1
|
Zhang Y, Meng Y, Wang S, Zu Y, Zhao X. Exploring pectin-casein micelles as novel carriers for oral drug delivery of artesunate in the treatment of systemic lupus erythematosus. Int J Biol Macromol 2024; 271:132523. [PMID: 38788864 DOI: 10.1016/j.ijbiomac.2024.132523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/06/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
The oral route of administration is considered the optimal choice for treating chronic diseases due to its convenience and non-invasiveness, which can help prevent physical and mental harm to patients undergoing long-term treatment. However, challenges such as safety, gastrointestinal stability, and bioavailability of oral drugs often limit their effectiveness. Natural biomacromolecule micelles, known for their safety, stability, biocompatibility, and diverse functions, have emerged as promising carriers for oral treatment of chronic diseases like systemic lupus erythematosus (SLE) with fat-soluble drugs. This study introduces an innovative approach by developing an oral delivery system using chemically synthesized natural biomacromolecules to load artesunate for treating SLE. By synthesizing amphiphilic polymer micelles from pectin and casein through a carbodiimide reaction, a more stable structure is achieved. The hydrophobic core of these micelles encapsulates artesunate, resulting in the formation of an oral delivery system (PC-AS) with several advantages, including high drug loading and encapsulation efficiency, small particle size, negative potential, strong stability in the gastrointestinal tract, low toxicity and side effects, strong adhesion in the small intestine, and high bioavailability. These advantages facilitate efficient absorption of artesunate in the gastrointestinal tract, leading to improved bioavailability and effective alleviation of SLE-like symptoms in MRL/lpr mice. By utilizing chemically synthesized natural macromolecular micelles for delivering artesunate in the treatment of SLE, this study overcomes the oral barriers associated with the original drug and presents a novel solution for the long-term oral treatment of chronic diseases.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China; Engineering Research Center of Microbial Resources Development and Green Recycling, University of Shaanxi Province, College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, PR China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Yongbin Meng
- Engineering Research Center of Microbial Resources Development and Green Recycling, University of Shaanxi Province, College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, PR China.
| | - Siying Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Yuangang Zu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xiuhua Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
2
|
Veider F, Haddadzadegan S, Sanchez Armengol E, Laffleur F, Kali G, Bernkop-Schnürch A. Inhibition of P-glycoprotein-mediated efflux by thiolated cyclodextrins. Carbohydr Polym 2024; 327:121648. [PMID: 38171673 DOI: 10.1016/j.carbpol.2023.121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
Overcoming P-glycoprotein (P-gp)-mediated efflux poses a significant challenge for the pharmaceutical industry. This study investigates the potential of thiolated β-cyclodextrins (β-CD-SHs) as inhibitors of P-gp-mediated efflux in Caco-2 cells. Through a series of transport assays, intracellular accumulation, and efflux of the P-gp substrates Rhodamine 123 (Rh123) and Calcein-AM with and without co-administration of β-CD-SHs were assessed. The results revealed that the cellular uptake of Rh123 and Calcein-AM were enhanced up to 7- and 3-fold, compared to the control, respectively. In efflux studies an up to 2.5-fold reduction of the Rh123 efflux was reached compared the control, indicating a substantial decrease of Rh123 efflux by β-CD-SHs. Furthermore, it was observed that β-CD-SHs led to a decrease in the reactivity of fluorescence-labeled anti-P-gp, suggesting additional effects on the conformation of P-gp. Overall, this study demonstrates the potential of β-CD-SHs as effective modulator of P-gp-mediated drug efflux in Caco-2 cells.
Collapse
Affiliation(s)
- Florina Veider
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Soheil Haddadzadegan
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Eva Sanchez Armengol
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Reese TC, Devineni A, Smith T, Lalami I, Ahn JM, Raj GV. Evaluating physiochemical properties of FDA-approved orally administered drugs. Expert Opin Drug Discov 2024; 19:225-238. [PMID: 37921049 DOI: 10.1080/17460441.2023.2275617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Analyses of orally administered FDA-approved drugs from 1990 to 1993 enabled the identification of a set of physiochemical properties known as Lipinski's Rule of Five (Ro5). The original Ro5 and extended versions still remain the reference criteria for drug development programs. Since many bioactive compounds do not conform to the Ro5, we validated the relevance of and adherence to these rulesets in a contemporary cohort of FDA-approved drugs. AREAS COVERED The authors noted that a significant proportion of FDA-approved orally administered parent compounds from 2011 to 2022 deviate from the original Ro5 criteria (~38%) or the Ro5 with extensions (~53%). They then evaluated if a contemporary Ro5 criteria (cRo5) could be devised to better predict oral bioavailability. Furthermore, they discuss many case studies showcasing the need for and benefit of increasing the size of certain compounds and cover several evolving strategies for improving oral bioavailability. EXPERT OPINION Despite many revisions to the Ro5, the authors find that no single proposed physiochemical rule has universal concordance with absolute oral bioavailability. Innovations in drug delivery and formulation have dramatically expanded the range of physicochemical properties and the chemical diversity for oral administration.
