1
|
Senanayake RD, Daly CA, Hernandez R. Optimized Bags of Artificial Neural Networks Can Predict the Viability of Organisms Exposed to Nanoparticles. J Phys Chem A 2024; 128:2857-2870. [PMID: 38536900 DOI: 10.1021/acs.jpca.3c07462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Prediction of organismal viability upon exposure to a nanoparticle in varying environments─as fully specified at the molecular scale─has emerged as a useful figure of merit in the design of engineered nanoparticles. We build on our earlier finding that a bag of artificial neural networks (ANNs) can provide such a prediction when such machines are trained with a relatively small data set (with ca. 200 examples). Therein, viabilities were predicted by consensus using the weighted means of the predictions from the bags. Here, we confirm the accuracy and precision of the prediction of nanoparticle viabilities using an optimized bag of ANNs over sets of data examples that had not previously been used in the training and validation process. We also introduce the viability strip, rather than a single value, as the prediction and construct it from the viability probability distribution of an ensemble of ANNs compatible with the data set. Specifically, the ensemble consists of the ANNs arising from subsets of the data set corresponding to different splittings between training and validation, and the different bags (k-folds). A k - 1 k machine uses a single partition (or bag) of k - 1 ANNs each trained on 1/k of the data to obtain a consensus prediction, and a k-bag machine quorum samples the k possible k - 1 k machines available for a given partition. We find that with increasing k in the k-bag or k - 1 k machines, the viability strips become more normally distributed and their predictions become more precise. Benchmark comparisons between ensembles of 4-bag machines and 3 4 fraction machines suggest that the 3 4 fraction machine has similar accuracy while overcoming some of the challenges arising from divergent ANNs in the 4-bag machines.
Collapse
Affiliation(s)
- Ravithree D Senanayake
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Clyde A Daly
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical & Biomolecular Engineering and Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Sengupta S, Ambade SB, O'Keefe TL, Tawakalna F, Hedlund Orbeck JK, Hamers RJ, Feng ZV, Haynes CL, Rosenzweig Z. Colloidal stabilization of hydrophobic InSe 2D nanosheets in a model environmental aqueous solution and their impact on Shewanella oneidensis MR-1. ENVIRONMENTAL SCIENCE. NANO 2024; 11:627-636. [PMID: 38881831 PMCID: PMC11178355 DOI: 10.1039/d3en00382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Semiconductor InSe 2D nanomaterials have emerged as potential photoresponsive materials for broadly distributed photodetectors and wearable electronics technologies due to their high photoresponsivity and thermal stability. This paper addresses an environmental concern about the fate of InSe 2D nanosheets when disposed and released into the environment after use. Semiconducting materials are potentially reactive and often form environmentally damaging species, for example reactive oxygen and nitrogen species, when degraded. InSe nanosheets are prepared using a semi bottom-up approach which involves a reaction between indium and selenium precursors at elevated temperature in an oxygen-free environment to prevent oxidation. InSe nanosheets are formed as a stable intermediate with micrometer-sized lateral dimensions and a few monolayer thickness. The InSe 2D nanosheets are obtained when the reaction is stopped after 30 minutes by cooling. Keeping the reaction at elevated temperature for a longer period, for example 60 minutes leads to the formation of InSe 3D nanoparticles of about 5 nm in diameter, a thermodynamically more stable form of InSe. The paper focuses on the colloidal stabilization of InSe nanosheets in an aqueous solution that contains epigallocatechin gallate (EGCG), a natural organic matter (NOM) simulant. We show that EGCG coats the surface of the hydrophobic, water-insoluble InSe nanosheets via physisorption. The formed EGCG-coated InSe nanosheets are colloidally stable in aqueous solution. While unmodified semiconducting InSe nanosheets could produce reactive oxygen species (ROS) when illuminated, our study shows low levels of ROS generation by EGCG-coated InSe nanosheets under ambient light, which might be attributed to ROS quenching by EGCG. Growth-based viability (GBV) assays show that the colloidally stable EGCG-coated InSe nanosheets adversely impact the bacterial growth of Shewanella oneidensis MR-1, an environmentally relevant Gram-negative bacterium in aqueous media. The impact on bacterial growth is driven by the EGCG coating of the nanosheets. In addition, live/dead assays show insignificant membrane damage of the Shewanella oneidensis MR-1 cells by InSe nanosheets, suggesting a weak association of EGCG-coated nanosheets with the cells. It is likely that the adverse impact of EGCG-coated nanosheets on bacterial growth is the result of increasing local concentration of EGCG either when adsorbed on the nanosheets when the nanosheets interact with the cells, or when desorbed from the EGCG-coated nanosheets to interact with the bacterial cells.
