1
|
Tee SY, Kong J, Koh JJ, Teng CP, Wang X, Wang X, Teo SL, Thitsartarn W, Han MY, Seh ZW. Structurally and surficially activated TiO 2 nanomaterials for photochemical reactions. NANOSCALE 2024; 16:18165-18212. [PMID: 39268929 DOI: 10.1039/d4nr02342k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Renewable fuels and environmental remediation are of paramount importance in today's world due to escalating concerns about climate change, pollution, and the finite nature of fossil fuels. Transitioning to sustainable energy sources and addressing environmental pollution has become an urgent necessity. Photocatalysis, particularly harnessing solar energy to drive chemical reactions for environmental remediation and clean fuel production, holds significant promise among emerging technologies. As a benchmark semiconductor in photocatalysis, TiO2 photocatalyst offers an excellent solution for environmental remediation and serves as a key tool in energy conversion and chemical synthesis. Despite its status as the default photocatalyst, TiO2 suffers from drawbacks such as a high recombination rate of charge carriers, low electrical conductivity, and limited absorption in the visible light spectrum. This review provides an in-depth exploration of the fundamental principles of photocatalytic reactions and presents recent advancements in the development of TiO2 photocatalysts. It specifically focuses on strategic approaches aimed at enhancing the performance of TiO2 photocatalysts, including improving visible light absorption for efficient solar energy harvesting, enhancing charge separation and transportation efficiency, and ensuring stability for robust photocatalysis. Additionally, the review delves into the application of photodegradation and photocatalysis, particularly in critical processes such as water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide generation, and alcohol oxidation. It also highlights the novel use of TiO2 in plastic polymerization and degradation, showcasing its potential for converting plastic waste into valuable chemicals and fuels, thereby offering sustainable waste management solutions. By addressing these essential areas, the review offers valuable insights into the potential of TiO2 photocatalysis for addressing pressing environmental and energy challenges. Furthermore, the review encompasses the application of TiO2 photochromic systems, expanding its scope to include other innovative research and applications. Finally, it addresses the underlying challenges and provides perspectives on the future development of TiO2 photocatalysts. Through addressing these issues and implementing innovative strategies, TiO2 photocatalysis can continue to evolve and play a pivotal role in sustainable energy and environmental applications.
Collapse
Affiliation(s)
- Si Yin Tee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Junhua Kong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Justin Junqiang Koh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Choon Peng Teng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Xizu Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Xiaobai Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Siew Lang Teo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Ming-Yong Han
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China.
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| |
Collapse
|
2
|
Mohammed W, Matalkeh M, Al Soubaihi RM, Elzatahry A, Saoud KM. Visible Light Photocatalytic Degradation of Methylene Blue Dye and Pharmaceutical Wastes over Ternary NiO/Ag/TiO 2 Heterojunction. ACS OMEGA 2023; 8:40063-40077. [PMID: 37929122 PMCID: PMC10620881 DOI: 10.1021/acsomega.3c01766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Ternary NiO/Ag/TiO2 heterojunction photocatalyst was prepared by deposition coprecipitation for visible light photocatalytic applications. Physicochemical properties of the synthesized NiO/Ag/TiO2 composite were characterized by X-ray diffraction, Brunauer-Emmett-Teller surface area measurement method, transmission electron microscopy, energy-dispersive X-ray spectroscopy techniques, X-ray photoelectron spectroscopy technique, and ultraviolet-visible absorption spectroscopy. The results suggest that the well-dispersed small metallic silver nanoparticles (<3 nm) facilitate electron transfer and bridge nickel oxide and titanium oxide. The photocatalytic degradation and the methylene blue (MB) dye kinetics were carried out on a ternary NiO/Ag/TiO2 composite and compared to bare TiO2 under visible light irradiation. The results indicate that NiO/Ag/TiO2 has superior MB photodegradation efficiency with a high reaction rate constant and low degradation time (93.15% within 60 min) compared to Ag/TiO2, NiO/TiO2, and bare TiO2. NiO/Ag/TiO2 nanocomposite was also investigated for the most common pharmaceutical waste degradation and exhibited excellent degradation efficiency. The enhancement of the composite's performance could be attributed to the surface plasmonic resonance of the Ag nanoparticles, the formation of Schottky junctions at the Ag-TiO2 and Ag-NiO interface, and the p-n heterojunction between NiO and TiO2. Ag NPs act as a photosynthesizer and a photocatalyst, facilitate electron transfer, shift the absorption to the visible light region, reduce the band gap of TiO2, suppress the electron-hole recombination, and enhance the photocatalytic activity and stability as a result.
