1
|
Yang X, Liu Y, Zhong Y, Chen H. Ultra-durable photothermal anti-/de-icing superhydrophobic coating with water droplets freezing from the outside in. J Colloid Interface Sci 2025; 682:1127-1139. [PMID: 39667332 DOI: 10.1016/j.jcis.2024.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
In low-temperature, high-humidity environments, the condensation of water vapor within microstructures can initiate a detrimental cycle of hydrophobic failure, high-adhesion ice formation, and microstructural degradation, thereby limiting the practical application of superhydrophobic coatings in anti-icing and de-icing technologies. Therefore, enhancing the hydrophobic stability and mechanical durability of these coatings under such conditions is imperative. This study presents a novel approach where rigid Fe3O4 nanoparticles are encapsulated within porous diatomaceous earth (DME) and combined with high-adhesion acrylic resin (AR), resulting in a superhydrophobic photothermal coating that possesses both active and passive de-icing capabilities, fabricated through a straightforward one-step spraying technique. Nanosized Fe3O4 particles, modified for hydrophobicity and smaller than the critical nucleation radius, are densely packed within the DME micropores, forming a micro-nano structured coating with a contact angle of 160.1° and a rolling angle of 2.1°. This dense nanoparticle distribution facilitates preferential nucleation of ice crystal nuclei at the gas-liquid interface, rapidly leading to the formation of a robust and uniform ice shell, which effectively reduces the ice-solid contact area, resulting in loose ice droplets that initiate melting within 18 s. Additionally, the self-removal of condensed droplets from the surface enhances the water repellency and ice-phobic performance in low-temperature and high-humidity environments. The protection afforded by the DME microstructure and the releasable action of Fe3O4 nanoparticles allows the coating to maintain its superhydrophobic characteristics even after exposure to sandpaper abrasion, repeated de-icing, sand impact, and immersion in acid-base solutions. Thus, this robust and durable superhydrophobic photothermal coating, integrating active and passive de-icing functionalities, demonstrates substantial potential for application across various engineering domains.
Collapse
Affiliation(s)
- Xiangming Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yan Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yuting Zhong
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hui Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
2
|
Xu Z, Wang G, Li S, Li D, Zhou W, Yang C, Sun H, Liu Y. Thermodynamic mechanisms governing icing: Key insights for designing passive anti-icing surfaces. iScience 2025; 28:111668. [PMID: 39925431 PMCID: PMC11804742 DOI: 10.1016/j.isci.2024.111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
In winter, while the freezing of water can create breathtaking landscapes, it also poses significant operational challenges when ice accumulates on functional surfaces. Ice obstructs solar panels, impairs car windshield visibility, increases energy consumption in appliances due to insulation, and can cause structural failures or collapses due to weight and rigidity. To address these issues, various active de-icing methods are employed in cold regions. However, passive anti-icing solutions are gaining preference for their lower energy consumption, cost-effectiveness, and environmental benefits. While superhydrophobic surfaces delay ice formation, they do not fully resolve the problem. Understanding the interaction between surfaces and moisture-essential for ice formation-can inspire innovative anti-icing design principles. This review examines icing physics, identifies critical environmental factors affecting ice formation, evaluates icephobic surfaces, and discusses practical application challenges. We also outline promising design principles for passive anti-icing surfaces, emphasizing their broad applicability across diverse environments.
Collapse
Affiliation(s)
- Zhengzheng Xu
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, P.R. China
| | - Guoyong Wang
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, P.R. China
| | - Shuangxin Li
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, P.R. China
| | - Danqing Li
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, P.R. China
| | - Wenting Zhou
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, P.R. China
| | - Chuncheng Yang
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, P.R. China
| | - Huan Sun
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, P.R. China
| |
Collapse
|
3
|
Yang S, Liu J, Hoque MJ, Huang A, Chen Y, Yang W, Feng J, Miljkovic N. A Critical Perspective on Photothermal De-Icing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415237. [PMID: 39711482 PMCID: PMC11837899 DOI: 10.1002/adma.202415237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/16/2024] [Indexed: 12/24/2024]
Abstract
To tackle the formidable challenges posed by extreme cold weather events, significant advancements have been made in developing functional surfaces capable of efficiently removing accreted ice. Nevertheless, many of these surfaces still require external energy input, such as electrical power, which raises concerns regarding their alignment with global sustainability goals. Over the past decade, increasing attention has been directed toward photothermal surface designs that harness solar energy-a resource available on Earth in quantities exceeding the total reserves of coal and oil combined. By converting solar energy into heat, these designs enable the transformation of the interfacial solid-solid contact (ice-substrate) into a liquid-solid contact (water-substrate), significantly reducing interfacial adhesion and facilitating rapid ice removal. This critical perspective begins by emphasizing the advantages of photothermal design over traditional de-icing methods. It then delves into an in-depth analysis of three primary photothermal mechanisms, examining how these principles have expanded the scope of de-icing technologies and contributed to advancements in photothermal surface design. Finally, key fundamental and technical challenges are identified, offering strategic guidelines for future research aimed at enabling practical, real-world applications.