Collapse
Affiliation(s)
- Shreyasi Sengupta
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Swapnil B Ambade
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Tana L O'Keefe
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA
| | - Falak Tawakalna
- Chemistry Department, Augsburg University, Minneapolis, Minnesota 55454, USA
| | | | - Robert J Hamers
- Department of Chemistry, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| | - Z Vivian Feng
- Chemistry Department, Augsburg University, Minneapolis, Minnesota 55454, USA
- Council on Science and Technology, Princeton University, Princeton, NJ 08544, USA
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA
| | - Zeev Rosenzweig
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
3
|
Kesner LA, Piskulich ZA, Cui Q, Rosenzweig Z. Untangling the Interactions between Anionic Polystyrene Nanoparticles and Lipid Membranes Using Laurdan Fluorescence Spectroscopy and Molecular Simulations. J Am Chem Soc 2023; 145:7962-7973. [PMID: 37011179 DOI: 10.1021/jacs.2c13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Several classes of synthetic nanoparticles (NPs) induce rearrangements of cell membranes that can affect membrane function. This paper describes the investigation of the interactions between polystyrene nanoparticles and liposomes, which serve as model cell membranes, using a combination of laurdan fluorescence spectroscopy and coarse-grained molecular dynamics (MD) simulations. The relative intensities of the gel-like and fluid fluorescent peaks of laurdan, which is embedded in the liposome membranes, are quantified from the areas of deconvoluted lognormal laurdan fluorescence peaks. This provides significant advantages in understanding polymer-membrane interactions. Our study reveals that anionic polystyrene NPs, which are not cross-linked, induce significant membrane rearrangement compared to other cationic or anionic NPs. Coarse-grained MD simulations demonstrate that polymer chains from the anionic polystyrene NP penetrate the liposome membrane. The inner leaflet remains intact throughout this process, though both leaflets show a decrease in lipid packing that is indicative of significant local rearrangement of the liposome membrane. These results are attributed to the formation of a hybrid gel made up of a combination of polystyrene (PS) and lipids that forces water molecules away from laurdan. Our study concludes that a combination of negative surface charge to interact electrostatically with positive charges on the membrane, a hydrophobic core to provide a thermodynamic preference for membrane association, and the ability to extend non-cross linked polymer chains into the liposome membrane are necessary for NPs to cause a significant rearrangement in the liposomes.
Collapse
Affiliation(s)
- Laura A Kesner
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Zeke A Piskulich
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Zeev Rosenzweig
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
4
|
Murray MJ, Jones MM, Peterman D, Neal SL. Monitoring the impact of ionizing radiation on CdSe/ZnS semiconductor quantum dot photoluminescence. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Riahin C, Meares A, Esemoto NN, Ptaszek M, LaScola M, Pandala N, Lavik E, Yang M, Stacey G, Hu D, Traeger JC, Orr G, Rosenzweig Z. Hydroporphyrin-Doped Near-Infrared-Emitting Polymer Dots for Cellular Fluorescence Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20790-20801. [PMID: 35451825 PMCID: PMC9210996 DOI: 10.1021/acsami.2c02551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Near-infrared (NIR) fluorescent semiconductor polymer dots (Pdots) have shown great potential for fluorescence imaging due to their exceptional chemical and photophysical properties. This paper describes the synthesis of NIR-emitting Pdots with great control and tunability of emission peak wavelength. The Pdots were prepared by doping poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-(2,1',3)-thiadiazole)] (PFBT), a semiconducting polymer commonly used as a host polymer in luminescent Pdots, with a series of chlorins and bacteriochlorins with varying functional groups. Chlorins and bacteriochlorins are ideal dopants due to their high hydrophobicity, which precludes their use as molecular probes in aqueous biological media but on the other hand prevents their leakage when doped into Pdots. Additionally, chlorins and bacteriochlorins have narrow deep red to NIR-emission bands and the wide array of synthetic modifications available for modifying their molecular structure enables tuning their emission predictably and systematically. