorption onto lipid membranes. The interplay between the adhesive energy of NPs on a lipid membrane and the membrane's curvature energy causes it to wrap around the NPs. This results in an interesting membrane curvature-mediated interaction, which can lead to the self-assembly of NPs on lipid membranes. Recent studies have demonstrated that Janus spherical NPs, which adhere to lipid vesicles, can self-assemble into well-ordered nanoclusters with various geometries, including a few Platonic solids. The present study explores the additional effect of geometric anisotropy on the self-assembly of Janus NPs on lipid vesicles. Specifically, the current study utilized extensive molecular dynamics simulations to investigate the arrangement of Janus spherocylindrical NPs on lipid vesicles. We found that the additional geometric anisotropy significantly expands the range of NPs' self-assemblies on lipid vesicles. The specific geometries of the resulting nanoclusters depend on several factors, including the number of Janus spherocylindrical NPs adhering to the vesicle and their aspect ratio. The lipid membrane-mediated self-assembly of NPs, demonstrated by this work, provides an alternative cost-effective route for fabricating highly engineered nanoclusters in three dimensions. Such structures, with the current wide range of material choices, have great potential for advanced applications, including biosensing, bioimaging, drug delivery, nanomechanics, and nanophotonics.
Collapse
Affiliation(s)
- Abash Sharma
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Yu Zhu
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eric J Spangler
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Thang B Hoang
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Mohamed Laradji
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| |
Collapse
|
3
|
Okmen Altas B, Goktas C, Topcu G, Aydogan N. Multi-Stimuli-Responsive Tadpole-like Polymer/Lipid Janus Microrobots for Advanced Smart Material Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15533-15547. [PMID: 38356451 PMCID: PMC10983008 DOI: 10.1021/acsami.3c18826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
Microrobots are of significant interest due to their smart transport capabilities, especially for precisely targeted delivery in dynamic environments (blood, cell membranes, tumor interstitial matrixes, blood-brain barrier, mucosa, and other body fluids). To perform a more complex micromanipulation in biological applications, it is highly desirable for microrobots to be stimulated with multiple stimuli rather than a single stimulus. Herein, the biodegradable and biocompatible smart micromotors with a Janus architecture consisting of PrecirolATO 5 and polycaprolactone compartments inspired by the anisotropic geometry of tadpoles and sperms are newly designed. These bioinspired micromotors combine the advantageous properties of polypyrrole nanoparticles (NPs), a high near-infrared light-absorbing agent with high photothermal conversion efficiency, and magnetic NPs, which respond to the magnetic field and exhibit multistimulus-responsive behavior. By combining both fields, we achieved an "on/off" propulsion mechanism that can enable us to overcome complex tasks and limitations in liquid environments and overcome the limitations encountered by single actuation applications. Moreover, the magnetic particles offer other functions such as removing organic pollutants via the Fenton reaction. Janus-structured motors provide a broad perspective not only for biosensing, optical detection, and on-chip separation applications but also for environmental water treatment due to the catalytic activities of multistimulus-responsive micromotors.
Collapse
Affiliation(s)
- Burcu Okmen Altas
- Department of Chemical Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| | | | | | - Nihal Aydogan
- Department of Chemical Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| |
Collapse
|
4
|
Okmen Altas B, Kalaycioglu GD, Lifshiz-Simon S, Talmon Y, Aydogan N. Tadpole-Like Anisotropic Polymer/Lipid Janus Nanoparticles for Nose-to-Brain Drug Delivery: Importance of Geometry, Elasticity on Mucus-Penetration Ability. Mol Pharm 2024; 21:633-650. [PMID: 38164788 DOI: 10.1021/acs.molpharmaceut.3c00773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Asymmetric geometry (aspect ratio >1), moderate stiffness (i.e., semielasticity), large surface area, and low mucoadhesion of nanoparticles are the main features to reach the brain by penetrating across the nasal mucosa. Herein, a new application has been presented for the use of multifunctional Janus nanoparticles (JNPs) with controllable geometry and size as a nose-to-brain (N2B) delivery system by changing proportions of Precirol ATO 5 and polycaprolactone compartments and other operating conditions. To bring to light the N2B application of JNPs, the results are presented in comparison with polymer and solid lipid nanoparticles, which are frequently used in the literature regarding their biopharmaceutical aspects: mucoadhesion and permeability through the nasal mucosa. The morphology and geometry of JPs were observed via cryogenic-temperature transmission electron microscopy images, and their particle sizes were verified by dynamic light scattering, atomic force microscopy, and scanning electron microscopy. Although all NPs showed penetration across the mucus barrier, the best increase in penetration was observed with asymmetric and semielastic JNPs, which have low interaction ability with the mucus layer. This study presents a new and promising field of application for a multifunctional system suitable for N2B delivery, potentially benefiting the treatment of brain tumors and other central nervous system diseases.