Collapse
Affiliation(s)
- Siyan Yang
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Jiazheng Liu
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Muhammad Jahidul Hoque
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Anxu Huang
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Yiyang Chen
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Wentao Yang
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Jie Feng
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Nenad Miljkovic
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- Materials Research LaboratoryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Electrical and Computer EngineeringThe Grainger College of EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Institute for SustainabilityEnergy and EnvironmentUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- International Institute for Carbon Neutral Energy Research (WPI‐I2CNER)Kyushu University74 MotookaNishi‐kuFukuoka819‐0395Japan
| |
Collapse
|
4
|
Zhao Y, Liu W, Du Y, Tong J, Xie H, Wu T, Qu J. Anti-Frosting and Defrosting Fins with Hierarchical Interlocking Structure for Enhancing Energy Utilization Efficiency of Heat Exchanger. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405424. [PMID: 39252652 DOI: 10.1002/smll.202405424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/17/2024] [Indexed: 09/11/2024]
Abstract
Air conditioners, being an indispensable component of contemporary living, consume a significant amount of electricity every year. The accumulation of frost, dust, and water on the fins surface hinders the efficiency of the heat exchange process, thereby reducing the effectiveness of the air conditioning system. To address these limitations, this paper proposes a large-scale and cost-effective method combining compression molding, chemical etching, and spray coating to fabricate aluminum fins (HMNA) with hierarchical interlocking structures. The HMNA exhibits outstanding durability, passive and active anti-icing, anti-frosting and defrosting, and self-cleaning capabilities associated with the robust super-hydrophobicity. The hierarchical interlocking structure effectively enhances the physical and environmental durability of the HMNA. Most significantly, the frost time of the HMNA fins assembled heat exchanger is significantly delayed by ≈700% compared to the traditional Al fins heat exchanger, while the frost layer thickness is reduced by ≈75%. This greatly reduces the frequency with which the defrosting cycle is started, thus effectively improving the efficiency of the air conditioning system. The proposed method for economical and mass production of the HMNA fins can be an excellent candidate for the development of low energy consumption air conditioning system.
Collapse
Affiliation(s)
- Yue Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wenzhuo Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yu Du
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jun Tong
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, 528000, China
| | - Heng Xie
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ting Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
5
|
Cui J, Wang T, Che Z. Freezing-Melting Mediated Dewetting Transition for Droplets on Superhydrophobic Surfaces with Condensation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14685-14696. [PMID: 38970799 DOI: 10.1021/acs.langmuir.4c01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The water-repellence properties of superhydrophobic surfaces make them promising for many applications. However, in some extreme environments, such as high humidities and low temperatures, condensation on the surface is inevitable, which induces the loss of surface superhydrophobicity. In this study, we propose a freezing-melting strategy to achieve the dewetting transition from the Wenzel state to the Cassie-Baxter state. It requires freezing the droplet by reducing the substrate temperature and then melting the droplet by heating the substrate. The condensation-induced wetting transition from the Cassie-Baxter state to the Wenzel state is analyzed first. Two kinds of superhydrophobic surfaces, i.e., single-scale nanostructured superhydrophobic surface and hierarchical-scale micronanostructured superhydrophobic surface, are compared and their effects on the static contact states and impact processes of droplets are analyzed. The mechanism for the dewetting transition is analyzed by exploring the differences in the micro/nanostructures of the surfaces, and it is attributed to the unique structure and strength of the superhydrophobic surface. These findings will enrich our understanding of the droplet-surface interaction involving phase changes and have great application prospects for the design of superhydrophobic surfaces.
Collapse
Affiliation(s)
- Jiawang Cui
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Tianyou Wang
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin 300350, China
| | - Zhizhao Che
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin 300350, China
| |
Collapse
|
6
|
Di Novo NG, Bagolini A, Pugno NM. Single Condensation Droplet Self-Ejection from Divergent Structures with Uniform Wettability. ACS NANO 2024; 18:8626-8640. [PMID: 38417167 DOI: 10.1021/acsnano.3c05981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Coalescence-induced condensation droplet jumping has been extensively studied for anti-icing, condensation heat transfer, water harvesting, and self-cleaning. Another phenomenon that is gaining attention for potential enhancements is the self-ejection of individual droplets. However, the mechanism underlying this process remains elusive due to cases in which the abrupt detachment of an interface establishes an initial Laplace pressure difference. In this study, we investigate the self-ejection of individual droplets from uniformly hydrophobic microstructures with divergent geometries. We design, fabricate, and test arrays of truncated, nanostructured, and hydrophobic microcones arranged in a square pattern. High-speed microscopy reveals the dynamics of a single condensation droplet between four cones: after cycles of growth and stopped self-propulsion, the suspended droplet self-ejects without abrupt detachments. Through analytical modeling of the droplet in a conical pore as an approximation, we describe the slow isopressure growth phases and the rapid transients driven by surface energy release once a dynamic configuration is reached. Microcones with uniform wettability, in addition to being easier to fabricate, have the potential to enable the self-ejection of all nucleated droplets with a designed size, promising significant improvements in the aforementioned applications and others.
Collapse
Affiliation(s)
- Nicolò Giuseppe Di Novo
- Laboratory of Bioinspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy
- Center for Sensors and Devices, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy
| | - Alvise Bagolini
- Center for Sensors and Devices, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy
| | - Nicola Maria Pugno
- Laboratory of Bioinspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
7
|
Zhang H, Du H, Zhu D, Zhao H, Zhang X, He F, Wang L, Lv C, Hao P. Ice Adhesion Properties on Micropillared Superhydrophobic Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11084-11093. [PMID: 38362761 DOI: 10.1021/acsami.3c18852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
In this work, we investigate the freezing behavior and ice adhesion properties of sessile drops on micropillared superhydrophobic surfaces (SHSs) with various sizes, which are of practical importance for anti/deicing. First of all, it is demonstrated that the recalescence is related only to the supercooling degree of drops but not to the geometrical parameters of micropillars. The freezing time of sessile drops first increases and then decreases with the area fraction of the SHSs, which demonstrates the nonmonotonic dependence of the icing time on the area fraction. Moreover, the influence of the geometrical parameters of the micropillars on the ice adhesion is discussed. With the decrease of the substrate temperature, the wetting state of the adhesive ice can be transformed from the Cassie ice to the Wenzel ice. For the Cassie ice, the adhesive force is proportional to the area fraction of the SHSs. Interestingly, experimental results show that there exist two interfacial debonding modes of the Wenzel ice: translational debonding and rotational debonding. Furthermore, it is found that the rotational debonding mode contributes to a much lower adhesive force between the ice and the micropillared surface compared to that of the translational debonding mode. By analyzing the critical interfacial energy release rate of the two modes, we deduce the threshold between the two modes, which is quantified as the geometrical parameters of the micropillars. In addition, quantitative relations between the geometrical parameters and the adhesion strengths of the two modes are also obtained. We envision that this work would shed new light on the design optimization of anti/deicing materials.