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements show the chlorin- and bacteriochlorin-doped Pdots to be nearly spherical with an average diameter of 46 ± 12 nm. Efficient energy transfer between PFBT and the doped chlorins or bacteriochlorins decreases the PFBT donor emission to near baseline level and increases the emission of the doped dyes that serve as acceptors. The chlorin- and bacteriochlorin-doped Pdots show narrow emission bands ranging from 640 to 820 nm depending on the doped dye. The paper demonstrates the utility of the systematic chlorin and bacteriochlorin synthesis approach by preparing Pdots of varying emission peak wavelength, utilizing them to visualize multiple targets using wide-field fluorescence microscopy, binding them to secondary antibodies, and determining the binding of secondary antibody-conjugated Pdots to primary antibody-labeled receptors in plant cells. Additionally, the chlorin- and bacteriochlorin-doped Pdots show a blinking behavior that could enable their use in super-resolution imaging methods like STORM.
Collapse
Affiliation(s)
- Connor Riahin
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Adam Meares
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Nopondo N Esemoto
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Michael LaScola
- Department of Chemical, Biological and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Narendra Pandala
- Department of Chemical, Biological and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Erin Lavik
- Department of Chemical, Biological and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Mengran Yang
- Division of Plant Sciences and Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Gary Stacey
- Division of Plant Sciences and Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jeremiah C Traeger
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Zeev Rosenzweig
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
6
|
Khanna K, Kohli SK, Handa N, Kaur H, Ohri P, Bhardwaj R, Yousaf B, Rinklebe J, Ahmad P. Enthralling the impact of engineered nanoparticles on soil microbiome: A concentric approach towards environmental risks and cogitation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112459. [PMID: 34217114 DOI: 10.1016/j.ecoenv.2021.112459] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/06/2021] [Accepted: 06/23/2021] [Indexed: 05/09/2023]
Abstract
Nanotechnology is an avant-garde field of scientific research that revolutionizes technological advancements in the present world. It is a cutting-edge scientific approach that has undoubtedly a plethora of functions in controlling environmental pollutants for the welfare of the ecosystem. However, their unprecedented utilization and hysterical release led to a huge threat to the soil microbiome. Nanoparticles(NPs) hamper physicochemical properties of soil along with microbial metabolic activities within rhizospheric soils.Here in this review shed light on concentric aspects of NP-biosynthesis, types, toxicity mechanisms, accumulation within the ecosystem. However, the accrual of tiny NPs into the soil system has dramatically influenced rhizospheric activities in terms of soil properties and biogeochemical cycles. We have focussed on mechanistic pathways engrossed by microbes to deal with NPs.Also, we have elaborated the fate and behavior of NPs within soils. Besides, a piece of very scarce information on NPs-toxicity towards environment and rhizosphere communities is available. Therefore, the present review highlights ecological perspectives of nanotechnology and solutions to such implications. We have comprehend certain strategies such as avant-garde engineering methods, sustainable procedures for NP synthesis along with vatious regulatory actions to manage NP within environment. Moreover, we have devised risk management sustainable and novel strategies to utilize it in a rationalized and integrated manner. With this background, we can develop a comprehensive plan about NPs with novel insights to understand the resistance and toxicity mechanisms of NPs towards microbes. Henceforth, the orientation towards these issues would enhance the understanding of researchers for proper recommendation and promotion of nanotechnology in an optimized and sustainable manner.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Neha Handa
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harsimran Kaur
- Plant Protection Division, PG Department of Agriculture, Khalsa College, Amritsar 143005, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Balal Yousaf
- Department of Environmental Engineering, Middle East Technical University, 06800 Ankara, Turkey; CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Parvaiz Ahmad