Collapse
Affiliation(s)
- Burcu Okmen Altas
- Department of Chemical Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| | | | - Sapir Lifshiz-Simon
- Department of Chemical Engineering, and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering, and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Nihal Aydogan
- Department of Chemical Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| |
Collapse
|
5
|
Esteki B, Masoomi M, Asadinezhad A. Tailored Morphology in Polystyrene/Poly(lactic acid) Blend Particles: Solvent's Effect on Controlled Janus/Core-Shell Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15306-15318. [PMID: 37864780 DOI: 10.1021/acs.langmuir.3c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Controlling the morphology of polymeric particles is vital for their diverse applications. In this study, we explored how solvent composition influences the morphology of poly(styrene)/poly(lactic acid) (PS/PLA) particles prepared via the emulsion solvent evaporation method. We used toluene, dichloromethane (DCM), and various mixtures to prepare these particles. We investigated phase separation within the PS/PLA/solvent system using the Flory-Huggins ternary phase diagram and MesoDyn simulation, revealing pronounced immiscibility and phase separation in both PS/PLA/DCM and PS/PLA/toluene systems. We employed scanning electron microscopy (SEM) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to characterize the resulting morphologies. Our study unveiled the substantial impact of solvent composition on particle structure. Using pure toluene resulted in acorn-shaped Janus particles. However, incorporating DCM into the solvent induced a transition from Janus to core-shell morphology. Remarkably, core-shell particles exhibited a single-core structure in a mixed toluene/DCM solvent, indicating thermodynamic stability. In contrast, pure DCM favored kinetically controlled multicore morphology, leading to lower PLA crystallinity due to increased PS-PLA interfaces. Samples with high Janus balance formed a self-assembled, two-dimensional (2-D) monolayer film, demonstrating the interfacial activity of the Janus particles. This 2-D monolayer film exhibits desirable emulsification properties with potential applications in various fields. Our study combines theoretical and experimental analyses, shedding light on the profound impact of solvent composition on the PS/PLA particle morphology. We observed transitions from Janus to core-shell structures, highlighted the influence of solvent viscosity on particle size, and uncovered the formation of self-assembled 2-D monolayer films. These insights are pivotal for tailoring polymeric particle structures. Furthermore, our findings advance macromolecular science in interface design, offering promising prospects for innovative materials development.
Collapse
Affiliation(s)
- Bahareh Esteki
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahmood Masoomi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ahmad Asadinezhad
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
6
|
Singh P, Kundu K, Seçkin S, Bhardwaj K, König TAF, Jaiswal A. The Rise of Structurally Anisotropic Plasmonic Janus Gold Nanostars. Chemistry 2023; 29:e202302100. [PMID: 37461223 DOI: 10.1002/chem.202302100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 09/12/2023]
Abstract
Nanostructures intrinsically possessing two different structural or functional features, often called Janus nanoparticles, are emerging as a potential material for sensing, catalysis, and biomedical applications. Herein, we report the synthesis of plasmonic gold Janus nanostars (NSs) possessing a smooth concave pentagonal morphology with sharp tips and edges on one side and, contrastingly, a crumbled morphology on the other. The methodology reported herein for their synthesis - a single-step growth reaction - is different from any other Janus nanoparticle preparation involving either template-assisted growth or a masking technique. Interestingly, the coexistence of lower- and higher-index facets was found in these Janus NSs. The general paradigm for synthesizing gold Janus NSs was investigated by understanding the kinetic control mechanism with the combinatorial effect of all the reagents responsible for the structure. The optical properties of the Janus NSs were realized by corelating their extinction spectra with the simulated data. The size-dependent surface-enhanced Raman scattering (SERS) activity of these Janus NSs was studied with 1,4-BDT as the model analyte. Finite-difference time-domain simulations for differently sized particles revealed the distribution of electromagnetic hot-spots over the particles resulting in enhancement of the SERS signal in a size-dependent manner.