Collapse
Affiliation(s)
- Haixiang Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hongcheng Du
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Dongyu Zhu
- AVIC Aerodynamics Research Institute, Shenyang, Liaoning 110034, China
| | - Huanyu Zhao
- AVIC Aerodynamics Research Institute, Shenyang, Liaoning 110034, China
| | - Xiwen Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Feng He
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Lin Wang
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Cunjing Lv
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Pengfei Hao
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- School of Materials Science and Engineering, AVIC Aerodynamics Research Institute Joint Research Center for Advanced Materials and Anti-Icing, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Yan X, Au SCY, Chan SC, Chan YL, Leung NC, Wu WY, Sin DT, Zhao G, Chung CHY, Mei M, Yang Y, Qiu H, Yao S. Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures. Nat Commun 2024; 15:1567. [PMID: 38378825 PMCID: PMC10879204 DOI: 10.1038/s41467-024-45928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Supercooling of water complicates phase change dynamics, the understanding of which remains limited yet vital to energy-related and aerospace processes. Here, we investigate the freezing and jumping dynamics of supercooled water droplets on superhydrophobic surfaces, induced by a remarkable vaporization momentum, in a low-pressure environment. The vaporization momentum arises from the vaporization at droplet's free surface, progressed and intensified by recalescence, subsequently inducing droplet compression and finally self-jumping. By incorporating liquid-gas-solid phase changes involving vaporization, freezing recalescence, and liquid-solid interactions, we resolve the vaporization momentum and droplet dynamics, revealing a size-scaled jumping velocity and a nucleation-governed jumping direction. A droplet-size-defined regime map is established, distinguishing the vaporization-momentum-dominated self-jumping from evaporative drying and overpressure-initiated levitation, all induced by depressurization and vaporization. Our findings illuminate the role of supercooling and low-pressure mediated phase change in shaping fluid transport dynamics, with implications for passive anti-icing, advanced cooling, and climate physics.
Collapse
Affiliation(s)
- Xiao Yan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China.
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400030, China.
- Institute of Engineering Thermophysics, Chongqing University, Chongqing, 400030, China.
| | - Samuel C Y Au
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Sui Cheong Chan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ying Lung Chan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ngai Chun Leung
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wa Yat Wu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Dixon T Sin
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Guanlei Zhao
- State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Casper H Y Chung
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Mei Mei
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yinchuang Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Huihe Qiu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China.
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China.
| |
Collapse
|
9
|
Liu C, Zhao M, Guo J, Zhang S, Song L, Zheng Y. Exploration of Sweeping Effect: Droplet Coalescence Jumping of a Rolling and Static Droplet. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2278-2287. [PMID: 38237057 DOI: 10.1021/acs.langmuir.3c03364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The sweeping effect of merged droplets plays a key role in enhancing application performance due to the continuing coalescence caused by the horizontal jumping velocity. Most studies focused on static droplet coalescence jumping, while moving droplet coalescence is poorly understood. In this work, we experimentally and numerically study the coalescence of a rolling droplet and a static one. When the droplet radius ratio is larger than 0.8, as the dimensionless initial velocity increases and the vertical jumping velocity first decreases and then increases. The critical dimensionless initial velocity Vc* corresponding to the minimum vertical jumping velocity could be estimated as 0.9 ( r s 2 r m 2 ) . When the droplet radius ratio is smaller than 0.8, the dimensionless initial velocity has a positive effect on the vertical jumping velocity. The mechanism of the vertical jumping velocity can be attributed to two parts: liquid bridge impact and retraction of the merged droplet. The squeezing effect generated by the initial velocity between the two droplets promotes the growth of the liquid bridge and enhances the impact effect of the liquid bridge but weakens the upward velocity accumulation caused by the retraction of the merged droplets. However, different from the vertical jumping velocity, the horizontal jumping velocity is approximately proportional to the dimensionless initial velocity. The outcome of our work elucidates a fundamental understanding of a rolling droplet coalescing with a static one.
Collapse
Affiliation(s)
- Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jinwei Guo
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Shiyu Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Le Song
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
10
|
He Q, Xu Y, Zhang F, Jia Y, Du Z, Li G, Shi B, Li P, Ning M, Li A. Preparation methods and research progress of super-hydrophobic anti-icing surface. Adv Colloid Interface Sci 2024; 323:103069. [PMID: 38128377 DOI: 10.1016/j.cis.2023.103069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
The problem of surface icing poses a serious threat to people's economy and safety, especially in the fields of aerospace, wind power generation and circuit transmission. Super-hydrophobic has excellent anti-icing performance, so it has been widely studied. As the most promising anti-icing technology, superhydrophobic anti-icing surface should not only be simple to prepare, but also have excellent comprehensive performance, which can meet the anti-icing task under harsh working conditions and long-term durability. This paper summarizes the basic performance requirements of superhydrophobic surface for anti-icing operation, and then summarizes the preparation methods and existing problems of superhydrophobic surface in recent years. Finally, the future development trend of superhydrophobic anti-icing surface is prospected and discussed, hoping to provide certain technical guidance for the subsequent research of high-performance superhydrophobic anti-icing surface.
Collapse
Affiliation(s)
- Qiang He
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China; Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang, Sichuan 621000, China; College of Mechanical and Electrical Engineering, Gansu Agricultural University, Gansu, Lanzhou 730070, China; Henan Joint International Research Laboratory of man machine environment and emergency management, Henan, Anyang 455000, China.
| | - Yuan Xu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China; Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang, Sichuan 621000, China; College of Mechanical and Electrical Engineering, Gansu Agricultural University, Gansu, Lanzhou 730070, China
| | - Fangyuan Zhang
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China; College of Mechanical and Electrical Engineering, Gansu Agricultural University, Gansu, Lanzhou 730070, China
| | - Yangyang Jia
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China
| | - Zhicai Du
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China; College of Mechanical and Electrical Engineering, Gansu Agricultural University, Gansu, Lanzhou 730070, China
| | - Guotao Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China
| | - Binghong Shi
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China; College of Mechanical and Electrical Engineering, Gansu Agricultural University, Gansu, Lanzhou 730070, China
| | - Peiwen Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China; College of Mechanical and Electrical Engineering, Gansu Agricultural University, Gansu, Lanzhou 730070, China
| | - Mengyao Ning
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China; College of Mechanical and Electrical Engineering, Gansu Agricultural University, Gansu, Lanzhou 730070, China
| | - Anling Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China.
