1
|
Ní Néill T, Barcellona MN, Wilson N, O'Brien FJ, Dixon JE, Curtin CM, Buckley CT. In vitro and ex vivo screening of microRNA combinations with enhanced cell penetrating peptides to stimulate intervertebral disc regeneration. JOR Spine 2024; 7:e1366. [PMID: 39726900 PMCID: PMC11669629 DOI: 10.1002/jsp2.1366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 12/28/2024] Open
Abstract
Background Low back pain (LBP) is predominantly caused by degeneration of the intervertebral disc (IVD) and central nucleus pulposus (NP) region. Conservative treatments fail to restore disc function, motivating the exploration of nucleic acid therapies, such as the use of microRNAs (miRNAs). miRNAs have the potential to modulate expression of discogenic factors, while silencing the catabolic cascade associated with degeneration. To deliver these miRNAs, nonviral cell penetrating peptides (CPPs) are gaining favor given their low immunogenicity and strong targeting ability. Single miRNA therapies have been investigated for IVD repair, however dual miRNA delivery strategies have not been commonly examined and may augment regeneration. Materials and methods Transfection of four pro-discogenic miRNAs (miRNA mimics:140-5p; 149-5p and inhibitors: 141-3p; 221-3p) and dual delivery of six miRNA pairings was performed using two CPPs, RALA and GET peptide (FLR), in primary rat NP monolayer culture, and in an ex vivo organ culture model of rat caudal discs. Protein expression of discogenic (aggrecan, collagen type II, and SOX9) and catabolic markers (ADAMTS5 and MMP13) were assessed. Results Monolayer investigations signified enhanced discogenic marker expression following dual miRNA delivery, signifying a synergistic effect when compared to single miRNA transfection. Utilization of an appropriate model was emphasized in our ex vivo organ culture experiment, revealing the establishment of a regenerative microenvironment characterized by reduced catabolic enzyme activity and enhanced matrix deposition, particularly following concurrent delivery of FLR-miRNA-149-5p mimic and miRNA-221-3p inhibitor. Bioinformatics analysis of miRNA-149-5p mimic and miRNA-221-3p inhibitor identified distinct targets, pathways, and interactions, suggesting a mode of action for this amplified response. Conclusion Our findings suggest the potential of FLR-miRNA-149-5p + miRNA-221-3p inhibitor to create an anti-catabolic niche within the disc to foster regeneration in moderate cases of disc degeneration, which could be utilized in further studies with the overarching aim of developing treatments for LBP.
Collapse
Affiliation(s)
- Tara Ní Néill
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences Institute, Trinity College Dublin, The University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College Dublin, The University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) CentreRoyal College of Surgeons in Ireland & Trinity College Dublin, The University of DublinDublinIreland
| | - Marcos N. Barcellona
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences Institute, Trinity College Dublin, The University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College Dublin, The University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) CentreRoyal College of Surgeons in Ireland & Trinity College Dublin, The University of DublinDublinIreland
| | - Niamh Wilson
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences Institute, Trinity College Dublin, The University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College Dublin, The University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) CentreRoyal College of Surgeons in Ireland & Trinity College Dublin, The University of DublinDublinIreland
| | - Fergal J. O'Brien
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences Institute, Trinity College Dublin, The University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College Dublin, The University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) CentreRoyal College of Surgeons in Ireland & Trinity College Dublin, The University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRCSIDublinIreland
| | - James E. Dixon
- Regenerative Medicine and Cellular TherapiesThe University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of NottinghamNottinghamUK
- NIHR Nottingham Biomedical Research CentreUniversity of NottinghamNottinghamUK
| | - Caroline M. Curtin
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences Institute, Trinity College Dublin, The University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College Dublin, The University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) CentreRoyal College of Surgeons in Ireland & Trinity College Dublin, The University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRCSIDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences Institute, Trinity College Dublin, The University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College Dublin, The University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) CentreRoyal College of Surgeons in Ireland & Trinity College Dublin, The University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRCSIDublinIreland
| |
Collapse
|
2
|
Li S, Li Y, Dou M, Zhang M, Zhao Z, Wu H, Zhu S, Obadina AO. Glycogen and zinc-enriched ferritin as bioavailable nanoparticulate nutrients released from gastrointestinal digestion of pacific oyster (Crassostrea gigas). Food Chem 2024; 457:140125. [PMID: 38905826 DOI: 10.1016/j.foodchem.2024.140125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Oyster is a low-carbon animal food enriched with protein, glycogen, and trace minerals. Nano-nutrients are increasingly perceived as an unignorable part of foods. Here, simulated gastrointestinal digestion released a considerable amount of nanoparticulate nutrients from raw and cooked oysters. They were identified as glycogen monomers with size of 20-40 nm and their aggregates, as well as 6 nm-sized bare cores of ferritin containing iron and zinc (4:1, w/w). FITC-labeling and flow cytometry unveiled the efficient uptake of oyster glycogen by polarized Caco-2 cells via macropinocytosis and receptor-mediated endocytosis. Calcein-fluorescence-quenching assay revealed divalent-metal-transporter-1- and macropinocytosis-mediated enterocyte iron absorption from oyster ferritin. Zinquin-fluorescence flow cytometry and ex-vivo mouse ileal loop experiments demonstrated the ready intestinal zinc absorption from oyster ferritin via macropinocytosis, as well as the good resistance of oyster ferritin to phytate's inhibition on zinc absorption. Overall, our results offer a new insight into the digestive and chemical properties of oysters.