Collapse
Affiliation(s)
- Prem Singh
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Koustav Kundu
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Sezer Seçkin
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069, Dresden, Germany
| | - Keshav Bhardwaj
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, 01062, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
7
|
Chen C, Zhang L, Wang N, Sun D, Yang Z. Janus Composite Particles and Interfacial Catalysis Thereby. Macromol Rapid Commun 2023; 44:e2300280. [PMID: 37335979 DOI: 10.1002/marc.202300280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Janus composite particles (JPs) with distinct compartmentalization of varied components thus performances and anisotropic shape display a variety of properties and have demonstrated great potentials in diversify practical applications. Especially, the catalytic JPs are advantageous for multi-phase catalysis with much easier separation of products and recycling the catalysts. In the first section of this review, typical methods to synthesize the JPs with varied morphologies are briefly surveyed in the category of polymeric, inorganic and polymer/inorganic composite. In the main section, recent progresses of the JPs in emulsion interfacial catalysis are summarized covering organic synthesis, hydrogenation, dye degradation, and environmental chemistry. The review will end by calling more efforts toward precision synthesis of catalytic JPs at large scale to meet the stringent requirements in practical applications such as catalytic diagnosis and therapy by the functional JPs.
Collapse
Affiliation(s)
- Chen Chen
- Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Linlin Zhang
- Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Na Wang
- Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Dayin Sun
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Zou H, Liu W, Wang C, Zhou L, Liu N, Wu ZQ. Polyfluorene- block-poly(phenyl isocyanide) Copolymers: One-Pot Synthesis, Helical Assembly, and Circularly Polarized Luminescence. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Wei Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Chao Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Na Liu
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin Province 130021, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province 130012, China
| |
Collapse
|
9
|
Song L, Yang K, Zhao B, Wu Y, Deng J. Chiroptical Elastomer Film Constructed by Chiral Helical Substituted Polyacetylene and Polydimethylsiloxane: Multiple Stimuli Responsivity and Chiral Amplification. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4601-4611. [PMID: 36642869 DOI: 10.1021/acsami.2c21242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chiral and circularly polarized luminescence (CPL) materials with multiple stimuli responses have become a focus of attention. Meanwhile, elastomers have found substantial applications in a wide variety of fields. However, how to design and construct chiral elastomers, in particular CPL-active elastomers, still remains an academic challenge. In the present study, chiral helical substituted polyacetylene is chemically bonded with polydimethylsiloxane (PDMS) by hydrosilylation to form a chiroptically active elastomer. A CPL-active film was further fabricated by adding achiral fluorophores. Compared with the corresponding chiral helical polymer, the chiral films show much enhanced thermal stability in terms of chiroptical properties. The films also demonstrate reversible tunability in optical activity and CPL property when being subjected to a stretching-restoring process and exposed to a solvent like toluene. Further, noticeable chiral amplification is observed when the chiral PDMS film is superimposed with a pure PDMS film. This interesting finding is proposed to be due to the photoreflectivity of PDMS. This study provides an alternative strategy to exploit novel CPL-active elastomer materials with multiple stimuli responsivity and tunability, which may open up new opportunities for developing novel chiroptical devices.