Collapse
Affiliation(s)
- Widad Mohammed
- Material
Science and Technology Program, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Maha Matalkeh
- Liberal
Arts and Science, Virginia Commonwealth
University School of Arts in Qatar, PO Box 8095, Doha, Qatar
| | - Rola Mohammad Al Soubaihi
- Functional
NanoMaterials Group, Department of Applied Physics, School of Engineering
Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg
12, 11419 Stockholm, Sweden
| | - Ahmed Elzatahry
- Material
Science and Technology Program, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Khaled M. Saoud
- Liberal
Arts and Science, Virginia Commonwealth
University School of Arts in Qatar, PO Box 8095, Doha, Qatar
| |
Collapse
|
3
|
Chinnabathini VC, Dingenen F, Borah R, Abbas I, van der Tol J, Zarkua Z, D'Acapito F, Nguyen THT, Lievens P, Grandjean D, Verbruggen SW, Janssens E. Gas phase deposition of well-defined bimetallic gold-silver clusters for photocatalytic applications. NANOSCALE 2023; 15:6696-6708. [PMID: 36938628 DOI: 10.1039/d2nr07287d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cluster beam deposition is employed for fabricating well-defined bimetallic plasmonic photocatalysts to enhance their activity while facilitating a more fundamental understanding of their properties. AuxAg1-x clusters with compositions (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1) spanning the metals' miscibility range were produced in the gas-phase and soft-landed on TiO2 P25-coated silicon wafers with an optimal coverage of 4 atomic monolayer equivalents. Electron microscopy images show that at this coverage most clusters remain well dispersed whereas EXAFS data are in agreement with the finding that the deposited clusters have an average size of ca. 5 nm and feature the same composition as the ablated alloy targets. A composition-dependant electron transfer from Au to Ag that is likely to impart chemical stability to the bimetallic clusters and protect Ag atoms against oxidation is additionally evidenced by XPS and XANES. Under simulated solar light, AuxAg1-x clusters show a remarkable composition-dependent volcano-type enhancement of their photocatalytic activity towards degradation of stearic acid, a model compound for organic fouling on surfaces. The Formal Quantum Efficiency (FQE) is peaking at the Au0.3Ag0.7 composition with a value that is twice as high as that of the pristine TiO2 P25 under solar simulator. Under UV the FQE of all compositions remains similar to that of pristine TiO2. A classical electromagnetic simulation study confirms that among all compositions Au0.3Ag0.7 features the largest near-field enhancement in the wavelength range of maximal solar light intensity, as well as sufficient individual photon energy resulting in a better photocatalytic self-cleaning activity. This allows ascribing the mechanism for photocatalysis mostly to the plasmonic effect of the bimetallic clusters through direct electron injection and near-field enhancement from the resonant cluster towards the conduction band of TiO2. These results not only demonstrate the added value of using well-defined bimetallic nanocatalysts to enhance their photocatalytic activity but also highlights the potential of the cluster beam deposition to design tailored noble metal modified photocatalytic surfaces with controlled compositions and sizes without involving potentially hazardous chemical agents.
Collapse
Affiliation(s)
- Vana Chinnappa Chinnabathini
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerpen, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Fons Dingenen
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerpen, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Rituraj Borah
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerpen, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Imran Abbas
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Johan van der Tol
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Zviadi Zarkua
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | | | - Thi Hong Trang Nguyen
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Peter Lievens
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Didier Grandjean
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Sammy W Verbruggen
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerpen, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Ewald Janssens
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| |
Collapse
|
4
|
Ciocarlan RG, Blommaerts N, Lenaerts S, Cool P, Verbruggen SW. Recent Trends in Plasmon-Assisted Photocatalytic CO 2 Reduction. CHEMSUSCHEM 2023; 16:e202201647. [PMID: 36626298 DOI: 10.1002/cssc.202201647] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Direct photocatalytic reduction of CO2 has become an highly active field of research. It is thus of utmost importance to maintain an overview of the various materials used to sustain this process, find common trends, and, in this way, eventually improve the current conversions and selectivities. In particular, CO2 photoreduction using plasmonic photocatalysts under solar light has gained tremendous attention, and a wide variety of materials has been developed to reduce CO2 towards more practical gases or liquid fuels (CH4 , CO, CH3 OH/CH3 CH2 OH) in this manner. This Review therefore aims at providing insights in current developments of photocatalysts consisting of only plasmonic nanoparticles and semiconductor materials. By classifying recent studies based on product selectivity, this Review aims to unravel common trends that can provide effective information on ways to improve the photoreduction yield or possible means to shift the selectivity towards desired products, thus generating new ideas for the way forward.