- Botany and Microbiology Department, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Niemuth N, Williams DN, Mensch AC, Cui Y, Orr G, Rosenzweig Z, Klaper RD. Redesign of hydrophobic quantum dots mitigates ligand-dependent toxicity in the nematode C. elegans. NANOIMPACT 2021; 22:100318. [PMID: 35559975 DOI: 10.1016/j.impact.2021.100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 06/15/2023]
Abstract
Surface properties of engineered nanomaterials (ENMs) have been shown to influence their interaction with biological systems. However, studies to date have largely focused on hydrophilic materials, likely due to biocompatibility concerns and aqueous exposure conditions necessary for many model systems. Therefore, a knowledge gap exists in nanotoxicity literature for impacts of hydrophobic ENMs, with studies of hydrophobic materials largely limited to carbon ENMs. Here we demonstrate testing of hydrophobic quantum dots (QDs) using the nematode C. elegans, a model soil organism cultured on solid media and amenable to hydrophobic exposures. To evaluate the influence of hydrophobicity, we compared CdSe/ZnS QDs functionalized with hydrophobic trioctylphosphine oxide (TOPO) to identical QDs functionalized with hydrophilic dihydrolipoic acid-polyethylene glycol (DHLA-PEG) and alternative hydrophobic CdSe/ZnS QDs functionalized with oleic acid (OA). Results show that hydrophobic TOPO QDs are significantly more toxic than hydrophilic DHLA-PEG QDs, and substitution of TOPO with OA yields relatively non-toxic hydrophobic QDs. Fluorescence microscopy shows TOPO QDs loosely associated with the organism's cuticle, but atomic force microscopy shows no difference in cuticle structure from exposure. Importantly, TOPO ligand alone is as toxic as TOPO QDs, and our data suggests that TOPO may impact neuromuscular function, perhaps upon displacement from the QD surface. This study demonstrates the importance of examining ligand-specific impacts of hydrophobic ENMs and indicates OA-functionalized QDs as a potential alternative to TOPO QDs for reduced toxicity.
Collapse
Affiliation(s)
- NicholasJ Niemuth
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave., Milwaukee, WI 53204, United States
| | - Denise N Williams
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Arielle C Mensch
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yi Cui
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ze'ev Rosenzweig
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Rebecca D Klaper
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave., Milwaukee, WI 53204, United States.
| |
Collapse
|
8
|
Foreman-Ortiz IU, Liang D, Laudadio ED, Calderin JD, Wu M, Keshri P, Zhang X, Schwartz MP, Hamers RJ, Rotello VM, Murphy CJ, Cui Q, Pedersen JA. Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function. Proc Natl Acad Sci U S A 2020; 117:27854-27861. [PMID: 33106430 PMCID: PMC7668003 DOI: 10.1073/pnas.2004736117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the mechanisms of nanoparticle interaction with cell membranes is essential for designing materials for applications such as bioimaging and drug delivery, as well as for assessing engineered nanomaterial safety. Much attention has focused on nanoparticles that bind strongly to biological membranes or induce membrane damage, leading to adverse impacts on cells. More subtle effects on membrane function mediated via changes in biophysical properties of the phospholipid bilayer have received little study. Here, we combine electrophysiology measurements, infrared spectroscopy, and molecular dynamics simulations to obtain insight into a mode of nanoparticle-mediated modulation of membrane protein function that was previously only hinted at in prior work. Electrophysiology measurements on gramicidin A (gA) ion channels embedded in planar suspended lipid bilayers demonstrate that anionic gold nanoparticles (AuNPs) reduce channel activity and extend channel lifetimes without disrupting membrane integrity, in a manner consistent with changes in membrane mechanical properties. Vibrational spectroscopy indicates that AuNP interaction with the bilayer does not perturb the conformation of membrane-embedded gA. Molecular dynamics simulations reinforce the experimental findings, showing that anionic AuNPs do not directly interact with embedded gA channels but perturb the local properties of lipid bilayers. Our results are most consistent with a mechanism in which anionic AuNPs disrupt ion channel function in an indirect manner by altering the mechanical properties of the surrounding bilayer. Alteration of membrane mechanical properties represents a potentially important mechanism by which nanoparticles induce biological effects, as the function of many embedded membrane proteins depends on phospholipid bilayer biophysical properties.