| |
Collapse
|
11
|
Yeadon K, Lai EPC, Song N, Huang X. Cyclic Voltammetry for Accurate Icing Detection on Simulated Aircraft Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38013389 DOI: 10.1021/acs.langmuir.3c01928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Icing and ice accretion on aerodynamically critical surfaces of an aircraft increase drag, reduce lift, and raise stalling speed, which pose significant safety hazards to aircraft while in flight. Icephobic coatings have been intensively investigated by the Canadian and global aerospace industries for passive ice protection. Nevertheless, effective icephobic coatings suitable for aerospace applications are far from ideal. Ice protection of an aircraft still relies on active ice protection systems based on heating, mechanical expulsion, and deicing fluids, which are heavy-weight, power-intensive, and unfriendly to the environment. To address these challenges, rapid and accurate detection of icing is highly desirable to activate these ice protection systems only when needed. To this end, cyclic voltammetry was used for the first time to detect the initiation of icing on aircraft surfaces with or without icephobic coatings. In this study, a water droplet was sandwiched between a screen-printed electrode and a simulated aircraft surface. Cyclic voltammograms were then collected as the temperature was slowly decreased until the droplet froze to form ice. A sharp spike in faradaic current was recorded in the voltammograms during the phase transition, suggesting a switch in the mass transfer mechanism from diffusion to a surface-confined pathway. This electrochemical signal could then be used to precisely indicate the onset of icing. The developed sensing method shows potential in icing detection to manage active ice protections and ameliorate icing risks in the aerospace and aviation industries.
Collapse
Affiliation(s)
- Kate Yeadon
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Edward P C Lai
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Naiheng Song
- Aerospace Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Xiao Huang
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
12
|
He JG, Zhao GL, Dai SJ, Li M, Zou GS, Wang JJ, Liu Y, Yu JQ, Xu LF, Li JQ, Fan LW, Huang M. Fabrication of Metallic Superhydrophobic Surfaces with Tunable Condensate Self-Removal Capability and Excellent Anti-Frosting Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3655. [PMID: 36296847 PMCID: PMC9611512 DOI: 10.3390/nano12203655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Laser fabrication of metallic superhydrophobic surfaces (SHSs) for anti-frosting has recently attracted considerable attention. Effective anti-frosting SHSs require the efficient removal of condensed microdroplets through self-propelled droplet jumping, which is strongly influenced by the surface morphology. However, detailed analyses of the condensate self-removal capability of laser-structured surfaces are limited, and guidelines for laser processing parameter control for fabricating rationally structured SHSs for anti-frosting have not yet been established. Herein, a series of nanostructured copper-zinc alloy SHSs are facilely constructed through ultrafast laser processing. The surface morphology can be properly tuned by adjusting the laser processing parameters. The relationship between the surface morphologies and condensate self-removal capability is investigated, and a guideline for laser processing parameterization for fabricating optimal anti-frosting SHSs is established. After 120 min of the frosting test, the optimized surface exhibits less than 70% frost coverage because the remarkably enhanced condensate self-removal capability reduces the water accumulation amount and frost propagation speed (<1 μm/s). Additionally, the material adaptability of the proposed technique is validated by extending this methodology to other metals and metal alloys. This study provides valuable and instructive insights into the design and optimization of metallic anti-frosting SHSs by ultrafast laser processing.
Collapse
Affiliation(s)
- Jian-Guo He
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Computational Optical Imaging Technology, Chinese Academy of Sciences, Beijing 100094, China
| | - Guan-Lei Zhao
- State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Shou-Jun Dai
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Key Laboratory of Computational Optical Imaging Technology, Chinese Academy of Sciences, Beijing 100094, China
| | - Ming Li
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics of CAS, Xi’an 710119, China
| | - Gui-Sheng Zou
- State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Jian-Jun Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Liu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Key Laboratory of Computational Optical Imaging Technology, Chinese Academy of Sciences, Beijing 100094, China
| | - Jia-Qi Yu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Key Laboratory of Computational Optical Imaging Technology, Chinese Academy of Sciences, Beijing 100094, China
| | - Liang-Fei Xu
- State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| | - Jian-Qiu Li
- State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| | - Lian-Wen Fan
- Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, China
| | - Min Huang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Key Laboratory of Computational Optical Imaging Technology, Chinese Academy of Sciences, Beijing 100094, China
| |
Collapse
|
13
|
Abstract
Large droplets emerging during dropwise condensation impair surface properties such as anti-fogging/frosting ability and heat transfer efficiency. How to spontaneously detach massive randomly distributed droplets with controlled sizes has remained a challenge. Herein, we present a solution called condensation droplet sieve, through fabricating microscale thin-walled lattice structures coated with a superhydrophobic layer. Growing droplets were observed to jump off this surface once becoming slightly larger than the lattices. The maximum radius and residual volume of droplets were strictly confined to 16 μm and 3.2 nl/mm2 respectively. We reveal that this droplet radius cut off is attributed to the large tolerance of coalescence mismatch for jumping and effective isolation of droplets between neighboring lattices. Our work brings forth a strategy for the design and fabrication of high-performance anti-dew materials. Spontaneous droplet jumping and control of dropwise condensation are relevant for water-harvesting, heat transfer and anti-frosting applications. The authors design a superhydrophobic surface with microscale thin-walled lattice structure to achieve effective jumping of droplets with specified radius range.