Collapse
Affiliation(s)
- Tanner C Reese
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Anvita Devineni
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Tristan Smith
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Ismail Lalami
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
4
|
Kali G, Haddadzadegan S, Bernkop-Schnürch A. Cyclodextrins and derivatives in drug delivery: New developments, relevant clinical trials, and advanced products. Carbohydr Polym 2024; 324:121500. [PMID: 37985088 DOI: 10.1016/j.carbpol.2023.121500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Cyclodextrins (CD) and derivatives are functional excipients that can improve the bioavailability of numerous drugs. Because of their drug solubility improving properties they are used in many pharmaceutical products. Furthermore, the stability of small molecular drugs can be improved by the incorporation in CDs and an unpleasant taste and smell can be masked. In addition to well-established CD derivatives including hydroxypropyl-β-CD, hydroxypropyl-γ-CD, methylated- β-CD and sulfobutylated- β-CD, there are promising new derivatives in development. In particular, CD-based polyrotaxanes exhibiting cellular uptake enhancing properties, CD-polymer conjugates providing sustained drug release, enhanced cellular uptake, and mucoadhesive properties, and thiolated CDs showing mucoadhesive, in situ gelling, as well as permeation and cellular uptake enhancing properties will likely result in innovative new drug delivery systems. Relevant clinical trials showed various new applications of CDs such as the formation of CD-based nanoparticles, stabilizing properties for protein drugs or the development of ready-to-use injection systems. Advanced products are making use of various benefical properties of CDs at the same time. Within this review we provide an overview on these recent developments and take an outlook on how this class of excipients will further shape the landscape of drug delivery.
Collapse
Affiliation(s)
- Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria
| | - Soheil Haddadzadegan
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
5
|
Kali G, Özkahraman B, Laffleur F, Knoll P, Wibel R, Zöller K, Bernkop-Schnürch A. Thiolated Cellulose: A Dual-Acting Mucoadhesive and Permeation-Enhancing Polymer. Biomacromolecules 2023; 24:4880-4889. [PMID: 37796043 PMCID: PMC10646989 DOI: 10.1021/acs.biomac.3c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/25/2023] [Indexed: 10/06/2023]
Abstract
This study aims to design an anionic, thiolated cellulose derivative and to evaluate its mucoadhesive and permeation-enhancing properties utilizing enoxaparin as a model drug. 2-Mercaptosuccinic acid-modified cellulose (cellulose-mercaptosuccinate) was synthesized by the reaction of cellulose with S-acetylmercaptosuccinic anhydride. The chemical structure of the target compound was confirmed by FTIR and 1H NMR spectroscopy. The thiol content was determined by Ellman's test. The conjugate exhibited 215.5 ± 25 μmol/g of thiol groups and 84 ± 16 μmol/g of disulfide bonds. Because of thiolation, mucoadhesion on porcine intestinal mucosa was 9.6-fold enhanced. The apparent permeability (Papp) of the model dye Lucifer yellow was up to 2.2-fold improved by 0.5% cellulose-mercaptosuccinate on a Caco-2 cell monolayer. Enoxaparin permeation through rat intestinal mucosa increased 2.4-fold in the presence of 0.5% cellulose-mercaptosuccinate compared with the drug in buffer only. In vivo studies in rats showed an oral bioavailability of 8.98% using cellulose-mercaptosuccinate, which was 12.5-fold higher than that of the aqueous solution of the drug. Results of this study show that the modification of cellulose with 2-mercaptosuccinic acid provides mucoadhesive and permeation-enhancing properties, making this thiolated polymer an attractive excipient for oral drug delivery.