Collapse
Affiliation(s)
- Radu-George Ciocarlan
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Natan Blommaerts
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Silvia Lenaerts
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Pegie Cool
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Sammy W Verbruggen
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
5
|
Volders J, Elen K, Raes A, Ninakanti R, Kelchtermans AS, Sastre F, Hardy A, Cool P, Verbruggen SW, Buskens P, Van Bael MK. Sunlight-Powered Reverse Water Gas Shift Reaction Catalysed by Plasmonic Au/TiO 2 Nanocatalysts: Effects of Au Particle Size on the Activity and Selectivity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4153. [PMID: 36500776 PMCID: PMC9738324 DOI: 10.3390/nano12234153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
This study reports the low temperature and low pressure conversion (up to 160 °C, p = 3.5 bar) of CO2 and H2 to CO using plasmonic Au/TiO2 nanocatalysts and mildly concentrated artificial sunlight as the sole energy source (up to 13.9 kW·m-2 = 13.9 suns). To distinguish between photothermal and non-thermal contributors, we investigated the impact of the Au nanoparticle size and light intensity on the activity and selectivity of the catalyst. A comparative study between P25 TiO2-supported Au nanocatalysts of a size of 6 nm and 16 nm displayed a 15 times higher activity for the smaller particles, which can only partially be attributed to the higher Au surface area. Other factors that may play a role are e.g., the electronic contact between Au and TiO2 and the ratio between plasmonic absorption and scattering. Both catalysts displayed ≥84% selectivity for CO (side product is CH4). Furthermore, we demonstrated that the catalytic activity of Au/TiO2 increases exponentially with increasing light intensity, which indicated the presence of a photothermal contributor. In dark, however, both Au/TiO2 catalysts solely produced CH4 at the same catalyst bed temperature (160 °C). We propose that the difference in selectivity is caused by the promotion of CO desorption through charge transfer of plasmon generated charges (as a non-thermal contributor).
Collapse
Affiliation(s)
- Jordi Volders
- Design and Synthesis of Inorganic Materials (DESINe), Institute for Materials Research, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- Imec Vzw, Imomec Associated Laboratory, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- EnergyVille, Thor Park 8320, 3600 Genk, Belgium
| | - Ken Elen
- Design and Synthesis of Inorganic Materials (DESINe), Institute for Materials Research, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- Imec Vzw, Imomec Associated Laboratory, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- EnergyVille, Thor Park 8320, 3600 Genk, Belgium
| | - Arno Raes
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Rajeshreddy Ninakanti
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - An-Sofie Kelchtermans
- Design and Synthesis of Inorganic Materials (DESINe), Institute for Materials Research, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- Imec Vzw, Imomec Associated Laboratory, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- EnergyVille, Thor Park 8320, 3600 Genk, Belgium
| | - Francesc Sastre
- The Netherlands Organisation for Applied Scientific Research (TNO), High Tech Campus 25, 5656 AE Eindhoven, The Netherlands
| | - An Hardy
- Design and Synthesis of Inorganic Materials (DESINe), Institute for Materials Research, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- Imec Vzw, Imomec Associated Laboratory, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- EnergyVille, Thor Park 8320, 3600 Genk, Belgium
| | - Pegie Cool
- Laboratory of Adsorption and Catalysis, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Sammy W. Verbruggen
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Pascal Buskens
- Design and Synthesis of Inorganic Materials (DESINe), Institute for Materials Research, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- The Netherlands Organisation for Applied Scientific Research (TNO), High Tech Campus 25, 5656 AE Eindhoven, The Netherlands
| | - Marlies K. Van Bael
- Design and Synthesis of Inorganic Materials (DESINe), Institute for Materials Research, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- Imec Vzw, Imomec Associated Laboratory, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- EnergyVille, Thor Park 8320, 3600 Genk, Belgium
| |
Collapse
|
6
|
Negrín-Montecelo Y, Brissaud C, Piquemal JY, Govorov AO, Correa-Duarte MA, Besteiro LV, Comesaña-Hermo M. Plasmonic photocatalysis in aqueous solution: assessing the contribution of thermal effects and evaluating the role of photogenerated ROS. NANOSCALE 2022; 14:11612-11618. [PMID: 35866634 DOI: 10.1039/d2nr02431d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plasmon-induced photocatalysis can drive photochemical processes with an unprecedented control of reactivity, using light as sole energy source. Nevertheless, disentangling the relative importance of thermal and non-thermal features upon plasmonic excitation remains a difficult task. In this work we intend to separate the role played by the photogenerated charge carriers from thermal mechanisms in the plasmonic photo-oxidation of a model organic substrate in aqueous solution and using a metal-semiconductor hybrid as model photocatalyst. Accordingly, we present a simple set of experimental procedures and simulations that allow us to discard the thermal dissipation upon plasmonic excitation as the main driving force behind these chemical reactions. Moreover, we also study the photogeneration of reactive oxygen species (ROS), discussing their fundamental role in photo-oxidation reactions and the information they provide regarding the reactivity of the photogenerated electrons and holes.