Collapse
|
14
|
Chen X, Wang P, Zhang D, Ou J. Effect of surface nanostructure on enhanced atmospheric corrosion resistance of a superhydrophobic surface. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Liu C, Zhao M, Lu D, Sun Y, Song L, Zheng Y. Laplace Pressure Difference Enhances Droplet Coalescence Jumping on Superhydrophobic Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6923-6933. [PMID: 35451848 DOI: 10.1021/acs.langmuir.2c00412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coalescence-induced droplet jumping has great prospects in many applications. Nevertheless, the applications are vastly limited by a low jumping velocity. Conventional methods to enhance the droplet coalescence jumping velocity are enabled by protruding structures with superhydrophobic surfaces. However, the jumping velocity improvement is limited by the height of protruding structures. Here, we present rationally designed limitation structures with superhydrophobic surfaces to achieve a dimensionless jumping velocity, Vj* ≈ 0.64. The mechanism of enhancing the jumping velocity is demonstrated through the study of numerical simulations and geometric parameters of limitation structures, providing guidelines for optimized structures. Experimental and numerical results indicate that the mechanism consists of the combined action of the velocity vectors' redirection and the Laplace pressure difference within deformed droplets trapped in limitation structures. On the basis of previous research on the mechanisms of protruding structures and our study, we successfully exploited those mechanisms to further improve the jumping velocity by combining the limitation structure with the protruding structure. Experimentally, we attained a dimensionless jumping velocity of Vj* ≈ 0.74 with an energy conversion efficiency of η ≈ 48%, breaking the jumping velocity limit. This work not only demonstrates a new mechanism for achieving a high jumping velocity and energy conversion efficiency but also sheds lights on the effect of limitation structures on coalescence hydrodynamics and elucidates a method to further enhance the jumping velocity based on protruding structures.
Collapse
Affiliation(s)
- Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Dunqiang Lu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yukai Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Le Song
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
16
|
Huang W, Huang J, Guo Z, Liu W. Icephobic/anti-icing properties of superhydrophobic surfaces. Adv Colloid Interface Sci 2022; 304:102658. [PMID: 35381422 DOI: 10.1016/j.cis.2022.102658] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/26/2022] [Accepted: 03/26/2022] [Indexed: 01/31/2023]
Abstract
In the winter, icing on solid surfaces is a typical occurrence that may create a slew of hassles and even tragedies. Anti-icing surfaces are one of the effective solutions for this kind of problem. The roughness of a superhydrophobic surface traps air and weakens the contact between the solid surface and liquid water, allowing water droplets to be removed before freezing. At present, the conventional anti-icing methods including mechanical or thermal technology are not only surface structure unfriendly but also have the obsessions of low efficiency, high energy consumption and high manufacturing costs. Hence, developing a way to remove ice by just modifying the surface shape or chemical composition with a low surface energy is extremely desirable. Numerous attempts have been made to investigate the evolution of ice nucleation and icing on superhydrophobic surfaces under the direction of the ice nucleation hypothesis. In this paper, the research progress of ice nucleation in recent years is reviewed from theoretical and application. The icephobic surfaces are described using the wettability and classical nucleation theories. The benefits and drawbacks of anti-icing superhydrophobic surface are summarized, as well as deicing methods. Finally, several applications of ice phobic materials are illustrated, and some problems and challenges in the research field are discussed. We believed that this review will be useful in guiding future water freezing initiatives.
Collapse
|
17
|
Feng X, Zhang X, Tian G. Recent advances in bioinspired superhydrophobic ice-proof surfaces: challenges and prospects. NANOSCALE 2022; 14:5960-5993. [PMID: 35411360 DOI: 10.1039/d2nr00964a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bionic superhydrophobic ice-proof surfaces inspired by natural biology show great potential in daily life. They have attracted wide research interest due to their promising and wide applications in offshore equipment, transportation, power transmission, communication, energy, etc. The flourishing development of superhydrophobic ice-proof surfaces has been witnessed due to the availability of various fabrication methods. These surfaces can effectively inhibit the accumulation of ice, thereby ensuring the safety of human life and property. This review highlights the latest advances in bio-inspired superhydrophobic ice-proof materials. Firstly, several familiar cold-resistant creatures with well-organized texture structures are listed briefly, which provide an excellent template for the design of bioinspired ice-proof surfaces. Next, the advantages and disadvantages of the current techniques for the preparation of superhydrophobic ice-proof surfaces are also analyzed in depth. Subsequently, the theoretical knowledge on icing formation and three passive ice-proof strategies are introduced in detail. Afterward, the recent progress in improving the durability of ice-proof surfaces is emphasized. Finally, the remaining challenges and promising breakthroughs in this field are briefly discussed.
Collapse
Affiliation(s)
- Xiaoming Feng
- Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| | - Xiaowei Zhang
- Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| | - Guizhong Tian
- Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| |
Collapse
|
18
|
Ho JY, Fazle Rabbi K, Khodakarami S, Yan X, Li L, Wong TN, Leong KC, Miljkovic N. Tunable and Robust Nanostructuring for Multifunctional Metal Additively Manufactured Interfaces. NANO LETTERS 2022; 22:2650-2659. [PMID: 35245074 DOI: 10.1021/acs.nanolett.1c04463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Novel processing phenomena coupled with various alloying materials used in metal additive manufacturing (AM) have opened opportunities for the development of previously unexplored micro-/nanostructures. A rationally devised structure nanofabrication strategy of AM surfaces that can tailor the interface morphology and chemistry has the potential for many applications. Here, through an understanding of grain formation mechanisms during AM, we develop a facile method for tuning micro-/nanostructures of one of the most used AM alloys and rationally optimize the morphology for applications requiring low surface adhesion. We demonstrate that optimized AM structures reduce the adhesion of impaling water droplets and significantly delay icing time. The structure can also be altered and optimized for antiflooding jumping-droplet condensation that exhibits significant enhancement in heat transfer performance in comparison to nanostructures formed on conventional Al alloys. In addition to demonstrating the potential of functionalized AM surfaces, this work also provides guidelines for surface-structuring optimization applicable to other AM metals.