Collapse
Affiliation(s)
- Gergely Kali
- Center for Chemistry
and Biomedicine, Department of Pharmaceutical Technology, Institute
of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Bengi Özkahraman
- Center for Chemistry
and Biomedicine, Department of Pharmaceutical Technology, Institute
of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
- Department of Polymer Materials, Faculty of Engineering, Hitit University, 19030 Corum, Turkey
| | - Flavia Laffleur
- Center for Chemistry
and Biomedicine, Department of Pharmaceutical Technology, Institute
of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Patrick Knoll
- Center for Chemistry
and Biomedicine, Department of Pharmaceutical Technology, Institute
of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Richard Wibel
- Center for Chemistry
and Biomedicine, Department of Pharmaceutical Technology, Institute
of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Katrin Zöller
- Center for Chemistry
and Biomedicine, Department of Pharmaceutical Technology, Institute
of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry
and Biomedicine, Department of Pharmaceutical Technology, Institute
of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
6
|
Khalid FM, Ijaz M, Mahmood A, Waqas MK, Hussain T, Asim MH, Ahmad N, Arshad S, Rehman MU, Nazir I. Mucoadhesive, Fluconazole-Loaded Nanogels Complexed with Sulfhydryl-β-cyclodextrin for Oral Thrush Treatment. AAPS PharmSciTech 2023; 24:194. [PMID: 37752361 DOI: 10.1208/s12249-023-02653-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
The objective of this study was to generate fluconazole-loaded mucoadhesive nanogels to address the problem of hydrophobicity of fluconazole (FL). An inclusion complex was formulated with sulfhydryl-β-CD (SH-β-CD) followed by nanogels formation by a Schiff base reaction of carbopol 940 (CA-940) and gelatin (GE). For characterization, PXRD, FT-IR analysis, drug content, and phase solubility studies were performed. Similarly, nanogels were assessed for particle size, zeta potential, organoleptic, and spreadability studies. Moreover, drug contents, rheological, in vitro drug permeation, release kinetics, toxicity, and stability studies of nanogels were performed. Furthermore, mucoadhesive characteristics over the buccal mucosal membrane of the goat were evaluated. The nanogels formulated with a higher amount of CA-940 and subsequently loaded with the inclusion complexes of FL showed promising results. PXRD and FT-IR analysis confirmed the physical complexes by displaying a reduction in the intensity of peaks of FL. The average particle size of nanogels was in the range of 257 to 361 nm. The highest drug content of 88% was encapsulated within the FL-SH-β-CD complex. All formulations at 0.5-1% concentration displayed no toxicity to the Caco-2 cell lines. Nanogels loaded with FL-SH-β-CD complexes showed 18-fold improved mucoadhesion on the buccal mucous membrane of the goat when compared to simple nanogels. The in vitro permeation study exhibited significantly enhanced permeation and first-order concentration-dependent drug release was observed. On the bases of these findings, we can conclude that a mucoadhesive nanogel-based drug delivery system can be an ideal therapy for candidiasis.
Collapse
Affiliation(s)
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Defense Road, 1.5Km off Raiwind Road, Lahore, 54000, Pakistan.
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, 51133, Abu Dhabi, United Arab Emirates
| | | | - Talib Hussain
- Institute of Pharmaceutical Sciences, UVAS, Lahore, 54000, Pakistan
| | | | - Nadeem Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Defense Road, 1.5Km off Raiwind Road, Lahore, 54000, Pakistan
| | - Shumaila Arshad
- Doctor's Institute of Health Sciences, 3-Km Sargodha Bypass Road, Sargodha, 40100, Pakistan
| | - Masood Ur Rehman
- Riphah Institute of Pharmaceutical Sciences, Ripha International University, Islamabad, 45550, Pakistan
| | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Defense Road, 1.5Km off Raiwind Road, Lahore, 54000, Pakistan
| |
Collapse
|
7
|
Kaplan Ö, Truszkowska M, Kali G, Knoll P, Blanco Massani M, Braun DE, Bernkop-Schnürch A. Thiolated α-cyclodextrin: The likely smallest drug carrier providing enhanced cellular uptake and endosomal escape. Carbohydr Polym 2023; 316:121070. [PMID: 37321712 DOI: 10.1016/j.carbpol.2023.121070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
This study aimed to evaluate the effect of thiolated α-cyclodextrin (α-CD-SH) on the cellular uptake of its payload. For this purpose, α-CD was thiolated using phosphorous pentasulfide. Thiolated α-CD was characterized by FT-IR and 1H NMR spectroscopy, differential scanning calorimetry (DSC), and powder X-ray diffractometry (PXRD). Cytotoxicity of α-CD-SH was evaluated on Caco-2, HEK 293, and MC3T3 cells. Dilauryl fluorescein (DLF) and coumarin-6 (Cou) serving as surrogates for a pharmaceutical payload were incorporated in α-CD-SH, and cellular uptake was analyzed by flow cytometry and confocal microscopy. Endosomal escape was investigated by confocal microscopy and hemolysis assay. Results showed no cytotoxic effect within 3 h, while dose-dependent cytotoxicity was observed within 24 h. The cellular uptake of DLF and Cou was up to 20- and 11-fold enhanced by α-CD-SH compared to native α-CD, respectively. Furthermore, α-CD-SH provided an endosomal escape. According to these results, α-CD-SH is a promising carrier to shuttle drugs into the cytoplasm of target cells.