Collapse
Affiliation(s)
- Lujie Song
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Kai Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Youping Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
10
|
Qi X, Du Y, Zhang Z, Zhang X. Amphiphilic Bowl-Shaped Janus Particles Prepared via Thiol-Ene Click Reaction for Effective Oil-Water Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:455. [PMID: 36770416 PMCID: PMC9921205 DOI: 10.3390/nano13030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Janus particles for oil-water separation have attracted widespread attention in recent years. Herein, we prepared a bowl-shaped Janus particle that could rapidly separate oil and water through a thiol-ene click reaction and selective etching. Firstly, snowman-like composite microspheres based on silica and mercaptopropyl polysilsesquioxane (SiO2@MPSQ) were prepared by a hydrolytic condensation reaction and phase separation, and the effects of the rotational speed and molar ratios on their microscopic morphologies were investigated. Subsequently, bowl-shaped Janus particles with convex hydrophilic and concave oleophilic surfaces were prepared via a thiol-ene click reaction followed by HF etching. Our amphiphilic bowl-shaped Janus particles could remarkably separate micro-sized oil droplets from an n-heptane-water emulsion with a separation efficiency of >98% within 300 s. Based on the experimental and theoretical results, we proposed the underlying mechanism for the coalescence of oil droplets upon the addition of the amphiphilic bowl-shaped Janus particles.
Collapse
|
11
|
Jia S, Wang H, Tang R, Ma S, Gong B, Ou J. Fast fabrication of micron-sized Janus particles with controlled morphology via seed-swelling photoinitiated polymerization and their application in Cu (II) ion removal. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Zhong H, Yang H, Shang J, Zhao B, Deng J. Optically active polymer particles with programmable surface microstructures constructed using chiral helical polyacetylene. NANOSCALE 2022; 14:16893-16901. [PMID: 36341681 DOI: 10.1039/d2nr03328c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Micro/nanoparticles with surface microstructures have attracted tremendous attention due to their fascinating structures and properties. Herein, we present the first strategy for producing optically active polymer particles with varying surface microstructures via a template surface modification process in which achiral particles act as the template and helical substituted polyacetylene acts as the chiral component. To prepare the designed chiral-functionalized particles, template particles were first reacted with propargylamine to produce alkynylated template particles. The alkynylated templates further participated in the polymerization of chiral alkyne monomers through a surface grafting precipitation polymerization approach, resulting in achiral particles with surface microstructures covalently bonded with a chiral helical polymer. SEM images ascertain the production of chiral-functionalized particles showing various shapes (jar-like, golf ball-like, and raspberry-like particles). Furthermore, CD and UV-vis absorption spectra demonstrate that the grafted polyacetylene chains adopt a predominantly single-handed helical conformation, thereby affording composite particles with optical activity. Using the established protocol, numerous advanced chiral-functionalized micro/nanostructures are expected to be designed and constructed.
Collapse
Affiliation(s)
- Hai Zhong
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hongfang Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jiaqi Shang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
13
|
Wang Q, Liu Y, Gao R, Wu Z. Selective synthesis of helical polymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Qian Wang
- College of Materials and Chemical Engineering West Anhui University Lu'an China
| | - Yu‐Qi Liu
- College of Materials and Chemical Engineering West Anhui University Lu'an China
| | - Run‐Tan Gao
- School of Chemistry, State Key Laboratoy of Supramolecular Structures and Materials Jilin University Changchun China
| | - Zong‐Quan Wu
- School of Chemistry, State Key Laboratoy of Supramolecular Structures and Materials Jilin University Changchun China
| |
Collapse
|
14
|
Gu DH, Choi W, Son JS. Self-Assembly of Matchstick-Shaped Inorganic Nano-Surfactants with Controlled Surface Amphiphilicity. JACS AU 2022; 2:2307-2315. [PMID: 36311835 PMCID: PMC9597596 DOI: 10.1021/jacsau.2c00333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Molecular and nanoscale amphiphiles have been extensively studied as building blocks for organizing macroscopic matter through specific and local interactions. Among various amphiphiles, inorganic Janus nanoparticles have attracted a lot of attention owing to their ability to impart multifunctionalities, although the programmability to achieve complicated self-assembly remains a challenge. Here, we synthesized matchstick-shaped Janus nano-surfactants that mimic organic surfactant molecules and studied their programmable self-assembly. High amphiphilicity was achieved through the hard-soft acid-base-based ligand-exchange reaction with strong selectivity on the surface of nano-matchsticks consisting of Ag2S heads and CdS stems. The obtained nano-surfactants spontaneously assembled into diverse ordered structures such as lamellar, curved, wrinkled, cylindrical, and micellar structures depending on the vertical asymmetry and the interfacial tension controlled by their geometry and surface ligands. The correlation between the phase selectivity of suprastructures and the characteristics of nano-surfactants is discussed. This study realized the molecular amphiphile-like programmability of inorganic Janus nanostructures in self-assembly with the precise control on the surface chemistry.