Collapse
Affiliation(s)
- Shiyang Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province, 266003, China
| | - Yangguang Li
- Institute of Nutrition and Health, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, Shandong Province, 266021, China
| | - Mengting Dou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province, 266003, China
| | - Meichao Zhang
- Weihai Institute for Food and Drug Control, Weihai 264299, China
| | - Zifang Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province, 266003, China; Hainan/Haikou Research & Development Center for Biopeptide Engineering, Huayan Collagen Technology Co., Ltd., Haikou 571000, China
| | - Haohao Wu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province, 266003, China.
| | - Suqin Zhu
- Institute of Nutrition and Health, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, Shandong Province, 266021, China.
| | | |
Collapse
|
3
|
Gong Y, Hu X, Chen M, Wang J. Recent progress of iron-based nanomaterials in gene delivery and tumor gene therapy. J Nanobiotechnology 2024; 22:309. [PMID: 38825720 PMCID: PMC11145874 DOI: 10.1186/s12951-024-02550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024] Open
Abstract
Gene therapy aims to modify or manipulate gene expression and change the biological characteristics of living cells to achieve the purpose of treating diseases. The safe, efficient, and stable expression of exogenous genes in cells is crucial for the success of gene therapy, which is closely related to the vectors used in gene therapy. Currently, gene therapy vectors are mainly divided into two categories: viral vectors and non-viral vectors. Viral vectors are widely used due to the advantages of persistent and stable expression, high transfection efficiency, but they also have certain issues such as infectivity, high immunological rejection, randomness of insertion mutation, carcinogenicity, and limited vector capacity. Non-viral vectors have the advantages of non-infectivity, controllable chemical structure, and unlimited vector capacity, but the transfection efficiency is low. With the rapid development of nanotechnology, the unique physicochemical properties of nanomaterials have attracted increasing attention in the field of drug and gene delivery. Among many nanomaterials, iron-based nanomaterials have attracted much attention due to their superior physicochemical properties, such as Fenton reaction, magnetic resonance imaging, magnetothermal therapy, photothermal therapy, gene delivery, magnetically-assisted drug delivery, cell and tissue targeting, and so on. In this paper, the research progress of iron-based nanomaterials in gene delivery and tumor gene therapy is reviewed, and the future application direction of iron-based nanomaterials is further prospected.