Collapse
Affiliation(s)
- Özlem Kaplan
- Department of Genetics and Bioengineering, Rafet Kayış Faculty of Engineering, Alanya Alaaddin Keykubat University, 07400 Antalya, Turkey; Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Martyna Truszkowska
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Patrick Knoll
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Mariana Blanco Massani
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Doris Elfriede Braun
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
8
|
Haddadzadegan S, Knoll P, Wibel R, Kali G, Bernkop-Schünrch A. Three generations of thiolated cyclodextrins: A direct comparison of their mucus permeating and mucoadhesive properties. Acta Biomater 2023:S1742-7061(23)00315-X. [PMID: 37271247 DOI: 10.1016/j.actbio.2023.05.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
AIM This study aims to compare the mucus permeating and mucoadhesive properties of three generations of thiolated cyclodextrins (CDs). METHODS Free thiol groups of thiolated γ-CDs (CD-SH) were S-protected with 2-mercaptonicotinic acid (MNA), leading to a second generation of thiolated CDs (CD-SS-MNA) and with 2 kDa polyethylene glycol (PEG) bearing a terminal thiol group leading to a third generation of thiolated CDs (CD-SS-PEG). The structure of these thiolated CDs was confirmed and characterized by FT-IR, 1H NMR and colorimetric assays. Thiolated CDs were evaluated regarding viscosity, mucus diffusion, and mucoadhesion. RESULTS The viscosity of the mixture of CD-SH, CD-SS-MNA, or CD-SS-PEG with mucus increased up to 11-, 16-, and 14.1-fold compared to unmodified CD within 3 hours, respectively. Mucus diffusion increased in the following rank order: unprotected CD-SH < CD-SS-MNA < CD-SS-PEG. The residence time of CD-SH, CD-SS-MNA, and CD-SS-PEG on porcine intestine was up to 9.6-, 12.55-, and 11.2-fold prolonged compared to native CD, respectively. CONCLUSION According to these results, S-protection of thiolated CDs can be a promising approach to improve their mucus permeating and mucoadhesive properties. STATEMENT OF SIGNIFICANCE Three generations of thiolated cyclodextrins (CDs) with different types of thiol ligands have been synthesized to improve mucus interaction. 1st generation of thiolated CDs was synthesized by converting hydroxyl groups into thiols by reaction with Thiourea. For 2nd generation, free thiol groups were S-protected by reaction with 2-mercaptonicotinic acid (MNA), resulting in high reactive disulfide bonds. For 3rd generation, terminally thiolated short PEG chains (2 kDa) were used for S-protection of thiolated CDs. Mucus penetrating properties were found to be increased as follows: 1st generation < 2nd generation < 3rd generation. Furthermore, mucoadhesive properties were improved in the following rank order: 1st generation < 3rd generation < 2nd generation. This study suggests that the S-protection of thiolated CDs can enhance mucus penetrating and mucoadhesive properties.
Collapse
Affiliation(s)
- Soheil Haddadzadegan
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Patrick Knoll
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Andreas Bernkop-Schünrch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
9
|
Spleis H, Sandmeier M, Claus V, Bernkop-Schnürch A. Surface design of nanocarriers: Key to more efficient oral drug delivery systems. Adv Colloid Interface Sci 2023; 313:102848. [PMID: 36780780 DOI: 10.1016/j.cis.2023.102848] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
As nanocarriers (NCs) can improve the solubility of drugs, prevent their degradation by gastrointestinal (GI) enzymes and promote their transport across the mucus gel layer and absorption membrane, the oral bioavailability of these drugs can be substantially enhanced. All these properties of NCs including self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), liposomes, polymeric nanoparticles, inorganic nanoparticles and polymeric micelles depend mainly on their surface chemistry. In particular, interaction with food, digestive enzymes, bile salts and electrolytes, diffusion behaviour across the mucus gel layer and fate on the absorption membrane are determined by their surface. Bioinert surfaces limiting interactions with gastrointestinal fluid and content as well as with mucus, adhesive surfaces providing an intimate contact with the GI mucosa and absorption enhancing surfaces can be designed. Furthermore, charge converting surfaces shifting their zeta potential from negative to positive directly at the absorption membrane and surfaces providing a targeted drug release are advantageous. In addition to these passive surfaces, even active surfaces cleaving mucus glycoproteins on their way through the mucus gel layer can be created. Within this review, we provide an overview on these different surfaces and discuss their impact on the performance of NCs in the GI tract.