Collapse
Affiliation(s)
- Yoel Negrín-Montecelo
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IISGS), CIBERSAM, 36310 Vigo, Spain
| | | | | | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, 45701 Ohio, USA
| | - Miguel A Correa-Duarte
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IISGS), CIBERSAM, 36310 Vigo, Spain
| | - Lucas V Besteiro
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IISGS), CIBERSAM, 36310 Vigo, Spain
| | | |
Collapse
|
7
|
Ninakanti R, Dingenen F, Borah R, Peeters H, Verbruggen SW. Plasmonic Hybrid Nanostructures in Photocatalysis: Structures, Mechanisms, and Applications. Top Curr Chem (Cham) 2022; 380:40. [PMID: 35951165 DOI: 10.1007/s41061-022-00390-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
(Sun)Light is an abundantly available sustainable source of energy that has been used in catalyzing chemical reactions for several decades now. In particular, studies related to the interaction of light with plasmonic nanostructures have been receiving increased attention. These structures display the unique property of localized surface plasmon resonance, which converts light of a specific wavelength range into hot charge carriers, along with strong local electromagnetic fields, and/or heat, which may all enhance the reaction efficiency in their own way. These unique properties of plasmonic nanoparticles can be conveniently tuned by varying the metal type, size, shape, and dielectric environment, thus prompting a research focus on rationally designed plasmonic hybrid nanostructures. In this review, the term "hybrid" implies nanomaterials that consist of multiple plasmonic or non-plasmonic materials, forming complex configurations in the geometry and/or at the atomic level. We discuss the synthetic techniques and evolution of such hybrid plasmonic nanostructures giving rise to a wide variety of material and geometric configurations. Bimetallic alloys, which result in a new set of opto-physical parameters, are compared with core-shell configurations. For the latter, the use of metal, semiconductor, and polymer shells is reviewed. Also, more complex structures such as Janus and antenna reactor composites are discussed. This review further summarizes the studies exploiting plasmonic hybrids to elucidate the plasmonic-photocatalytic mechanism. Finally, we review the implementation of these plasmonic hybrids in different photocatalytic application domains such as H2 generation, CO2 reduction, water purification, air purification, and disinfection.
Collapse
Affiliation(s)
- Rajeshreddy Ninakanti
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Fons Dingenen
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Rituraj Borah
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Hannelore Peeters
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sammy W Verbruggen
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
8
|
Negrín-Montecelo Y, Kong XT, Besteiro LV, Carbó-Argibay E, Wang ZM, Pérez-Lorenzo M, Govorov AO, Comesaña-Hermo M, Correa-Duarte MA. Synergistic Combination of Charge Carriers and Energy-Transfer Processes in Plasmonic Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35734-35744. [PMID: 35913208 DOI: 10.1021/acsami.2c08685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Important efforts are currently under way in order to develop further the nascent field of plasmonic photocatalysis, striving for improved efficiencies and selectivities. A significant fraction of such efforts has been focused on distinguishing, understanding, and enhancing specific energy-transfer mechanisms from plasmonic nanostructures to their environment. Herein, we report a synthetic strategy that combines two of the main physical mechanisms driving plasmonic photocatalysis into an engineered system by rationally combining the photochemical features of energetic charge carriers and the electromagnetic field enhancement inherent to the plasmonic excitation. We do so by creating hybrid photocatalysts that integrate multiple plasmonic resonators in a single entity, controlling their joint contribution through spectral separation and differential surface functionalization. This strategy allows us to create complex hybrids with improved photosensitization capabilities, thanks to the synergistic combination of two photosensitization mechanisms. Our results show that the hot electron injection can be combined with an energy-transfer process mediated by the near-field interaction, leading to a significant increase in the final photocatalytic response of the material and moving the field of plasmonic photocatalysis closer to energy-efficient applications. Furthermore, our multimodal hybrids offer a test system to probe the properties of the two targeted mechanisms in energy-related applications such as the photocatalytic generation of hydrogen and open the door to wavelength-selective photocatalysis and novel tandem reactions.