Collapse
Affiliation(s)
- Ya Gong
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Xiaoyan Hu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Jun Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
4
|
So RB, Li G, Brentville V, Daly JM, Dixon JE. Combined biolistic and cell penetrating peptide delivery for the development of scalable intradermal DNA vaccines. J Control Release 2024; 367:209-222. [PMID: 38244841 DOI: 10.1016/j.jconrel.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Physical-based gene delivery via biolistic methods (such as the Helios gene gun) involve precipitation of nucleic acids onto microparticles and direct transfection through cell membranes of exposed tissue (e.g. skin) by high velocity acceleration. The glycosaminoglycan (GAG)-binding enhanced transduction (GET) system exploits novel fusion peptides consisting of cell-binding, nucleic acid condensing, and cell-penetrating domains, which enable enhanced transfection across multiple cell types. In this study, we combined chemical (GET) and physical (gene gun) DNA delivery systems, and hypothesized the combination would generate enhanced distribution and effective uptake in cells not initially transfected by biolistic penetration. Physicochemical characterization, optimization of bullet contents and transfection experiments in vitro in cell monolayers and engineered tissue demonstrated these formulations transfected efficiently, including DC2.4 dendritic cells. We incorporated these formulations into a biolistic format for gene gun by forming fireable dry bullets obtained via lyophilization (freeze drying). This system is simple and with enhanced scalability compared to conventional methods to generate bullets. Flushed GET bullet contents retained their ability to mediate transfection (17-fold greater and 13-fold greater reporter gene expression than standard spermidine bullets in the absence and presence of serum, respectively). Fired GET bullets in vitro (in cells and collagen gels) and in vivo (mice) showed increased reporter gene transfection compared to untreated controls, whilst maintaining cell viability in vitro and having no obvious toxicity in vivo. Lastly, a SARS-CoV-2 plasmid DNA vaccine with spike (S) protein-receptor binding domain (S-RBD) was delivered by gene gun using GET bullets. Specific T cell and antibody responses comparable to the conventional system were generated. The non-physical and physical combination of GET‑gold-DNA carriers using gene gun shows potential as an alternative DNA delivery method that is scalable for mass deployable vaccination and intradermal gene delivery.
Collapse
Affiliation(s)
- Roizza Beth So
- Regenerative Medicine & Cellular Therapies (RMCT), Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gang Li
- Regenerative Medicine & Cellular Therapies (RMCT), Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Victoria Brentville
- Scancell Ltd, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Janet M Daly
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK
| | - James E Dixon
- Regenerative Medicine & Cellular Therapies (RMCT), Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
5
|
Dixon JE, Wellington V, Elnima A, Eltaher HM. Effects of Microenvironment and Dosing on Efficiency of Enhanced Cell Penetrating Peptide Nonviral Gene Delivery. ACS OMEGA 2024; 9:5014-5023. [PMID: 38313497 PMCID: PMC10831962 DOI: 10.1021/acsomega.3c09306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024]
Abstract
Transfection, defined as functional delivery of cell-internalized nucleic acids, is dependent on many factors linked to formulation, vector, cell type, and microenvironmental culture conditions. We previously developed a technology termed glycosaminoglycan (GAG)-binding enhanced transduction (GET) to efficiently deliver a variety of cargoes intracellularly, using GAG-binding peptides and cell penetrating peptides (CPPs) in the form of nanoparticles, using conventional cell culture. Herein, we demonstrate that the most simple GET transfection formulation (employing the FLR peptide) is relatively poor at transfecting cells at increasingly lower dosages. However, with an endosomally escaping version (FLR:FLH peptide formulations) we demonstrate more effective transfection of cells with lower quantities of plasmid (p)DNA in vitro. We assessed the ability of single and serial delivery of our formulations to readily transfect cells and determined that temperature, pH, and atmospheric pressure can significantly affect transfected cell number and expression levels. Cytocompatible temperatures that maintain high cell metabolism (20-37 °C) were the optimal for transfection. Interestingly, serial delivery can maintain and enhance expression without viability being compromised, and alkaline pH conditions can aid overall efficiencies. Positive atmospheric pressures can also improve the transgene expression levels generated by GET transfection on a single-cell level. Novel nanotechnologies and gene therapeutics such as GET could be transformative for future regenerative medicine strategies. It will be important to understand how such approaches can be optimized at the formulation and application levels in order to achieve efficacy that will be competitive with viral strategies.