Collapse
Affiliation(s)
- Jin Yao Ho
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Kazi Fazle Rabbi
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Siavash Khodakarami
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xiao Yan
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Longnan Li
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Teck Neng Wong
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - K C Leong
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Nenad Miljkovic
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
19
|
Abstract
Condensation frosting is a type of icing encountered ubiquitously in our daily lives. Understanding the dynamics of condensation frosting is essential in developing effective technologies to suppress frost accretions that compromise heat transfer and system integrity. Here, we present an experimental study on ice dendrite growth atop a single frozen drop, an important step affecting the subsequent frosting process, and the properties of fully-developed frost layers. We evaluate the effect of natural convection by comparing the growth dynamics of ice dendrites on the surface of a frozen drop with three different orientations with respect to gravity. The results show that both the average deposition rate and its spatial variations are profoundly altered by surface orientations. Such behavior is confirmed by a numerical simulation, showing how gravity-assisted (hindered) vapor diffusion yields the deposition outcomes. These findings benefit the optimization of anti-/de- frosting technologies and the rational design of heat exchangers.
Collapse
|
20
|
An Q, Wang J, Zhao F, Li P, Wang L. Unidirectional water transport on a two-dimensional hydrophilic channel with anisotropic superhydrophobic barriers. SOFT MATTER 2021; 17:8153-8159. [PMID: 34525158 DOI: 10.1039/d1sm00697e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many creatures have a unique anisotropic structure and special wettability on their skins, presenting intriguing water transporting properties. Inspired by the biosphere, a two-dimensional titanium dioxide-based hydrophilic channel possessing anisotropic superhydrophobic barriers was synthesized. This channel demonstrates unidirectional water transporting properties. When water is injected into the channel, fluid tends to spread in a specific direction. An asymmetric spreading resistance is generated by the different interaction modes between the liquid and superhydrophobic barriers. The superhydrophobic barriers are designed as two main styles: line and curve. As for line barriers, the included angle between barrier and horizontal is the key parameter for the unidirectional water transporting ability whereas, for curve barriers, the radius is an important variable. The best design scheme for unidirectional water transporting properties could be found by varying the parameters of these two types of barriers in the channel. Overall, this study is expected to have a significant implication in the water transporting field.
Collapse
Affiliation(s)
- Qier An
- School of Aviation, Inner Mongolia University of Technology, 49 Aimin Street, Xincheng District, Hohhot, Inner Mongolia 010051, Inner Mongolia, P. R. China
| | - Jinshu Wang
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, School of Materials Science and Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China.
| | - Feng Zhao
- Hainan Vocational University of Science and Technology, Haikou 571126, China
| | - Peiliu Li
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Lei Wang
- Beijing Key Laboratory of Cryo-Biomedical Engineering, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
21
|
Baba S, Sawada K, Tanaka K, Okamoto A. Condensation Behavior of Hierarchical Nano/Microstructured Surfaces Inspired by Euphorbia myrsinites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32332-32342. [PMID: 34190527 DOI: 10.1021/acsami.1c01400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In nature, many extant species exhibit functionalized surface structures during evolution. In particular, wettability affects the functionalization of the surface, and nano/microstructures have been found to enable functions, such as droplet jumping, thereby making self-cleaning, antifog, antibacterial, and antireflection surfaces. Important efforts are underway to understand the surface structure of plant leaves and establish rational design tools for the development of new engineering materials. In this study, we focused on the hierarchical nano/microstructure of the leaves of Euphorbia myrsinites (hereinafter, E. myrsinites), which has a hierarchical shape with microsized papillae, covered with nanosized protruding wax, and observed the condensation behavior on the leaf surface. Si is vertically etched via reactive ion etching (RIE) to artificially mimic the hierarchical nano/microstructures on the leaves of E. myrsinites. We made four types of artificial hierarchical structures, with micropillars having pillar diameters of 5.6 and 16 μm (pillar spacing of 20 and 40 μm, respectively) and heights of 6.5 and 19.5 μm, and nanopillars formed on the surface. The optical observation with a microscope revealed a very high density of condensed droplets on the artificial surface and a stable jumping behavior of droplets of 10 μm or more. Furthermore, in the samples with a micropillar diameter of 5.6 μm and a micropillar height of 19.5 μm, the droplets that had jumped and fallen thereupon bounced off, thereby preventing reattachment. As a result, no droplets of 35 μm or more could exist even after 10 min. In addition, it was clear that a small underlying droplet of less than 10 μm was generated at the bottom of the relatively large secondary droplet existing on the large micropillar of 16 μm, and a frequent coalescence of the droplets occurred. This study revealed the phenomenon of condensation on the surface of plants as well as made it possible to improve the heat exchange process by significantly promoting the heat transfer of condensation using artificial surfaces.
Collapse
Affiliation(s)
- Soumei Baba
- Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan
| | - Kenichiro Sawada
- Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-0233, Japan
| | - Kohsuke Tanaka
- Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba-shi, Ibaraki 305-8505, Japan
| | - Atsushi Okamoto
- Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba-shi, Ibaraki 305-8505, Japan
| |
Collapse
|
22
|
Zhang H, Zhao G, Wu S, Alsaid Y, Zhao W, Yan X, Liu L, Zou G, Lv J, He X, He Z, Wang J. Solar anti-icing surface with enhanced condensate self-removing at extreme environmental conditions. Proc Natl Acad Sci U S A 2021; 118:2100978118. [PMID: 33903253 PMCID: PMC8106333 DOI: 10.1073/pnas.2100978118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inhibition of condensation freezing under extreme conditions (i.e., ultra-low temperature and high humidity) remains a daunting challenge in the field of anti-icing. As water vapor easily condensates or desublimates and melted water refreezes instantly, these cause significant performance decrease of most anti-icing surfaces at such extreme conditions. Herein, inspired by wheat leaves, an effective condensate self-removing solar anti-icing/frosting surface (CR-SAS) is fabricated using ultrafast pulsed laser deposition technology, which exhibits synergistic effects of enhanced condensate self-removal and efficient solar anti-icing. The superblack CR-SAS displays superior anti-reflection and photothermal conversion performance, benefiting from the light trapping effect in the micro/nano hierarchical structures and the thermoplasmonic effect of the iron oxide nanoparticles. Meanwhile, the CR-SAS displays superhydrophobicity to condensed water, which can be instantly shed off from the surface before freezing through self-propelled droplet jumping, thus leading to a continuously refreshed dry area available for sunlight absorption and photothermal conversion. Under one-sun illumination, the CR-SAS can be maintained ice free even under an ambient environment of -50 °C ultra-low temperature and extremely high humidity (ice supersaturation degree of ∼260). The excellent environmental versatility, mechanical durability, and material adaptability make CR-SAS a promising anti-icing candidate for broad practical applications even in harsh environments.