Collapse
Affiliation(s)
| | - Dongyue Liang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Chemistry, Boston University, Boston, MA 02215
| | | | - Jorge D Calderin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Meng Wu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Puspam Keshri
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Michael P Schwartz
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, MA 02215
- Department of Physics, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Joel A Pedersen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706;
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706
- Department of Civil & Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
9
|
Daly CA, Hernandez R. Optimizing bags of artificial neural networks for the prediction of viability from sparse data. J Chem Phys 2020; 153:054112. [DOI: 10.1063/5.0017229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Clyde A. Daly
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rigoberto Hernandez
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Departments of Chemical and Biomolecular Engineering, and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
10
|
Nikazar S, Sivasankarapillai VS, Rahdar A, Gasmi S, Anumol PS, Shanavas MS. Revisiting the cytotoxicity of quantum dots: an in-depth overview. Biophys Rev 2020; 12:703-718. [PMID: 32140918 PMCID: PMC7311601 DOI: 10.1007/s12551-020-00653-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Recently, medical research has been shifting its focus to nanomedicine and nanotherapeutics in the pursuit of drug development research. Quantum dots (QDs) are a critical class of nanomaterials due to their unique properties, which include optical, electronic, and engineered biocompatibility in physiological environments. These properties have made QDs an attractive biomedical resource such that they have found application as both in vitro labeling and in vivo theranostic (therapy-diagnostic) agents. Considerable research has been conducted exploring the suitability of QDs in theranostic applications, but the cytotoxicity of QDs remains an obstacle. Several types of QDs have been investigated over the past decades, which may be suitable for use in biomedical applications if the barrier of cytotoxicity can be resolved. This review attempts to report and analyze the cytotoxicity of the major QDs along with relevant related aspects.
Collapse
Affiliation(s)
- Sohrab Nikazar
- Chemical Engineering Faculty, Engineering College, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran.
| | - Salim Gasmi
- Cellular and Applied Toxicology, Larbi Tebessi University, Tebessa, Algeria
| | - P S Anumol
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | | |
Collapse
|
11
|
Evaluation of the biocompatibility of the GSH-coated Ag 2S quantum dots in vitro: a perfect example for the non-toxic optical probes. Mol Biol Rep 2020; 47:4117-4129. [PMID: 32436042 DOI: 10.1007/s11033-020-05522-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
Near-infrared quantum dots (NIR QDs) are promising candidate for the fluorescent probes due to their better penetration depth, long-lived luminescence with size-tunable photoluminescence wavelengths. Glutathione-coated silver sulfide quantum dots (GSH-Ag2S QDs) were synthesized using AgNO3 and Na2S in the aqueous media and they can give reaction with glutathione reductase (GR) and glutathione-s transferase (GST) enzymes as acting substrate analogue in vitro. Investigation of the toxicity of the nanomaterials are necessary to use them in the medical field and biomedical applications. Thus, in this study we investigated biocompatibility of the GSH-Ag2S QDs in vitro using 293 T and CFPAC-1 cell lines. Cell viability by MTT assay, light microscopy, fluorescence microscopy, oxidative stress enzyme activities and ICP-MS analysis were performed to evaluate the cytotoxicity and internalization of the GSH-Ag2S QDs. GSH-Ag2S QDs showed great biocompatibility with both cell lines and did not cause imbalance in the oxidative stress metabolism. The ultralow solubility product constant of Ag2S QDs (Ksp = 6.3 × 10-50) prevents release of Ag ions into the biological systems that is in agreement with data obtained by ICP-MS. In conclusion, this data prove potential of GSH-Ag2S QDs as a biocompatible optical probe to be used for the detection and/or targeting of GSH impaired diseases including cancer.