Collapse
Affiliation(s)
- Yoel Negrín-Montecelo
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IISGS), CIBERSAM, 36310 Vigo, Spain
| | - Xiang-Tian Kong
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054 Chengdu, China
| | - Lucas V Besteiro
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IISGS), CIBERSAM, 36310 Vigo, Spain
| | - Enrique Carbó-Argibay
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054 Chengdu, China
| | - Moisés Pérez-Lorenzo
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IISGS), CIBERSAM, 36310 Vigo, Spain
| | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
| | | | - Miguel A Correa-Duarte
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IISGS), CIBERSAM, 36310 Vigo, Spain
| |
Collapse
|
9
|
TiO2/Au/TiO2 Plasmonic Photocatalysts: The Influence of Titania Matrix and Gold Properties. INVENTIONS 2022. [DOI: 10.3390/inventions7030054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasmonic photocatalysts have gained more and more attention because of possible applications for solar energy conversion, environmental decontamination, and water treatment. However, the activity under visible light is usually very low, and the property-governed activity as well as the mechanisms are not fully understood yet. Accordingly, this study examines four different titania photocatalysts (anatase and rutile with fine and large crystallites) modified with gold by photodeposition. Three kinds of samples were prepared, as follows: (i) gold-modified titania (Au/TiO2), (ii) physically mixed Au/TiO2 samples (Au/TiO2(1) + Au/TiO2(2)), and (iii) Au/(TiO2(1) + Au/TiO2(2)) samples, prepared by subsequent deposition of gold on the mixture of bare and gold-modified titania. In total, twelve samples were prepared and well characterized, including diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning transmission electron microscopy (STEM). The photocatalytic activity was examined in three reaction systems: (i) methanol dehydrogenation during gold photodeposition under UV/vis irradiation, (ii) oxidative decomposition of acetic acid (UV/vis), and (iii) oxidation of 2-propanol to acetone under visible light irradiation (λ > 450 nm). It was found that during subsequent deposition, gold is mainly formed on the surface of pre-deposited Au nanoparticles (NPs), localized on fine titania NPs, through the electrostatic attractions (negatively charged gold resulting from photogenerated electrons’ accumulation). This gold aggregation, though detrimental for UV activity (many “naked” large titania with low activity), is highly beneficial for vis activity because of efficient light harvesting and increased interface between gold and titania (gold deposits surrounded by fine titania NPs). Moreover, it was found that rutile is more active than anatase for plasmonic photocatalysis, probably due to easier electron transfer from gold via titania to adsorbed oxygen (more negative conduction band), which might hinder the back reaction (electron transfer: Au→TiO2→Au).
Collapse
|
10
|
Lorber K, Djinović P. Accelerating photo-thermal CO 2 reduction to CO, CH 4 or methanol over metal/oxide semiconductor catalysts. iScience 2022; 25:104107. [PMID: 35378856 PMCID: PMC8976152 DOI: 10.1016/j.isci.2022.104107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Photo-thermal reduction of atmospheric carbon dioxide into methane, methanol, and carbon monoxide under mild conditions over suitable (photo)catalysts is a feasible pathway for the production of fuels and platform chemicals with minimal involvement of fossil fuels. In this perspective, we showcase transition metal nanoparticles (Ni, Cu, and Ru) dispersed over oxide semiconductors and their ability to act as photo catalysts in reverse water gas shift reaction (RWGS), methane dry reforming, methanol synthesis, and Sabatier reactions. By using a combination of light and thermal energy for activation, reactions can be sustained at much lower temperatures compared to thermally driven reactions and light can be used to leverage reaction selectivity between methanol, methane, and CO. In addition to influencing the reaction mechanism and decreasing the apparent activation energies, accelerating reaction rates and boosting selectivity beyond thermodynamic limitations is possible. We also provide future directions for research to advance the current state of the art in photo-thermal CO2 conversion.
Collapse
Affiliation(s)
- Kristijan Lorber
- Department of Inorganic Chemistry and Technology, Laboratory for Catalysts, National Institute of Chemistry, Hajdrihova ulica 19, SI-1000 Ljubljana, Slovenia.,University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Petar Djinović
- Department of Inorganic Chemistry and Technology, Laboratory for Catalysts, National Institute of Chemistry, Hajdrihova ulica 19, SI-1000 Ljubljana, Slovenia.,University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| |
Collapse
|
11
|
Kumar A, Choudhary P, Kumar A, Camargo PHC, Krishnan V. Recent Advances in Plasmonic Photocatalysis Based on TiO 2 and Noble Metal Nanoparticles for Energy Conversion, Environmental Remediation, and Organic Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101638. [PMID: 34396695 DOI: 10.1002/smll.202101638] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/06/2021] [Indexed: 05/24/2023]
Abstract
Plasmonic photocatalysis has emerged as a prominent and growing field. It enables the efficient use of sunlight as an abundant and renewable energy source to drive a myriad of chemical reactions. For instance, plasmonic photocatalysis in materials comprising TiO2 and plasmonic nanoparticles (NPs) enables effective charge carrier separation and the tuning of optical response to longer wavelength regions (visible and near infrared). In fact, TiO2 -based materials and plasmonic effects are at the forefront of heterogeneous photocatalysis, having applications in energy conversion, production of liquid fuels, wastewater treatment, nitrogen fixation, and organic synthesis. This review aims to comprehensively summarize the fundamentals and to provide the guidelines for future work in the field of TiO2 -based plasmonic photocatalysis comprising the above-mentioned applications. The concepts and state-of-the-art description of important parameters including the formation of Schottky junctions, hot electron generation and transfer, near field electromagnetic enhancement, plasmon resonance energy transfer, scattering, and photothermal heating effects have been covered in this review. Synthetic approaches and the effect of various physicochemical parameters in plasmon-mediated TiO2 -based materials on performances are discussed. It is envisioned that this review may inspire and provide insights into the rational development of the next generation of TiO2 -based plasmonic photocatalysts with target performances and enhanced selectivities.