Collapse
Affiliation(s)
- James E. Dixon
- Regenerative
Medicine and Cellular Therapies Division, The University of Nottingham
Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
- NIHR
Nottingham Biomedical Research Centre, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | - Vanessa Wellington
- Regenerative
Medicine and Cellular Therapies Division, The University of Nottingham
Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Alaa Elnima
- Regenerative
Medicine and Cellular Therapies Division, The University of Nottingham
Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Hoda M. Eltaher
- Regenerative
Medicine and Cellular Therapies Division, The University of Nottingham
Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
6
|
Qin Y, Ou L, Zha L, Zeng Y, Li L. Delivery of nucleic acids using nanomaterials. MOLECULAR BIOMEDICINE 2023; 4:48. [PMID: 38092998 PMCID: PMC10719232 DOI: 10.1186/s43556-023-00160-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
The increasing number of approved nucleic acid therapeutics demonstrates the potential for the prevention and treatment of a broad spectrum of diseases. This trend underscores the significant impact and promise of nucleic acid-based treatments in the field of medicine. Nevertheless, employing nucleic acids as therapeutics is challenging due to their susceptibility to degradation by nucleases and their unfavorable physicochemical characteristics that hinder delivery into cells. Appropriate vectors play a pivotal role in improving nucleic acid stability and delivering nucleic acids into specific cells. The maturation of delivery systems has led to breakthroughs in the development of therapeutics based on nucleic acids such as DNA, siRNA, and mRNA. Non-viral vectors have gained prominence among the myriad of nanomaterials due to low immunogenicity, ease of manufacturing, and simplicity of cost-effective, large-scale production. Here, we provide an overview of the recent advancements in nanomaterials for nucleic acid delivery. Specifically, we give a detailed introduction to the characteristics of polymers, lipids, and polymer-lipid hybrids, and provide comprehensive descriptions of their applications in nucleic acid delivery. Also, biological barriers, administration routes, and strategies for organ-selective delivery of nucleic acids are discussed. In summary, this review offers insights into the rational design of next-generation delivery vectors for nucleic acid delivery.
Collapse
Affiliation(s)
- Yuyang Qin
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Liyuan Ou
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lili Zha
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yue Zeng
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Ling Li
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Rehmani S, McLaughlin CM, Eltaher HM, Moffett RC, Flatt PR, Dixon JE. Orally-delivered insulin-peptide nanocomplexes enhance transcytosis from cellular depots and improve diabetic blood glucose control. J Control Release 2023; 360:93-109. [PMID: 37315695 DOI: 10.1016/j.jconrel.2023.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/23/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
Insulin regulates blood glucose levels, and is the mainstay for the treatment of type-1 diabetes and type-2 when other drugs provide inadequate control. Therefore, effective oral Insulin delivery would be a significant advance in drug delivery. Herein, we report the use of the modified cell penetrating peptide (CPP) platform, Glycosaminoglycan-(GAG)-binding-enhanced-transduction (GET), as an efficacious transepithelial delivery vector in vitro and to mediate oral Insulin activity in diabetic animals. Insulin can be conjugated with GET via electrostatic interaction to form nanocomplexes (Insulin GET-NCs). These NCs (size and charge; 140 nm, +27.10 mV) greatly enhanced Insulin transport in differentiated in vitro intestinal epithelium models (Caco2 assays; >22-fold increased translocation) with progressive and significant apical and basal release of up-taken Insulin. Delivery resulted in intracellular accumulation of NCs, enabling cells to act as depots for subsequent sustained release without affecting viability and barrier integrity. Importantly Insulin GET-NCs have enhanced proteolytic stability, and retained significant Insulin biological activity (exploiting Insulin-responsive reporter assays). Our study culminates in demonstrating oral delivery of Insulin GET-NCs which can control elevated blood-glucose levels in streptozotocin (STZ)-induced diabetic mice over several days with serial dosing. As GET promotes Insulin absorption, transcytosis and intracellular release, along with in vivo function, our simplistic complexation platform could allow effective bioavailability of other oral peptide therapeutics and help transform the treatment of diabetes.
Collapse
Affiliation(s)
- Sahrish Rehmani
- Regenerative Medicine & Cellular Therapies, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Christopher M McLaughlin
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA, UK
| | - Hoda M Eltaher
- Regenerative Medicine & Cellular Therapies, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - R Charlotte Moffett
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA, UK
| | - James E Dixon
- Regenerative Medicine & Cellular Therapies, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
8
|
Todaro B, Ottalagana E, Luin S, Santi M. Targeting Peptides: The New Generation of Targeted Drug Delivery Systems. Pharmaceutics 2023; 15:1648. [PMID: 37376097 DOI: 10.3390/pharmaceutics15061648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Peptides can act as targeting molecules, analogously to oligonucleotide aptamers and antibodies. They are particularly efficient in terms of production and stability in physiological environments; in recent years, they have been increasingly studied as targeting agents for several diseases, from tumors to central nervous system disorders, also thanks to the ability of some of them to cross the blood-brain barrier. In this review, we will describe the techniques employed for their experimental and in silico design, as well as their possible applications. We will also discuss advancements in their formulation and chemical modifications that make them even more stable and effective. Finally, we will discuss how their use could effectively help to overcome various physiological problems and improve existing treatments.