Collapse
Affiliation(s)
- Helen Spleis
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria; Thiomatrix Forschungs und Beratungs GmbH, Trientlgasse 65, Innsbruck 6020, Austria
| | - Matthias Sandmeier
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria; Thiomatrix Forschungs und Beratungs GmbH, Trientlgasse 65, Innsbruck 6020, Austria
| | - Victor Claus
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria; Thiomatrix Forschungs und Beratungs GmbH, Trientlgasse 65, Innsbruck 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria.
| |
Collapse
|
10
|
Chen C, Fa Y, Kuo Y, Liu Y, Lin C, Wang X, Lu Y, Chiang Y, Yang C, Wu L, Ho JA. Thiolated Mesoporous Silica Nanoparticles as an Immunoadjuvant to Enhance Efficacy of Intravesical Chemotherapy for Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204643. [PMID: 36638276 PMCID: PMC9982584 DOI: 10.1002/advs.202204643] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The characteristics of global prevalence and high recurrence of bladder cancer has led numerous efforts to develop new treatments. The spontaneous voiding and degradation of the chemodrug hamper the efficacy and effectiveness of intravesical chemotherapy following tumor resection. Herein, the externally thiolated hollow mesoporous silica nanoparticles (MSN-SH(E)) is fabricated to serve as a platform for improved bladder intravesical therapy. Enhanced mucoadhesive effect of the thiolated nanovector is confirmed with porcine bladder. The permeation-enhancing effect is also verified, and a fragmented distribution pattern of a tight junction protein, claudin-4, indicates the opening of tight junction. Moreover, MSN-SH(E)-associated reprogramming of M2 macrophages to M1-like phenotype is observed in vitro. The antitumor activity of the mitomycin C (MMC)-loaded nanovector (MMC@MSN-SH(E)) is more effective than that of MMC alone in both in vitro and in vivo. In addition, IHC staining is used to analyze IFN-γ, TGF-β1, and TNF-α. These observations substantiated the significance of MMC@MSN-SH(E) in promoting anticancer activity, holding the great potential for being used in intravesical therapy for non-muscle invasive bladder cancer (NMIBC) due to its mucoadhesivity, enhanced permeation, immunomodulation, and prolonged and very efficient drug exposure.
Collapse
Affiliation(s)
- Cheng‐Che Chen
- BioAnalytical Chemistry and Nanobiomedicine LaboratoryDepartment of Biochemical Science and TechnologyNational Taiwan University10617TaipeiTaiwan
- Department of UrologyTaichung Veterans General Hospital40705TaichungTaiwan
| | - Yu‐Chen Fa
- BioAnalytical Chemistry and Nanobiomedicine LaboratoryDepartment of Biochemical Science and TechnologyNational Taiwan University10617TaipeiTaiwan
| | - Yen‐Yu Kuo
- Department of ChemistryNational Tsing Hua University300044HsinchuTaiwan
| | - Yi‐Chun Liu
- BioAnalytical Chemistry and Nanobiomedicine LaboratoryDepartment of Biochemical Science and TechnologyNational Taiwan University10617TaipeiTaiwan
| | - Chih‐Yu Lin
- Department of ChemistryNational Tsing Hua University300044HsinchuTaiwan
| | - Xin‐Hui Wang
- Instrumentation CenterNational Taiwan University10617TaipeiTaiwan
| | - Yu‐Huan Lu
- Department of ChemistryNational Tsing Hua University300044HsinchuTaiwan
| | - Yu‐Han Chiang
- Department of ChemistryNational Taiwan University10617TaipeiTaiwan
| | - Chia‐Min Yang
- Department of ChemistryNational Tsing Hua University300044HsinchuTaiwan
- Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua University300044HsinchuTaiwan
| | - Li‐Chen Wu
- Department of Applied ChemistryNational Chi Nan UniversityPuliNantou54561Taiwan
| | - Ja‐an Annie Ho
- BioAnalytical Chemistry and Nanobiomedicine LaboratoryDepartment of Biochemical Science and TechnologyNational Taiwan University10617TaipeiTaiwan
- Department of ChemistryNational Taiwan University10617TaipeiTaiwan
- Center for Emerging Materials and Advance DevicesNational Taiwan University10617TaipeiTaiwan
- Center for BiotechnologyNational Taiwan University10617TaipeiTaiwan
| |
Collapse
|
11
|