Collapse
Affiliation(s)
- Ajay Kumar
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Priyanka Choudhary
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Ashish Kumar
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Pedro H C Camargo
- University of Helsinki, Department of Chemistry, A.I. Virtasen aukio 1, Helsinki, Finland
| | - Venkata Krishnan
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
12
|
Moon CW, Choi MJ, Hyun JK, Jang HW. Enhancing photoelectrochemical water splitting with plasmonic Au nanoparticles. NANOSCALE ADVANCES 2021; 3:5981-6006. [PMID: 36133946 PMCID: PMC9417564 DOI: 10.1039/d1na00500f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/24/2021] [Indexed: 05/14/2023]
Abstract
The water-based renewable chemical energy cycle has attracted interest due to its role in replacing existing non-renewable resources and alleviating environmental issues. Utilizing the semi-infinite solar energy source is the most appropriate way to sustain such a water-based energy cycle by producing and feeding hydrogen and oxygen. For production, an efficient photoelectrode is required to effectively perform the photoelectrochemical water splitting reaction. For this purpose, appropriately engineered nanostructures can be introduced into the photoelectrode to enhance light-matter interactions for efficient generation and transport of charges and activation of surface chemical reactions. Plasmon enhanced photoelectrochemical water splitting, whose performance can potentially exceed classical efficiency limits, is of great importance in this respect. Plasmonic gold nanoparticles are widely accepted nanomaterials for such applications because they possess high chemical stability, efficiently absorb visible light unlike many inorganic oxides, and enhance light-matter interactions with localized plasmon relaxation processes. However, our understanding of the physical phenomena behind these particles is still not complete. This review paper focuses on understanding the interfacial phenomena between gold nanoparticles and semiconductors and provides a summary and perspective of recent studies on plasmon enhanced photoelectrochemical water splitting using gold nanoparticles.
Collapse
Affiliation(s)
- Cheon Woo Moon
- Department of Chemistry and Nanoscience, Ewha Womans University 52 Ewhayeodae-gil, Seodaemun-gu Seoul 03760 Republic of Korea
| | - Min-Ju Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| | - Jerome Kartham Hyun
- Department of Chemistry and Nanoscience, Ewha Womans University 52 Ewhayeodae-gil, Seodaemun-gu Seoul 03760 Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University Suwon 16229 Republic of Korea
| |
Collapse
|
13
|
Layer-by-Layer-Stabilized Plasmonic Gold-Silver Nanoparticles on TiO 2: Towards Stable Solar Active Photocatalysts. NANOMATERIALS 2021; 11:nano11102624. [PMID: 34685070 PMCID: PMC8540643 DOI: 10.3390/nano11102624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022]
Abstract
To broaden the activity window of TiO2, a broadband plasmonic photocatalyst has been designed and optimized. This plasmonic ‘rainbow’ photocatalyst consists of TiO2 modified with gold–silver composite nanoparticles of various sizes and compositions, thus inducing a broadband interaction with polychromatic solar light. However, these nanoparticles are inherently unstable, especially due to the use of silver. Hence, in this study the application of the layer-by-layer technique is introduced to create a protective polymer shell around the metal cores with a very high degree of control. Various TiO2 species (pure anatase, PC500, and P25) were loaded with different plasmonic metal loadings (0–2 wt %) in order to identify the most solar active composite materials. The prepared plasmonic photocatalysts were tested towards stearic acid degradation under simulated sunlight. From all materials tested, P25 + 2 wt % of plasmonic ‘rainbow’ nanoparticles proved to be the most promising (56% more efficient compared to pristine P25) and was also identified as the most cost-effective. Further, 2 wt % of layer-by-layer-stabilized ‘rainbow’ nanoparticles were loaded on P25. These layer-by-layer-stabilized metals showed superior stability under a heated oxidative atmosphere, as well as in a salt solution. Finally, the activity of the composite was almost completely retained after 1 month of aging, while the nonstabilized equivalent lost 34% of its initial activity. This work shows for the first time the synergetic application of a plasmonic ‘rainbow’ concept and the layer-by-layer stabilization technique, resulting in a promising solar active, and long-term stable photocatalyst.