Collapse
Affiliation(s)
- Biagio Todaro
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Elisa Ottalagana
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, 56017 Pisa, Italy
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Melissa Santi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
9
|
Vinhas A, Almeida AF, Rodrigues MT, Gomes ME. Prospects of magnetically based approaches addressing inflammation in tendon tissues. Adv Drug Deliv Rev 2023; 196:114815. [PMID: 37001644 DOI: 10.1016/j.addr.2023.114815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
Tendon afflictions constitute a significant share of musculoskeletal diseases and represent a primary cause of incapacity worldwide. Unresolved/chronic inflammatory states have been associated with the onset and progression of tendon disorders, contributing to undesirable immune stimulation and detrimental tissue effects. Thus, targeting persistent inflammatory events could assist important developments to solve pathophysiological processes and innovative therapeutics to address impaired healing and accomplish complete tendon regeneration. This review overviews the impact of inflammation and inflammatory mediators in tendon niches, unveiling the importance of tendon cell populations and their signature features, and the influence of microenvironmental factors on inflamed and injured tendons. The demand for non-invasive instructive strategies to manage persistent inflammatory mediators, guide inflammatory pathways, and modulate cellular responses will also be approached by exploring the role of pulsed electromagnetic field (PEMF). PEMF alone or combined with more sophisticated systems triggered by magnetic fields will be considered in the design of successful therapies to control inflammation in tendinopathic conditions.
Collapse
|
10
|
Gambhir RP, Vibhute AA, Patil TP, Tiwari AP. Surface-Functionalized Iron Oxide (Fe3O4) Nanoparticles for Biomedical Applications. CHEMICALLY DEPOSITED METAL CHALCOGENIDE-BASED CARBON COMPOSITES FOR VERSATILE APPLICATIONS 2023:411-432. [DOI: 10.1007/978-3-031-23401-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Eltaher HM, Blokpoel Ferreras LA, Jalal AR, Dixon JE. Direct contact-mediated non-viral gene therapy using thermo-sensitive hydrogel-coated dressings. BIOMATERIALS ADVANCES 2022; 143:213177. [PMID: 36371970 DOI: 10.1016/j.bioadv.2022.213177] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nanotechnologies are being increasingly applied as systems for peptide and nucleic acid macromolecule drug delivery. However systemic targeting of these, or efficient topical and localized delivery remains an issue. A controlled release system that can be patterned and locally administered such as topically to accessible tissue (skin, eye, intestine) would therefore be transformative in realizing the potential of such strategies. We previously developed a technology termed GAG-binding enhanced transduction (GET) to efficiently deliver a variety of cargoes intracellularly, using GAG-binding peptides to mediate cell targeting, and cell penetrating peptides (CPPs) to promote uptake. Herein we demonstrate that the GET transfection system can be used with the moisturizing thermo-reversible hydrogel Pluronic-F127 (PF127) and methyl cellulose (MC) to mediate site specific and effective intracellular transduction and gene delivery through GET nanoparticles (NPs). We investigated hydrogel formulation and the temperature dependence of delivery, optimizing the delivery system. GET-NPs retain their activity to enhance gene transfer within our formulations, with uptake transferred to cells in direct contact with the therapy-laden hydrogel. By using Azowipe™ material in a bandage approach, we were able to show for the first-time localized gene transfer in vitro on cell monolayers. The ability to simply control localization of gene delivery on millimetre scales using contact-mediated transfer from moisture-providing thermo-reversible hydrogels will facilitate new drug delivery methods. Importantly our technology to site-specifically deliver the activity of novel nanotechnologies and gene therapeutics could be transformative for future regenerative medicine.
Collapse
Affiliation(s)
- Hoda M Eltaher
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom, NG7 2RD, UK; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt, 21521
| | - Lia A Blokpoel Ferreras
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom, NG7 2RD, UK
| | - Aveen R Jalal
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom, NG7 2RD, UK
| | - James E Dixon
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom, NG7 2RD, UK.