Collapse
Affiliation(s)
- Da Hwi Gu
- Department
of Materials Science and Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Wooyong Choi
- Department
of Materials Science and Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Sung Son
- Department
of Materials Science and Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate
School of Semiconductor Materials and Devices, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
15
|
Li Z, Gao Z, Wang C, Zou D, Zhou H, Yi Y, Wang J, Wang L. Recent progress on bioimaging strategies based on Janus nanoparticles. NANOSCALE 2022; 14:12560-12568. [PMID: 36000475 DOI: 10.1039/d2nr03186h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Janus nanoparticles refer to a kind of asymmetric-structured nanoparticles composed of two or more distinct sides with differences in chemical nature and/or polarity on each side and thus can integrate two or more properties in one single particle. Due to their unique structure and surface properties, Janus nanoparticles have shown broad application potentials in optics, nuclear magnetic resonance, multi-mode imaging, and other fields. Unlike traditional contrast agents used in biological imaging, Janus nanoparticles are asymmetrically and directionally oriented to ensure stable partitioning of individual nanoparticles while integrating more functions. Much advancement have been carried out in the past few years, with some studies partially covering bioimaging applications. However, to our best knowledge, there are still no review papers specifically dedicated to the bioimaging applications with Janus nanoparticles. Bearing this in mind and taking the current challenges in this field into consideration, herein, we discuss representative approaches orchestrated for bioimaging applications, with the focus on the improvement of imaging quality brought by Janus nanoparticles and the development of multifunctional nanoplatforms in biological imaging fields, such as theranostics and therapies. Finally, based on the research experience of our group in this field, prospects for future research trends are put forward to provide new ideas for designing new Janus nanoparticles for clinical bioimaging.
Collapse
Affiliation(s)
- Zheyi Li
- School of Electronic and Information Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Zhiqiang Gao
- School of Aeronautics, Harbin Institute of Technology, Harbin 150001, China.
| | - Cong Wang
- School of Electronic and Information Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Danqing Zou
- School of Electronic and Information Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Huan Zhou
- School of Electronic and Information Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yang Yi
- School of Electronic and Information Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Jun Wang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Lei Wang
- School of Aeronautics, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
16
|
Hua Z, Man J, Liu G, Li J, Zhou C, Xia H, Li J. Complex Suspended Janus Droplets Constructed through Solvent Evaporation-Induced Phase Separation at the Air-Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10994-11002. [PMID: 36048165 DOI: 10.1021/acs.langmuir.2c01460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phase separation technology has attracted extensive scientific interest because of its intriguing structure changes during the phase separation process. Phase separation inside emulsion droplets in continuous surroundings has been well studied in recent years. Many investigations have also been conducted to study the droplet phase separation phenomena in noncontinuous surroundings. However, studies on the phase separation phenomena and the spreading behavior of suspended droplets at the air-liquid interface were rarely reported. In this study, PEGDA-glycerol suspended Janus droplets with a patchy structure were produced by utilizing solvent evaporation-induced droplet phase separation at the air-liquid interface. By altering the glycerol/PEGDA volume ratio, the initial proportion of ethanol, and the concentration of surfactants, suspended droplets with different morphologies can be achieved, which include filbert-shaped droplets (FSDs), half lotus seedpod single-phase Janus droplets (HLSDs), lotus seedpod single-phase Janus droplets (LSDs), lotus seedpod-shaped droplets (LSSDs), multiple-bulge droplets (MBDs), and half gourd-shaped droplets (HGSDs). A patchy structure was generated at the air-droplet interface, which was attributed to the Marangoni stresses induced by nonuniform evaporation. Furthermore, a modified spreading coefficient theory was constructed and verified to illustrate the phase separation at the air-droplet interface, which was the first research to predict the phase separation phenomena at the air-liquid interface via spreading coefficients theory. Moreover, we studied the factors that led to the droplets being able to float by designing the combined parameters, including three interfacial tensions and the equilibrium contact angles. Therefore, a simple and versatile strategy for creating suspended Janus droplets has been developed for the first time, which holds significant potential in a variety of applications for material synthesis, such as the electrospinning solution behavior when sprayed from the nozzle into the air.