Collapse
|
14
|
Mendonça CD, Khan SU, Rahemi V, Verbruggen SW, Machado SA, De Wael K. Surface plasmon resonance-induced visible light photocatalytic TiO2 modified with AuNPs for the quantification of hydroquinone. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Electric Field Assisted Femtosecond Laser Preparation of Au@TiO 2 Composites with Controlled Morphology and Crystallinity for Photocatalytic Degradation. MATERIALS 2021; 14:ma14143816. [PMID: 34300735 PMCID: PMC8303837 DOI: 10.3390/ma14143816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/13/2022]
Abstract
TiO2 is popular in photocatalytic degradation dye pollutants due to its abundance and its stability under photochemical conditions. Au loaded TiO2 can achieve efficient absorption of visible light and deal with the problem of low conversion efficiency for solar energy of TiO2. This work presents a new strategy to prepare Au nanoparticles-loaded TiO2 composites through electric−field−assisted temporally−shaped femtosecond laser liquid-phase ablation of Au3+ and amorphous TiO2. By adjusting the laser pulse delay and electric field parameters, gold nanoparticles with different structures can be obtained, such as nanospheres, nanoclusters, and nanostars (AuNSs). AuNSs can promote the local crystallization of amorphous TiO2 in the preparation process and higher free electron density can also be excited to work together with the mixed crystalline phase, hindering the recombination between carriers and holes to achieve efficient photocatalytic degradation. The methylene blue can be effectively degraded by 86% within 30 min, and much higher than the 10% of Au nanoparticles loaded amorphous TiO2. Moreover, the present study reveals the crystallization process and control methods for preparing nanoparticles by laser liquid ablation, providing a green and effective new method for the preparation of high-efficiency photocatalytic materials.
Collapse
|
16
|
Decoration of conjugated polyquinoxaline dots on mesoporous TiO2 nanofibers for visible-light-driven photocatalysis. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Tomko JA, Runnerstrom EL, Wang YS, Chu W, Nolen JR, Olson DH, Kelley KP, Cleri A, Nordlander J, Caldwell JD, Prezhdo OV, Maria JP, Hopkins PE. Long-lived modulation of plasmonic absorption by ballistic thermal injection. NATURE NANOTECHNOLOGY 2021; 16:47-51. [PMID: 33169011 DOI: 10.1038/s41565-020-00794-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Light-matter interactions that induce charge and energy transfer across interfaces form the foundation for photocatalysis1,2, energy harvesting3 and photodetection4, among other technologies. One of the most common mechanisms associated with these processes relies on carrier injection. However, the exact role of the energy transport associated with this hot-electron injection remains unclear. Plasmon-assisted photocatalytic efficiencies can improve when intermediate insulation layers are used to inhibit the charge transfer5,6 or when off-resonance excitations are employed7, which suggests that additional energy transport and thermal effects could play an explicit role even if the charge transfer is inhibited8. This provides an additional interfacial mechanism for the catalytic and plasmonic enhancement at interfaces that moves beyond the traditionally assumed physical charge injection9-12. In this work, we report on a series of ultrafast plasmonic measurements that provide a direct measure of electronic distributions, both spatially and temporally, after the optical excitation of a metal/semiconductor heterostructure. We explicitly demonstrate that in cases of strong non-equilibrium, a novel energy transduction mechanism arises at the metal/semiconductor interface. We find that hot electrons in the metal contact transfer their energy to pre-existing free electrons in the semiconductor, without an equivalent spatiotemporal transfer of charge. Further, we demonstrate that this ballistic thermal injection mechanism can be utilized as a unique means to modulate plasmonic interactions. These experimental results are well-supported by both rigorous multilayer optical modelling and first-principle ab initio calculations.
Collapse
Affiliation(s)
- John A Tomko
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, USA
| | - Evan L Runnerstrom
- Army Research Office, CCDC US Army Research Laboratory, Research Triangle Park, NC, USA
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - Yi-Siang Wang
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA
| | - Weibin Chu
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA
| | - Joshua R Nolen
- Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| | - David H Olson
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kyle P Kelley
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - Angela Cleri
- Department of Materials Science and Engineering, Pennsylvania State University, State College, PA, USA
| | - Josh Nordlander
- Department of Materials Science and Engineering, Pennsylvania State University, State College, PA, USA
| | - Joshua D Caldwell
- Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA
| | - Jon-Paul Maria
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
- Department of Materials Science and Engineering, Pennsylvania State University, State College, PA, USA
| | - Patrick E Hopkins
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Physics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
18
|
Siavash Moakhar R, AbdelFatah T, Sanati A, Jalali M, Flynn SE, Mahshid SS, Mahshid S. A Nanostructured Gold/Graphene Microfluidic Device for Direct and Plasmonic-Assisted Impedimetric Detection of Bacteria. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23298-23310. [PMID: 32302093 DOI: 10.1021/acsami.0c02654] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hierarchical 3D gold nano-/microislands (NMIs) are favorably structured for direct and probe-free capture of bacteria in optical and electrochemical sensors. Moreover, their unique plasmonic properties make them a suitable candidate for plasmonic-assisted electrochemical sensors, yet the charge transfer needs to be improved. In the present study, we propose a novel plasmonic-assisted electrochemical impedimetric detection platform based on hybrid structures of 3D gold NMIs and graphene (Gr) nanosheets for probe-free capture and label-free detection of bacteria. The inclusion of Gr nanosheets significantly improves the charge transfer, addressing the central issue of using 3D gold NMIs. Notably, the 3D gold NMIs/Gr detection platform successfully distinguishes between various types of bacteria including Escherichia coli (E. coli) K12, Pseudomonas putida (P. putida), and Staphylococcus epidermidis (S. epidermidis) when electrochemical impedance spectroscopy is applied under visible light. We show that distinguishable and label-free impedimetric detection is due to dissimilar electron charge transfer caused by various sizes, morphologies, and compositions of the cells. In addition, the finite-difference time-domain (FDTD) simulation of the electric field indicates the intensity of charge distribution at the edge of the NMI structures. Furthermore, the wettability studies demonstrated that contact angle is a characteristic feature of each type of captured bacteria on the 3D gold NMIs, which strongly depends on the shape, morphology, and size of the cells. Ultimately, exposing the platform to various dilutions of the three bacteria strains revealed the ability to detect dilutions as low as ∼20 CFU/mL in a wide linear range of detection of 2 × 101-105, 2 × 101-104, and 1 × 102-1 × 105 CFU/mL for E. coli, P. putida, and S. epidermidis, respectively. The proposed hybrid structure of 3D gold NMIs and Gr, combined by novel plasmonic and conventional impedance spectroscopy techniques, opens interesting avenues in ultrasensitive label-free detection of bacteria with low cost and high stability.