Wang Q, Zhang A, Zhu L, Yang X, Fang G, Tang B. Cyclodextrin-based ocular drug delivery systems: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Gulsun T, Izat N, Sahin S. Influence of permeability enhancers on the paracellular permeability of metformin hydrochloride and furosemide across Caco-2 cells. Can J Physiol Pharmacol 2022; 101:185-199. [PMID: 36459686 DOI: 10.1139/cjpp-2022-0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Permeability enhancers can affect absorption of paracellularly transported drugs. This study aims to evaluate effects of permeability enhancers (chitosan, methyl-β -cyclodextrin, sodium caprate, sodium lauryl sulfate, etc.) on the permeability of paracellularly absorbed furosemide and metformin hydrochloride. Methyl thiazole tetrazolium bromide test was carried out to determine the drug concentrations in permeability study. Trans-epithelial electrical resistance (TEER) values determined to assess the integrity of tight junctions. Permeability enhancers were applied at different concentrations alone, in dual/triple combinations. Permeability was determined using human colorectal adenocarcinoma (Caco-2) cells (TEER > 400 Ω·cm2). Permeability enhancers have no significant effect (<2-fold; p > 0.05) on the permeability of furosemide (1.80 × 10-5 ± 4.55 × 10-7 cm/s); however, metformin permeability (1.36 × 10-5 ± 1.25 × 10-6 cm/s) increased significantly (p < 0.05) with 0.3% and 0.5% (w/v) chitosan (2.0- and 2.7-fold, respectively), 1% methyl-β -cyclodextrin (w/v) (3.5-fold), 10 and 20 µmol/L sodium caprate (2.2- and 2.8-fold, respectively), and 0.012% sodium lauryl sulfate (w/v) (1.9-fold). Furosemide permeability increased significantly (p < 0.05) with chitosan-sodium lauryl sulfate combination (1.7-fold), and all triple combinations (1.4- to 1.9-fold). Chitosan containing dual/triple combinations resulted in significant increase (p < 0.05) in metformin permeability (1.7 to 2.8-fold). All results indicated that absorption of furosemide and metformin can be improved by the combination of permeability enhancers. Therefore, it can be evaluated for the formulation of development strategies containing furosemide and metformin by the pharmaceutical industry.
Collapse
Affiliation(s)
- Tugba Gulsun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Nihan Izat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
13
|
Faiz S, Arshad S, Kamal Y, Imran S, Asim MH, Mahmood A, Inam S, Irfan HM, Riaz H. Pioglitazone-loaded nanostructured lipid carriers: In-vitro and in-vivo evaluation for improved bioavailability. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Per-thiolated cyclodextrins: Nanosized drug carriers providing a prolonged gastrointestinal residence time. Carbohydr Polym 2022; 300:120275. [DOI: 10.1016/j.carbpol.2022.120275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022]
|
15
|
Grassiri B, Cesari A, Balzano F, Migone C, Kali G, Bernkop-Schnürch A, Uccello-Barretta G, Zambito Y, Piras AM. Thiolated 2-Methyl-β-Cyclodextrin as a Mucoadhesive Excipient for Poorly Soluble Drugs: Synthesis and Characterization. Polymers (Basel) 2022; 14:polym14153170. [PMID: 35956685 PMCID: PMC9370929 DOI: 10.3390/polym14153170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 02/01/2023] Open
Abstract
Thiolated cyclodextrins are structurally simple mucoadhesive macromolecules, which are able to host drugs and increase their apparent water solubility, as well as interact with the mucus layer prolonging drug residence time on the site of absorption. The aim of this study was to synthesize through green microwave-assisted process a freely soluble thiolated 2-methyl-β-cyclodextrin (MβCD-SH). Its inclusion complex properties with dexamethasone (Dex), a poor water soluble drug, and mucoadhesive characteristics were also determined. The product was deeply characterized through NMR spectroscopy (2D COSY, 2D HSQC, 1D/2D TOCSY, and 1D ROESY), showing a thiolation degree of 67%, a selective thiolation on the C6 residues and a monomeric structure. The association constant of MβCD and MβCD-SH with Dex resulted in 2514.3 ± 32.3 M−1 and 2147.0 ± 69.3 M−1, respectively, indicating that both CDs were able to host the drug. Microrheological analysis of mucin in the presence of MBCD-SH showed an increase of complex viscosity, G′ and G″, due to disulphide bond formation. The cytotoxicity screening on fibroblast BALB/3T3 clone A31 cells indicated an IC50 of 27.7 mg/mL and 30.0 mg/mL, for MβCD and MβCD-SH, respectively. Finally, MβCD-SH was able to self-assemble in water into nanometric structures, both in the presence and absence of the complexed drug.
Collapse
Affiliation(s)
- Brunella Grassiri
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.G.); (C.M.); (Y.Z.)
| | - Andrea Cesari
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy;
| | - Federica Balzano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (F.B.); (G.U.-B.)
| | - Chiara Migone
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.G.); (C.M.); (Y.Z.)
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria; (G.K.); (A.B.-S.)
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria; (G.K.); (A.B.-S.)
| | - Gloria Uccello-Barretta
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (F.B.); (G.U.-B.)
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.G.); (C.M.); (Y.Z.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.G.); (C.M.); (Y.Z.)