Collapse
Affiliation(s)
| | | | | | | | - Chenchen Zhou
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. China
| | | | | |
Collapse
|
17
|
Wang XQ, Wu B, Bai YQ, Zhai XY, Zhou YG. CuH-Catalyzed Consecutive Hydrosilylation/Dehydrocoupling Polymerization of Difunctional Hydroxyketones with Dihydrosilanes for Syntheses of Chiral Poly(silyl ether)s. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Daradmare S, Lee HS, Seo TS, Park BJ. A surfactant-free approach: Novel one-step ultrasonic nebulizer spray method to generate amphiphilic Janus particles. J Colloid Interface Sci 2022; 627:375-384. [PMID: 35863196 DOI: 10.1016/j.jcis.2022.07.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 11/28/2022]
Abstract
HYPOTHESIS A solvent evaporation-induced phase separation method, which is based on the preferential partitioning of two or more immiscible materials after solvent evaporation on providing heat, has been one of the main strategies for synthesis of Janus particles (JPs). Considering this approach, it should be possible to synthesize surfactant free-JPs in continuous flow by the ultrasonic nebulizer spray method. EXPERIMENTS Two polymers, polystyrene and polymethylmethacrylate, were dissolved in dichloromethane, and droplets of a precursor solution generated by an ultrasonic nebulizer were then conveyed through a borosilicate glass cylinder with two heating zones. The solvent evaporation-induced phase separation occurred in a single flow process, which resulted in the preferential partitioning of two incompatible polymers in the droplets, leading to the formation of the spherical bicompartmental JPs. FINDINGS The successful fabrication of spherical JPs was observed at high polymer concentrations (1.5 and 2.0 wt%), and at elevated temperature (40-75 °C). The fluorescent compartmentalization of JPs was confirmed. Furthermore, the interfacial arrangement of JPs at oil-water interface was studied. A detailed explanation of theoretical prediction of interfacial configurations of JPs was provided. Lastly, the generated JPs were proved as Pickering stabilizers at the oil-water interface.
Collapse
Affiliation(s)
- Sneha Daradmare
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea
| | - Hag Sung Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea
| | - Tae Seok Seo
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea.
| | - Bum Jun Park
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea.
| |
Collapse
|
19
|
Zhang H, Wang F, Nestler B. Janus Droplet Formation via Thermally Induced Phase Separation: A Numerical Model with Diffusion and Convection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6882-6895. [PMID: 35617199 PMCID: PMC9178917 DOI: 10.1021/acs.langmuir.2c00308] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Microscale Janus particles have versatile potential applications in many physical and biomedical fields, such as microsensor, micromotor, and drug delivery. Here, we present a phase-field approach of multicomponent and multiphase to investigate the Janus droplet formation via thermally induced phase separation. The crucial kinetics for the formation of Janus droplets consisting of two polymer species and a solvent component via an interplay of both diffusion and convection is considered in the Cahn-Hilliard-Navier-Stokes equation. The simulation results of the phase-field model show that unequal interfacial tensions between the two polymer species and the solvent result in asymmetric phase separation in the formation process of Janus droplets. This asymmetric phase separation plays a vital role in the establishment of the so-called core-shell structure that has been observed in previous experiments. By varying the droplet size, the surface tension, and the molecular interaction between the polymer species, several novel droplet morphologies are predicted in the development process of Janus droplets. Moreover, we stress that the hydrodynamics should be reckoned as a non-negligible mechanism that not only accelerates the Janus droplet evolution but also has great impacts on the coarsening and coalescence of the Janus droplets.