Collapse
Affiliation(s)
| | - Tamer AbdelFatah
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Alireza Sanati
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | | | - Sahar Sadat Mahshid
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| |
Collapse
|
19
|
Tada H. Overall water splitting and hydrogen peroxide synthesis by gold nanoparticle-based plasmonic photocatalysts. NANOSCALE ADVANCES 2019; 1:4238-4245. [PMID: 36134411 PMCID: PMC9417117 DOI: 10.1039/c9na00431a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/16/2019] [Indexed: 05/26/2023]
Abstract
Plasmonic photocatalysts driven by the localized surface plasmon resonance excitation of gold nanoparticles (Au NPs) can be efficient solar-to-chemical converters due to their wide spectral response. This review article highlights recent studies on plasmonic water splitting and H2O2 synthesis from water and oxygen (O2) with a particular emphasis placed on the electrocatalysis of Au NPs. The Introduction (Section 1) points to the importance of the establishment of solar hydrogen and oxygen cycles involving hydrogen (H2) and hydrogen peroxide (H2O2) as the key compound, respectively, for realizing a "sustainable society". Section 2 deals with the basic action mechanisms of Au NP-based plasmonic photocatalysts. Section 3 treats the electrocatalytic activity of Au NPs for the half-reactions involved in the reactions. Section 4 describes recent advances in the plasmonic overall water splitting (4.1) and H2O2 synthesis (4.2). Finally, a summary is presented with the possible development direction in Section 5.
Collapse
Affiliation(s)
- Hiroaki Tada
- Department of Applied Chemistry, School of Science and Engineering, Kindai University 3-4-1, Kowakae, Higashi-Osaka Osaka 577-8502 Japan
| |
Collapse
|
20
|
Blommaerts N, Vanrompay H, Nuti S, Lenaerts S, Bals S, Verbruggen SW. Unraveling Structural Information of Turkevich Synthesized Plasmonic Gold-Silver Bimetallic Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902791. [PMID: 31448568 DOI: 10.1002/smll.201902791] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/24/2019] [Indexed: 06/10/2023]
Abstract
For the synthesis of gold-silver bimetallic nanoparticles, the Turkevich method has been the state-of-the-art method for several decades. It is presumed that this procedure results in a homogeneous alloy, although this has been debatable for many years. In this work, it is shown that neither a full alloy, nor a perfect core-shell particle is formed but rather a core-shell-like particle with altering metal composition along the radial direction. In-depth wet-chemical experiments are performed in combination with advanced transmission electron microscopy, including energy-dispersive X-ray tomography, and finite element method modeling to support the observations. From the electron tomography results, the core-shell structure can be clearly visualized and the spatial distribution of gold and silver atoms can be quantified. Theoretical simulations are performed to demonstrate that even though UV-vis spectra show only one plasmon band, this still originates from core-shell type structures. The simulations also indicate that the core-shell morphology does not so much affect the location of the plasmon band, but mainly results in significant band broadening. Wet-chemistry experiments provide the evidence that the synthesis pathway starts with gold enriched alloy cores, and later on in the synthesis mainly silver is incorporated to end up with a silver enriched alloy shell.
Collapse
Affiliation(s)
- Natan Blommaerts
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Hans Vanrompay
- Electron Microscopy for Materials Science (EMAT), Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Silvia Nuti
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Electron Microscopy for Materials Science (EMAT), Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Silvia Lenaerts
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT), Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sammy W Verbruggen
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|