Collapse
|
12
|
Greenhagen JR, Andaraarachchi HP, Li Z, Kortshagen UR. Synthesis of PEG-grafted boron doped Si nanocrystals. J Chem Phys 2019; 151:211103. [PMID: 31822090 PMCID: PMC7043846 DOI: 10.1063/1.5128608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/08/2019] [Indexed: 12/30/2022] Open
Abstract
Silicon nanocrystals are intriguing materials for biomedical imaging applications because of their unique optical properties and biological compatibility. We report a new surface functionalization route to synthesize biological buffer soluble and colloidally stable silicon nanocrystals, which is enabled by surface boron doping. Harnessing the distinctive Lewis acidic boron surface sites, postsynthetic modifications of plasma synthesized boron doped nanocrystals were carried out with polyethylene glycol (PEG-OH) ligands in dimethyl sulfoxide under photochemical conditions. The influence of PEG concentration, PEG molecular weight, and boron doping percentage on the nanocrystal solubility in a biological buffer has been investigated. The boron doping facilitates the surface functionalization via two probable pathways, by providing excellent initial dispersiblity in polar solvents and providing available acidic boron surface sites for bonding. These boron doped silicon nanocrystals have nearly identical absorption features as intrinsic silicon nanocrystals, indicating that they are promising candidates for biological imaging applications.
Collapse
Affiliation(s)
- Jesse R. Greenhagen
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | - Zhaohan Li
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Uwe R. Kortshagen
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
13
|
Buchman JT, Hudson-Smith NV, Landy KM, Haynes CL. Understanding Nanoparticle Toxicity Mechanisms To Inform Redesign Strategies To Reduce Environmental Impact. Acc Chem Res 2019; 52:1632-1642. [PMID: 31181913 DOI: 10.1021/acs.accounts.9b00053] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There has been a surge of consumer products that incorporate nanoparticles, which are used to improve or impart new functionalities to the products based on their unique physicochemical properties. With such an increase in products containing nanomaterials, there is a need to understand their potential impacts on the environment. This is often done using various biological models that are abundant in the different environmental compartments where the nanomaterials may end up after use. Beyond studying whether nanomaterials simply kill an organism, the molecular mechanisms by which nanoparticles exhibit toxicity have been extensively studied. Some of the main mechanisms include (1) direct nanoparticle association with an organism's cell surface, where the membrane can be damaged or initiate internal signaling pathways that damage the cell, (2) dissolution of the material, releasing toxic ions that impact the organism, generally through impairing important enzyme functions or through direct interaction with a cell's DNA, and (3) the generation of reactive oxygen species and subsequent oxidative stress on an organism, which can also damage important enzymes or an organism's genetic material. This Account reviews these toxicity mechanisms, presenting examples for each with different types of nanomaterials. Understanding the mechanism of nanoparticle toxicity will inform efforts to redesign nanoparticles with reduced environmental impact. The redesign strategies will need to be chosen based on the major mode of toxicity, but also considering what changes can be made to the nanomaterial without impacting its ability to perform in its intended application. To reduce interactions with the cell surface, nanomaterials can be designed to have a negative surface charge, use ligands such as polyethylene glycol that reduce protein binding, or have a morphology that discourages binding with a cell surface. To reduce the nanoparticle dissolution to toxic ions, the toxic species can be replaced with less toxic elements that have similar properties, the nanoparticle can be capped with a shell material, the morphology of the nanoparticle can be chosen to minimize surface area and thus minimize dissolution, or a chelating agent can be co-introduced or functionalized onto the nanomaterial's surface. To reduce the production of reactive oxygen species, the band gap of the material can be tuned either by using different elements or by doping, a shell layer can be added to inhibit direct contact with the core, or antioxidant molecules can be tethered to the nanoparticle surface. When redesigning nanoparticles, it will be important to test that the redesign strategy actually reduces toxicity to organisms from relevant environmental compartments. It is also necessary to confirm that the nanomaterial still demonstrates the critical physicochemical properties that inspired its inclusion in a product or device.
Collapse
Affiliation(s)
- Joseph T. Buchman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Natalie V. Hudson-Smith
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kaitlin M. Landy
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
14
|
Qiu TA, Clement PL, Haynes CL. Linking nanomaterial properties to biological outcomes: analytical chemistry challenges in nanotoxicology for the next decade. Chem Commun (Camb) 2018; 54:12787-12803. [DOI: 10.1039/c8cc06473c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article provides our perspective on the analytical challenges in nanotoxicology as the field is entering its third decade.
Collapse
Affiliation(s)
- Tian A. Qiu
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| | | | | |
Collapse
|