Collapse
Affiliation(s)
- Hongqiang Zhang
- School of Mechanical Engineering and Automation, Beihang University, 100191 Beijing, China
| | - Guanlei Zhao
- Institute of Chemistry, University of Chinese Academy of Sciences, 100190 Beijing, China
- Department of Mechanical Engineering, Tsinghua University, 100084 Beijing, China
| | - Shuwang Wu
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095
| | - Yousif Alsaid
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095
| | - Wenzheng Zhao
- Department of Mechanical Engineering, Tsinghua University, 100084 Beijing, China
| | - Xiao Yan
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Lei Liu
- Department of Mechanical Engineering, Tsinghua University, 100084 Beijing, China
| | - Guisheng Zou
- Department of Mechanical Engineering, Tsinghua University, 100084 Beijing, China
| | - Jianyong Lv
- Institute of Chemistry, University of Chinese Academy of Sciences, 100190 Beijing, China
| | - Ximin He
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095;
| | - Zhiyuan He
- Institute of Chemistry, University of Chinese Academy of Sciences, 100190 Beijing, China;
| | - Jianjun Wang
- Institute of Chemistry, University of Chinese Academy of Sciences, 100190 Beijing, China
| |
Collapse
|
23
|
Li C, Chen Y, Wang P, Wang G, Cheng Q, Ou J, Zhang D. Dynamic self-propelling condensed microdroplets over super-hydrophobic surface: An exceptional atmospheric corrosion inhibition strategy. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Liu C, Zhao M, Zheng Y, Cheng L, Zhang J, Tee CATH. Coalescence-Induced Droplet Jumping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:983-1000. [PMID: 33443436 DOI: 10.1021/acs.langmuir.0c02758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
When two or more droplets coalesce on a superhydrophobic surface, the merged droplet can jump spontaneously from the surface without requiring any external energy. This phenomenon is defined as coalescence-induced droplet jumping and has received significant attention due to its potential applications in a variety of self-cleaning, anti-icing, antifrosting, and condensation heat-transfer enhancement uses. This article reviews the research and applications of coalescence-induced droplet jumping behavior in recent years, including the influence of droplet parameters on coalescence-induced droplet jumping, such as the droplet size, number, and initial velocity, to name a few. The main structure types and influence mechanism of the superhydrophobic substrates for coalescence-induced droplet jumping are described, and the potential application areas of coalescence-induced droplet jumping are summarized and forecasted.
Collapse
Affiliation(s)
- Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Luya Cheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiale Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Clarence Augustine T H Tee
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
25
|
Pan R, Zhang H, Zhong M. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1743-1753. [PMID: 33370114 DOI: 10.1021/acsami.0c16259] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Passive anti-icing or icephobic superhydrophobic surfaces have attracted great interest due to their potential multifaceted implications for the prevention and/or easy removal of undesired ice in many applications. However, a superhydrophobic surface with both excellent anti-icing and icephobic performances has rarely been reported due to difficulties in sustaining a good Cassie state stability. This is the case especially under high humidity and freezing environment conditions. In the present study, a new triple-scale micro/nanostructured superhydrophobic surface with both excellent anti-icing and icephobic properties has been designed via a hybrid method, combining ultrafast laser ablation and chemical oxidation. The novel surface structure is composed of periodical microcone arrays covered with densely grown nanograsses and dispersedly distributed microflowers. This surface exhibits an excellent Cassie state stability with its critical Laplace pressure reaching up to 1450 Pa, which is essential for good anti-icing and icephobic performances. The anti-icing feature of the prepared superhydrophobic surface is achieved by a rapid rolling-off of the impacting droplets. Moreover, an excellent resistance to the impact of high humidity has been achieved via hierarchical condensation, coalescence-induced jumping, and upward moving. A good delay of the heterogeneous nucleation at the solid-liquid interface under freezing condition has been registered as well, due to the presence of stable air pockets within the surface structures. In addition, the ice adhesion strength of the prepared superhydrophobic surface can be as low as 1.7 kPa, which is the lowest value when compared with the state-of-the-art superhydrophobic surfaces. Such a low ice adhesion strength allows the ice to be easily removed by its own weight and demonstrates an excellent icephobic performance. The repeated icing-deicing tests indicate a decent deicing robustness of the synthesized superhydrophobic surface. Thus, this triple-scale superhydrophobic surface exhibits a good anti-icing and icephobic performance with an excellent Cassie state stability, high humidity resistance, and good deicing durability. We hypothesize that the proposed fabrication strategy and associated basic findings will shed new light on the design of robust ice-resistant superhydrophobic surfaces and contribute to a better understanding of the relationship between superhydrophobicity and ice resistance.
Collapse
Affiliation(s)
- Rui Pan
- Laser Materials Processing Research Center, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Hongjun Zhang
- Laser Materials Processing Research Center, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Minlin Zhong
- Laser Materials Processing Research Center, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
26
|
Ahmadi SF, Spohn CA, Nath S, Boreyko JB. Suppressing Condensation Frosting Using an Out-of-Plane Dry Zone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15603-15609. [PMID: 33325712 DOI: 10.1021/acs.langmuir.0c03054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The vapor pressure above ice is lower than that above supercooled water at the same temperature. This inherent hygroscopic quality of ice has recently been exploited to suppress frost growth by patterning microscopic ice stripes along a surface. These vapor-attracting ice stripes prevented condensation frosting from occurring in the intermediate regions; however, the required presence of the sacrificial ice stripes made it impossible to achieve the ideal case of a completely dry surface. Here, we decouple the sacrificial ice from the antifrosting surface by holding an uncoated aluminum surface in parallel with a prefrosted surface. By replacing the overlapping in-plane dry zones with a uniform out-of-plane dry zone, we show that even an uncoated aluminum surface can stay almost completely dry in chilled and supersaturated conditions. Using a blend of experiments and numerical simulations, we show that the critical separation required to keep the surface dry is a function of the ambient supersaturation.