Collapse
Affiliation(s)
- Haodong Zhang
- Institute
of Applied Materials-Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Fei Wang
- Institute
of Applied Materials-Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Britta Nestler
- Institute
of Applied Materials-Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
- Institute
of Digital Materials Science, Karlsruhe
University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany
| |
Collapse
|
20
|
Yuan S, Wang J, Xiang Y, Zheng S, Wu Y, Liu J, Zhu X, Zhang Y. Shedding Light on Luminescent Janus Nanoparticles: From Synthesis to Photoluminescence and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200020. [PMID: 35429137 DOI: 10.1002/smll.202200020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Luminescent Janus nanoparticles refer to a special category of Janus-based nanomaterials that not only exhibit dual-asymmetric surface nature but also attractive optical properties. The introduction of luminescence has endowed conventional Janus nanoparticles with many alluring light-responsive functionalities and broadens their applications in imaging, sensing, nanomotors, photo-based therapy, etc. The past few decades have witnessed significant achievements in this field. This review first summarizes well-established strategies to design and prepare luminescent Janus nanoparticles and then discusses optical properties of luminescent Janus nanoparticles based on downconversion and upconversion photoluminescence mechanisms. Various emerging applications of luminescent Janus nanoparticles are also introduced. Finally, opportunities and future challenges are highlighted with respect to the development of next-generation luminescent Janus nanoparticles with diverse applications.
Collapse
Affiliation(s)
- Shanshan Yuan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yi Xiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Shanshan Zheng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiaohui Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| |
Collapse
|
21
|
Zhong H, Deng J. Organic Polymer-Constructed Chiral Particles: Preparation and Chiral Applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2033764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hai Zhong
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
22
|
Kim DI, Kim HJ, Park JH, Kim KH, Kang H, Kim J, Lu P, Ahn H, Hyun DC. Magnetic cluster-encapsulated polymer dimers with controlled surface property. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Robust polymeric scaffold from 3D soft confinement self-assembly of polycondensation aromatic polymer. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
24
|
Chen Y, Liang Y, Wang L, Guan M, Zhu Y, Yue X, Huang X, Lu G. Preparation and applications of freestanding Janus nanosheets. NANOSCALE 2021; 13:15151-15176. [PMID: 34486634 DOI: 10.1039/d1nr04284j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the family of Janus nanomaterials, Janus nanosheets possess not only the advantages of Janus nanomaterials, but also the advantages of two-dimensional nanosheets, endowing them with many extraordinary properties. Therefore, Janus nanosheets have great potential in the fields of interfacial engineering, catalysis, and molecular recognition. This review summarizes and discusses the recent advances in both the preparation and applications of freestanding Janus nanosheets. After a short introduction to different types of Janus nanosheets, a variety of methods for preparing freestanding Janus nanosheets are introduced, including the surface reaction, interface reaction, emulsion reaction, self-assembly, and stripping of non-Janus nanosheets, as well as selective grafting of existing Janus nanosheets. Then, the wide applications of Janus nanosheets in the fields of emulsification, catalysis, polymer reinforcement, nanomotors, and molecular recognition are summarized in detail. Finally, a discussion on the remaining challenges and future perspectives in this field is included. This review will not only deepen the understanding of Janus nanosheets, but also benefit the designs and fabrications of extraordinary and multi-functional Janus nanosheets.