| |
Collapse
|
12
|
Wang T, Hao B, Xu S, Meng J, Wen T, Liu J, Xu H. Effective RNAi in leukemia cells is enhanced by spermine-modified pullulan combined with desloratadine. Carbohydr Polym 2022; 292:119646. [DOI: 10.1016/j.carbpol.2022.119646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
|
13
|
Shtykalova S, Egorova A, Maretina M, Baranov V, Kiselev A. Magnetic Nanoparticles as a Component of Peptide-Based DNA Delivery System for Suicide Gene Therapy of Uterine Leiomyoma. Bioengineering (Basel) 2022; 9:bioengineering9030112. [PMID: 35324801 PMCID: PMC8945779 DOI: 10.3390/bioengineering9030112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 11/24/2022] Open
Abstract
Suicidegene therapy is considered a promising approach for the treatment of uterine leiomyoma (UL), a benign tumor in women characterized by precise localization. In this study, we investigate the efficiency of αvβ3 integrin-targeted arginine-rich peptide carrier R6p-cRGD electrostatically bound to magnetic nanoparticles (MNPs) for targeted DNA delivery into the UL cells. The physico–chemical and cytotoxic properties, transfection efficiency, and specificity of R6p-cRGD/DNA/MNPs polyplexes were evaluated. The addition of MNPs resulted in a decrease in the time needed for successful transfection with simultaneous increase in efficiency. We revealed a therapeutic effect on primary UL cells after delivery of plasmid encoding the herpes simplex virus type 1 (HSV-1) thymidine kinase gene. Treatment with ganciclovir resulted in 20% efficiency of suicide gene therapy in UL cells transfected with the pPTK-1 plasmid. Based on these results, we conclude that the use of cationic peptide carriers with MNPs can be promising for the development of modular non-viral carriers for suicide gene delivery to UL cells.
Collapse
|
14
|
Power RN, Cavanagh BL, Dixon JE, Curtin CM, O’Brien FJ. Development of a Gene-Activated Scaffold Incorporating Multifunctional Cell-Penetrating Peptides for pSDF-1α Delivery for Enhanced Angiogenesis in Tissue Engineering Applications. Int J Mol Sci 2022; 23:1460. [PMID: 35163379 PMCID: PMC8835777 DOI: 10.3390/ijms23031460] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/18/2022] Open
Abstract
Non-viral gene delivery has become a popular approach in tissue engineering, as it permits the transient delivery of a therapeutic gene, in order to stimulate tissue repair. However, the efficacy of non-viral delivery vectors remains an issue. Our lab has created gene-activated scaffolds by incorporating various non-viral delivery vectors, including the glycosaminoglycan-binding enhanced transduction (GET) peptide into collagen-based scaffolds with proven osteogenic potential. A modification to the GET peptide (FLR) by substitution of arginine residues with histidine (FLH) has been designed to enhance plasmid DNA (pDNA) delivery. In this study, we complexed pDNA with combinations of FLR and FLH peptides, termed GET* nanoparticles. We sought to enhance our gene-activated scaffold platform by incorporating GET* nanoparticles into collagen-nanohydroxyapatite scaffolds with proven osteogenic capacity. GET* N/P 8 was shown to be the most effective formulation for delivery to MSCs in 2D. Furthermore, GET* N/P 8 nanoparticles incorporated into collagen-nanohydroxyapatite (coll-nHA) scaffolds at a 1:1 ratio of collagen:nanohydroxyapatite was shown to be the optimal gene-activated scaffold. pDNA encoding stromal-derived factor 1α (pSDF-1α), an angiogenic chemokine which plays a role in BMP mediated differentiation of MSCs, was then delivered to MSCs using our optimised gene-activated scaffold platform, with the aim of significantly increasing angiogenesis as an important precursor to bone repair. The GET* N/P 8 coll-nHA scaffolds successfully delivered pSDF-1α to MSCs, resulting in a significant, sustained increase in SDF-1α protein production and an enhanced angiogenic effect, a key precursor in the early stages of bone repair.
Collapse
Affiliation(s)
- Rachael N. Power
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), D02 YN77 Dublin, Ireland; (R.N.P.); (C.M.C.)
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, D02 YN77 Dublin, Ireland
| | | | - James E. Dixon
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Caroline M. Curtin
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), D02 YN77 Dublin, Ireland; (R.N.P.); (C.M.C.)
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), D02 YN77 Dublin, Ireland; (R.N.P.); (C.M.C.)