Collapse
Affiliation(s)
- S Farzad Ahmadi
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Corey A Spohn
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Saurabh Nath
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Physique et Mécanique des Milieux Hétérogènes, UMR 7636 du CNRS, ESPCI, 75005 Paris, France
| | - Jonathan B Boreyko
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
27
|
Yan X, Qin Y, Chen F, Zhao G, Sett S, Hoque MJ, Rabbi KF, Zhang X, Wang Z, Li L, Chen F, Feng J, Miljkovic N. Laplace Pressure Driven Single-Droplet Jumping on Structured Surfaces. ACS NANO 2020; 14:12796-12809. [PMID: 33052666 DOI: 10.1021/acsnano.0c03487] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Droplet transport on, and shedding from, surfaces is ubiquitous in nature and is a key phenomenon governing applications including biofluidics, self-cleaning, anti-icing, water harvesting, and electronics thermal management. Conventional methods to achieve spontaneous droplet shedding enabled by surface-droplet interactions suffer from low droplet transport velocities and energy conversion efficiencies. Here, by spatially confining the growing droplet and enabling relaxation via rationally designed grooves, we achieve single-droplet jumping of micrometer and millimeter droplets with dimensionless jumping velocities v* approaching 0.95, significantly higher than conventional passive approaches such as coalescence-induced droplet jumping (v* ≈ 0.2-0.3). The mechanisms governing single-droplet jumping are elucidated through the study of groove geometry and local pinning, providing guidelines for optimized surface design. We show that rational design of grooves enables flexible control of droplet-jumping velocity, direction, and size via tailoring of local pinning and Laplace pressure differences. We successfully exploit this previously unobserved mechanism as a means for rapid removal of droplets during steam condensation. Our study demonstrates a passive method for fast, efficient, directional, and surface-pinning-tolerant transport and shedding of droplets having micrometer to millimeter length scales.
Collapse
Affiliation(s)
- Xiao Yan
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yimeng Qin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Feipeng Chen
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Guanlei Zhao
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Soumyadip Sett
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Muhammad Jahidul Hoque
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kazi Fazle Rabbi
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xueqian Zhang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Zi Wang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Longnan Li
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Feng Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Jie Feng
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nenad Miljkovic
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
28
|
Jiang S, Zhang H, Jiang C, Liu X. Antifrosting Performance of a Superhydrophobic Surface by Optimizing the Surface Morphology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10156-10165. [PMID: 32822190 DOI: 10.1021/acs.langmuir.0c01618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Improving the antifrosting ability of stainless steel is crucial. In previous reports, many efforts have been dedicated to enhancing the antifrosting performance of superhydrophobic surface by fabricating different surface morphology. However, no researchers have proposed what kind of surface morphology can effectively prevent the frost based on the theory of superhydrophobic surfaces. In this article, we build a simulation model to study the effects of different surface morphology on antifrosting based on the Cassie model. We find that the higher the proportion of air between the droplet and the substrate, the better the antifrosting performance of the superhydrophobic surface. Therefore, we propose one superhydrophobic surface (denoted as sample #R) fabricated by selective growth. It can contain more air between the droplet and the surface. Further frosting experiments at a low temperature of -21 °C and a humidity of 75% show that 15% frost coverage on sample #R can be delayed to 63 h, as compared to less than 3 h for untreated stainless steel. In addition, the preparation method is generally applicable to other metals. Therefore, this work provides new insights into the rational design of a superhydrophobic surface with antifrosting in a harsh environment.
Collapse
Affiliation(s)
- Shuyue Jiang
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China
| | - Haifeng Zhang
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Chunfeng Jiang
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaowei Liu
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
29
|
Zhao G, Zou G, Wang W, Geng R, Yan X, He Z, Liu L, Zhou X, Lv J, Wang J. Rationally designed surface microstructural features for enhanced droplet jumping and anti-frosting performance. SOFT MATTER 2020; 16:4462-4476. [PMID: 32323690 DOI: 10.1039/d0sm00436g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The accretion of frost on heat exchanging surfaces through the freezing of condensed water in cold and humid environments significantly reduces the operating efficiency of air-source heat pumps, refrigerators and other cryogenic equipment. The construction of hierarchical micro-nanostructured SHSs, with the ability to timely remove condensed water before freezing via self-propelled droplet jumping, serves as a promising anti-frosting strategy. However, the actual relationship between microstructural features and water removal capability through droplet jumping is still not clear, hindering the further optimization of anti-frosting SHSs. Herein, a series of aluminum SHSs with different micro-cone arrays is designed and fabricated via ultrafast laser processing and chemical etching. The effect of microstructural features on water removal capability is elucidated by statistically analyzing the condensation process. As compared to nanostructured SHSs with the micro-cone size ranging from 10 to 40 μm, the water removal through droplet jumping is remarkably enhanced from 3.42 g m-2 to as much as 13.91 g m-2 over 10 minutes of condensation experiments due to the effective transition of condensed microdroplets from the initial high-adhesion partial wetting (PW) state to low-adhesion Cassie state, leading to significantly reduced water accumulation and improved anti-frosting performance. However, a further increase in the micro-cone size decreased the water removal amount due to greater droplet adhesion to the surface, which results in higher chances for immobile coalescence and the formation of large droplets. Herein, by rationally tuning the size scale of the structured micro-cones, the optimal SHSs display the least water accumulation and render excellent frosting delay of over 90 minutes under simulated harsh operating conditions.
Collapse
Affiliation(s)
- Guanlei Zhao
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, China. and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Guisheng Zou
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, China.
| | - Wengan Wang
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, China.
| | - Ruikun Geng
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, China.
| | - Xiao Yan
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 10084, China
| | - Zhiyuan He
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Lei Liu
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, China.
| | - Xin Zhou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jianyong Lv
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jianjun Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|