Collapse
Affiliation(s)
- Yaqi Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Yan Liang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Li Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Mengdan Guan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Yameng Zhu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiaoping Yue
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
25
|
Zhang X, Fu Q, Duan H, Song J, Yang H. Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS NANO 2021; 15:6147-6191. [PMID: 33739822 DOI: 10.1021/acsnano.1c01146] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Janus nanoparticles (JNPs) refer to the integration of two or more chemically discrepant composites into one structure system. Studies into JNPs have been of significant interest due to their interesting characteristics stemming from their asymmetric structures, which can integrate different functional properties and perform more synergetic functions simultaneously. Herein, we present recent progress of Janus particles, comprehensively detailing fabrication strategies and applications. First, the classification of JNPs is divided into three blocks, consisting of polymeric composites, inorganic composites, and hybrid polymeric/inorganic JNPs composites. Then, the fabrication strategies are alternately summarized, examining self-assembly strategy, phase separation strategy, seed-mediated polymerization, microfluidic preparation strategy, nucleation growth methods, and masking methods. Finally, various intriguing applications of JNPs are presented, including solid surfactants agents, micro/nanomotors, and biomedical applications such as biosensing, controlled drug delivery, bioimaging, cancer therapy, and combined theranostics. Furthermore, challenges and future works in this field are provided.
Collapse
Affiliation(s)
- Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| |
Collapse
|
26
|
Guo Y, Fang Y, Jia K, Yu Y, Yu L, Li H, Zhang J, Zheng X, Huang L, Wen W, Mai Y. Electroinduced Reconfiguration of Complex Emulsions for Fabrication of Polymer Particles with Tunable Morphology. Macromol Rapid Commun 2021; 42:e2100085. [DOI: 10.1002/marc.202100085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/24/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Yongshun Guo
- College of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Yanxiong Fang
- College of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Kangle Jia
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Yue Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Longfei Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Huanling Li
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Junjie Zhang
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Xiaoshan Zheng
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Linjia Huang
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Wu Wen
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Yuliang Mai
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| |
Collapse
|
27
|
Zhao B, Yang S, Deng J, Pan K. Chiral Graphene Hybrid Materials: Structures, Properties, and Chiral Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003681. [PMID: 33854894 PMCID: PMC8025009 DOI: 10.1002/advs.202003681] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/14/2020] [Indexed: 05/02/2023]
Abstract
Chirality has become an important research subject. The research areas associated with chirality are under substantial development. Meanwhile, graphene is a rapidly growing star material and has hard-wired into diverse disciplines. Rational combination of graphene and chirality undoubtedly creates unprecedented functional materials and may also lead to great findings. This hypothesis has been clearly justified by the sizable number of studies. Unfortunately, there has not been any previous review paper summarizing the scattered studies and advancements on this topic so far. This overview paper attempts to review the progress made in chiral materials developed from graphene and their derivatives, with the hope of providing a systemic knowledge about the construction of chiral graphenes and chiral applications thereof. Recently emerging directions, existing challenges, and future perspectives are also presented. It is hoped this paper will arouse more interest and promote further faster progress in these significant research areas.
Collapse
Affiliation(s)
- Biao Zhao
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shenghua Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Kai Pan
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
28
|
Duan Y, Zhao X, Sun M, Hao H. Research Advances in the Synthesis, Application, Assembly, and Calculation of Janus Materials. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04304] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Xia Zhao
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| | - Miaomiao Sun
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| |
Collapse
|
29
|
Abstract
This review surveys recent progress towards robust chiral nanostructure fabrication techniques using synthetic helical polymers, the unique inferred properties that these materials possess, and their intricate connection to natural, biological chirality.
Collapse
Affiliation(s)
| | - James F. Reuther
- Department of Chemistry
- University of Massachusetts Lowell
- Lowell
- USA
| |
Collapse
|
30
|
Zhang Y, Deng J. Chiral helical polymer materials derived from achiral monomers and their chiral applications. Polym Chem 2020. [DOI: 10.1039/d0py00934b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helix-sense-selective polymerization (HSSP) of achiral monomers and chiral post-induction of racemic helical polymers provide two alternative approaches for constructing chiral helical polymer materials.
Collapse
Affiliation(s)
- Yingjie Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- College of Materials Science and Engineering
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- College of Materials Science and Engineering
| |
Collapse
|