- Correspondence: ; Tel.: +39-3392221213
| |
Collapse
|
16
|
Kali G, Knoll P, Bernkop-Schnürch A. Emerging technologies to increase gastrointestinal transit times of drug delivery systems. J Control Release 2022; 346:289-299. [PMID: 35461970 DOI: 10.1016/j.jconrel.2022.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 01/19/2023]
Abstract
Apart from already established technologies to increase gastrointestinal transit times, including devices rapidly increasing in size once they have reached the stomach in order to retard the passage through the pylorus, formulations that float on gastric fluids and mucoadhesive drug delivery systems adhering to the gastrointestinal mucosa, there are new technologies emerging that might be game changing. They include mucus permeating nanocarriers that are able to diffuse deeply into the mucus gel layer of the gastric and intestinal mucosa remaining there for a prolonged time period (i), charge-converting nanocarriers that shift their zeta potential from negative to positive within the mucus gel layer providing strong ionic bonds with anionic mucus glycoproteins (ii) and thiolated nanocarriers and cyclodextrins form even covalent bonds with cysteine-rich subdomains of mucus glycoproteins (iii). Within this review we will provide an overview about these emerging new technologies and will critically discuss their potential and shortcomings.
Collapse
Affiliation(s)
- Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Patrick Knoll
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
17
|
Real DA, Bolaños K, Priotti J, Yutronic N, Kogan MJ, Sierpe R, Donoso-González O. Cyclodextrin-Modified Nanomaterials for Drug Delivery: Classification and Advances in Controlled Release and Bioavailability. Pharmaceutics 2021; 13:2131. [PMID: 34959412 PMCID: PMC8706493 DOI: 10.3390/pharmaceutics13122131] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
In drug delivery, one widely used way of overcoming the biopharmaceutical problems present in several active pharmaceutical ingredients, such as poor aqueous solubility, early instability, and low bioavailability, is the formation of inclusion compounds with cyclodextrins (CD). In recent years, the use of CD derivatives in combination with nanomaterials has shown to be a promising strategy for formulating new, optimized systems. The goals of this review are to give in-depth knowledge and critical appraisal of the main CD-modified or CD-based nanomaterials for drug delivery, such as lipid-based nanocarriers, natural and synthetic polymeric nanocarriers, nanosponges, graphene derivatives, mesoporous silica nanoparticles, plasmonic and magnetic nanoparticles, quantum dots and other miscellaneous systems such as nanovalves, metal-organic frameworks, Janus nanoparticles, and nanofibers. Special attention is given to nanosystems that achieve controlled drug release and increase their bioavailability during in vivo studies.
Collapse
Affiliation(s)
- Daniel Andrés Real
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380544, Chile; (D.A.R.); (K.B.); (M.J.K.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago 8380544, Chile
| | - Karen Bolaños
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380544, Chile; (D.A.R.); (K.B.); (M.J.K.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago 8380544, Chile
- Cellular Communication Laboratory, Program of Cellular and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago 8380453, Chile
| | - Josefina Priotti
- Área Técnica Farmacéutica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina;
| | - Nicolás Yutronic
- Laboratorio de Nanoquímica y Química Supramolecular, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Marcelo J. Kogan
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380544, Chile; (D.A.R.); (K.B.); (M.J.K.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago 8380544, Chile
| | - Rodrigo Sierpe
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380544, Chile; (D.A.R.); (K.B.); (M.J.K.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago 8380544, Chile
- Laboratorio de Nanoquímica y Química Supramolecular, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
- Laboratorio de Biosensores, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| | - Orlando Donoso-González
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380544, Chile; (D.A.R.); (K.B.); (M.J.K.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago 8380544, Chile
- Laboratorio de Nanoquímica y Química Supramolecular, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| |
Collapse
|
18
|
Babadi D, Dadashzadeh S, Osouli M, Abbasian Z, Daryabari MS, Sadrai S, Haeri A. Biopharmaceutical and pharmacokinetic aspects of nanocarrier-mediated oral delivery of poorly soluble drugs. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
19
|
Asim MH, Ijaz M, Mahmood A, Knoll P, Jalil A, Arshad S, Bernkop-Schnürch A. Thiolated cyclodextrins: Mucoadhesive and permeation enhancing excipients for ocular drug delivery. Int J Pharm 2021; 599:120451. [PMID: 33675922 DOI: 10.1016/j.ijpharm.2021.120451] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
Thiolated β-cyclodextrin (β-CD) has the potential to enhance mucoadhesive and permeation enhancing properties on ocular mucosa. Thiolated β-CD was synthesized via replacement of all primary hydroxyl groups on β-CD backbone by halogen followed by substitution with thiol groups. The structure was confirmed by FT-IR and 1H NMR spectroscopy. Thiolated CD was characterized for hemolytic effect, ocular irritation, solubility enhancement, viscoelastic behavior and mucoadhesive properties. Moreover, the permeation enhancing effect of thiolated oligomer on different ocular tissues including conjunctiva, sclera and cornea was evaluated with sodium fluorescein (Na-Flu) as a marker. Thiolated β-CD displayed 5360 ± 412 µmol/g thiol groups. The newly synthesized oligomer did not show any hemolytic effect on red blood cells at a concentration of 0.5% (m/v) for an incubation period of 3 h and minimal corneal irritation effects without any inflammation within 72 h. Thiolated β-CD exhibited a 5.3-fold improved aqueous solubility as compared to the unmodified β-CD. Thiolated oligomer (0.5% m/v) enhanced the viscosity of mucus up to 6.2-fold within 4 h and provided a 26-fold prolonged ocular residence time due to mucoadhesion. Moreover, 0.5% (m/v) thiolated β-CD enhanced the permeation of Na-Flu 9.6-, 7.1- and 5.3-fold on conjunctiva, sclera and cornea, respectively. Based on these findings, thiolated β-CD might be a promising auxiliary agent for ocular drug delivery.