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, D02 YN77 Dublin, Ireland
| |
Collapse
|
15
|
Kush P, Kumar P, Singh R, Kaushik A. Aspects of high-performance and bio-acceptable magnetic nanoparticles for biomedical application. Asian J Pharm Sci 2021; 16:704-737. [PMID: 35027950 PMCID: PMC8737424 DOI: 10.1016/j.ajps.2021.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/01/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
This review covers extensively the synthesis & surface modification, characterization, and application of magnetic nanoparticles. For biomedical applications, consideration should be given to factors such as design strategies, the synthesis process, coating, and surface passivation. The synthesis method regulates post-synthetic change and specific applications in vitro and in vivo imaging/diagnosis and pharmacotherapy/administration. Special insights have been provided on biodistribution, pharmacokinetics, and toxicity in a living system, which is imperative for their wider application in biology. These nanoparticles can be decorated with multiple contrast agents and thus can also be used as a probe for multi-mode imaging or double/triple imaging, for example, MRI-CT, MRI-PET. Similarly loading with different drug molecules/dye/fluorescent molecules and integration with other carriers have found application not only in locating these particles in vivo but simultaneously target drug delivery/hyperthermia inside the body. Studies are underway to collect the potential of these magnetically driven nanoparticles in various scientific fields such as particle interaction, heat conduction, imaging, and magnetism. Surely, this comprehensive data will help in the further development of advanced techniques for theranostics based on high-performance magnetic nanoparticles and will lead this research area in a new sustainable direction.
Collapse
Affiliation(s)
- Preeti Kush
- School of Pharmacy, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University Gangoh, Saharanpur, Uttar Pradesh 247341, India
| | - Parveen Kumar
- Nanotechnology Division (H-1), CSIR-Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ranjit Singh
- School of Pharmacy, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University Gangoh, Saharanpur, Uttar Pradesh 247341, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL 33805-8531, United States
| |
Collapse
|
16
|
Polyphosphates as an effective vehicle for delivery of bioavailable nanoparticulate iron(III). Food Chem 2021; 373:131477. [PMID: 34731816 DOI: 10.1016/j.foodchem.2021.131477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/22/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022]
Abstract
Polyphosphates are widely used food additives with the potential to increase iron bioavailability but chemical nature of their soluble complexes with iron remains largely unknown. Here, pyrophosphate, tripolyphosphate, hexametaphosphate and ∼25-chain-length polyphosphate solubilized 896, 896, 1120 and 1344 mg Fe(III) per g, respectively, at neutral pH by mediating the formation of highly-negatively-charged ferric hydroxide-polyphosphate nanoparticles (PolyP-FeONPs). PolyP-FeONPs displayed fading yellow color with increasing initial dissolved P/Fe ratio ((P/Fe)init) and decreasing polyphosphate length due to rising proportion of Fe(III)-phosphate bonds, and specifically, pyrophosphate resulted colorless PolyP-FeONPs at (P/Fe)init ≥ 4. PolyP-FeONPs had weak pro-oxidant activity in glyceryl trilinoleate emulsion and good colloidal stability under spray/freeze-drying and gastrointestinal conditions. Serum iron kinetics in rats revealed sustained iron release and ∼170% iron bioavailability of oral PolyP-FeONPs relative to FeSO4. Calcein-fluorescence-quenching assay in polarized Caco-2 cells unveiled divalent-metal-transporter-1-independent and macropinocytosis-dependent iron uptake from PolyP-FeONPs. This study helps develop food-compatible, highly-bioavailable and sustained-release iron preparations.
Collapse
|
17
|
Muzzio N, Moya S, Romero G. Multifunctional Scaffolds and Synergistic Strategies in Tissue Engineering and Regenerative Medicine. Pharmaceutics 2021; 13:792. [PMID: 34073311 PMCID: PMC8230126 DOI: 10.3390/pharmaceutics13060792] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
The increasing demand for organ replacements in a growing world with an aging population as well as the loss of tissues and organs due to congenital defects, trauma and diseases has resulted in rapidly evolving new approaches for tissue engineering and regenerative medicine (TERM). The extracellular matrix (ECM) is a crucial component in tissues and organs that surrounds and acts as a physical environment for cells. Thus, ECM has become a model guide for the design and fabrication of scaffolds and biomaterials in TERM. However, the fabrication of a tissue/organ replacement or its regeneration is a very complex process and often requires the combination of several strategies such as the development of scaffolds with multiple functionalities and the simultaneous delivery of growth factors, biochemical signals, cells, genes, immunomodulatory agents, and external stimuli. Although the development of multifunctional scaffolds and biomaterials is one of the most studied approaches for TERM, all these strategies can be combined among them to develop novel synergistic approaches for tissue regeneration. In this review we discuss recent advances in which multifunctional scaffolds alone or combined with other strategies have been employed for TERM purposes.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| | - Sergio Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain;
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| |
Collapse
|