Collapse
Affiliation(s)
- Mulazim Hussain Asim
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, University of Innsbruck, 6020 Innsbruck, Austria; Department of Pharmaceutics, Faculty of Pharmacy, University of Sargodha, 40100 Sargodha, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, 54000 Lahore, Pakistan
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi, United Arab Emirates
| | - Patrick Knoll
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Aamir Jalil
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Shumaila Arshad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 44000 Islamabad, Pakistan
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
20
|
Thiolated polymeric hydrogels for biomedical application: Cross-linking mechanisms. J Control Release 2021; 330:470-482. [DOI: 10.1016/j.jconrel.2020.12.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
|
21
|
Grassiri B, Zambito Y, Bernkop-Schnürch A. Strategies to prolong the residence time of drug delivery systems on ocular surface. Adv Colloid Interface Sci 2021; 288:102342. [PMID: 33444845 DOI: 10.1016/j.cis.2020.102342] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Ocular diseases may be treated via different routes of administration, such as topical, intracameral, intravitreal, oral and parenteral. Among them the topical route is most accepted by patients, although it provides in many cases the lowest bioavailability. Indeed, when a topical formulation reaches the precorneal area, i.e., the drug absorption and/or action site, it is rapidly eliminated due to eye protection mechanisms such as blinking, basal and reflex tearing, and naso-lacrimal draining. To avoid this and to reduce the frequency of dosing, various strategies have been developed to prolong drug residence time after topical administration. These strategies include the use of viscosity increasing and mucoadhesive excipients as well as combinations thereof. From the drug delivery system point of view, liquid and semisolid formulations are preferred over solid formulations such as ocular inserts and contact lenses. Furthermore, liquid and semisolid formulations can contain nano- and microcarrier systems that contribute to a prolonged residence time. Within this review an overview about the different types of excipients and formulations as well as their performance in valid animal models and clinical trials is provided.
Collapse
Affiliation(s)
- Brunella Grassiri
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa 56100, Italy
| | - Andreas Bernkop-Schnürch
- Institute of Pharmacy/Dep. of Pharmaceutical Technology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
22
|
|
23
|
S-Protected thiolated nanostructured lipid carriers exhibiting improved mucoadhesive properties. Int J Pharm 2020; 587:119690. [PMID: 32738459 DOI: 10.1016/j.ijpharm.2020.119690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
The purpose of the present study was to design nanostructured lipid carriers (NLCs) exhibiting improved mucoadhesive properties. First, an S-protected thiolated fatty acid conjugate was synthesized by amide bond formation between a primary amino group of l-cystine and palmitic acid N-hydroxysuccinimide. NLCs were prepared by nano-template engineering technique using Span 60, polysorbate 80, sucrose stearate and PEG 400 as surfactant mixture, stearic acid as solid lipid and miglyol as liquid lipid. NLCs were loaded with the model drug bergapten and decorated with the S-protected thiolated fatty acid conjugate. NLCs were characterized regarding particle size, poly-dispersity index (PDI), zeta potential, drug entrapment efficiency (EE), drug loading capacity (LC), drug release and mucoadhesive properties. Furthermore, cytotoxicity studies were performed on MDA-MB-231 cells via resazurin assay. S-Protected thiolated NLCs displayed a mean size of 115 nm, PDI of 0.3, zeta potential of -30 mV, 80% drug EE and 5% drug LC. Drug-loaded S-protected thiolated NLCs exhibited a sustained drug release and strongly enhanced mucoadhesive properties. Surface decoration with cystine substructures raised the cytotoxic potential of NLCs to a minor extent. Due to the immobilization of cystine substructures on the surface of NLCs, their mucoadhesive properties can be strongly improved.
Collapse
|