1
|
Stewart DC, Brisson BK, Yen WK, Liu Y, Wang C, Ruthel G, Gullberg D, Mauck RL, Maden M, Han L, Volk SW. TYPE III COLLAGEN REGULATES MATRIX ARCHITECTURE AND MECHANOSENSING DURING WOUND HEALING. J Invest Dermatol 2024:S0022-202X(24)02078-5. [PMID: 39236902 DOI: 10.1016/j.jid.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
Post-natal cutaneous wound healing is characterized by development of collagen-rich scar lacking the architecture and functional integrity of unwounded tissue. Directing cell behaviors to efficiently heal wounds while minimizing scar formation remains a major wound management goal. Herein, we demonstrate type III collagen (Col3) as a critical regulator of re-epithelialization and scar formation during healing of Col3-enriched, regenerative (Acomys), scar-permissive (CD-1 Mus and wild-type Col3B6/B6 mice), and Col3-deficient, scar-promoting (Col3F/F, a murine conditional knockdown model) cutaneous wound models. We define a scar-permissive fibrillar collagen architecture signature characterized by elongated and anisotropically-aligned collagen fibers that is dose-dependently suppressed by Col3. Further, loss of Col3 alters how cells interpret their microenvironment - their mechanoperception - such that Col3-deficient cells display mechanically-active phenotypes in the absence of increased microenvironmental stiffness via upregulation and engagement of the profibrotic integrin α11. Further understanding Col3's role in regulating matrix architecture and mechanoresponses may inform clinical strategies that harness pro-regenerative mechanisms.
Collapse
Affiliation(s)
- Daniel C Stewart
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Becky K Brisson
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William K Yen
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuchen Liu
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers (CCBIO), Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Robert L Mauck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Malcolm Maden
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Susan W Volk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Zhao LY, Wang XY, Wen ML, Pan NN, Yin XQ, An MW, Wang L, Liu Y, Song JB. Advances in injectable hydrogels for radiation-induced heart disease. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1031-1063. [PMID: 38340315 DOI: 10.1080/09205063.2024.2314364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Radiological heart damage (RIHD) is damage caused by unavoidable irradiation of the heart during chest radiotherapy, with a long latency period and a progressively increasing proportion of delayed cardiac damage due to conventional doses of chest radiotherapy. There is a risk of inducing diseases such as acute/chronic pericarditis, myocarditis, delayed myocardial fibrosis and damage to the cardiac conduction system in humans, which can lead to myocardial infarction or even death in severe cases. This paper details the pathogenesis of RIHD and gives potential targets for treatment at the molecular and cellular level, avoiding the drawbacks of high invasiveness and immune rejection due to drug therapy, medical device implantation and heart transplantation. Injectable hydrogel therapy has emerged as a minimally invasive tissue engineering therapy to provide necessary mechanical support to the infarcted myocardium and to act as a carrier for various bioactive factors and cells to improve the cellular microenvironment in the infarcted area and induce myocardial tissue regeneration. Therefore, this paper combines bioactive factors and cellular therapeutic mechanisms with injectable hydrogels, presents recent advances in the treatment of cardiac injury after RIHD with different injectable gels, and summarizes the therapeutic potential of various types of injectable hydrogels as a potential solution.
Collapse
Affiliation(s)
- Lu-Yao Zhao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xin-Yue Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Ling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Ning-Ning Pan
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xing-Qi Yin
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Wen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian-Bo Song
- Shanghai NewMed Medical Corporation, Shanghai, China
| |
Collapse
|
3
|
Pec J, Buchner S, Fox H, Oldenburg O, Stadler S, Maier LS, Arzt M, Wagner S. Inflammation and Fibrosis in Sleep-Disordered Breathing after Acute Myocardial Infarction. Biomedicines 2024; 12:154. [PMID: 38255259 PMCID: PMC10813793 DOI: 10.3390/biomedicines12010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND After acute myocardial infarction (AMI), inflammatory processes promote tissue remodeling at the infarct site. Procollagen III amino-terminal propeptide (PIIINP) is a circulating biomarker of type III collagen synthesis that has been shown to be associated with changes in left ventricular ejection fraction (LVEF) and predicts the occurrence of heart failure after AMI. We hypothesize that sleep-disordered breathing (SDB) promotes inflammation and myocardial fibrosis, leading to reduced myocardial salvage. Therefore, in patients with first-time AMI successfully treated with percutaneous coronary intervention (PCI), we aimed to investigate whether circulating levels of high-sensitivity C-reactive protein (hs-CRP) and PIIINP are elevated in patients with SDB compared to patients without SDB. METHODS AND RESULTS This cross-sectional analysis included a total of 88 eligible patients with first AMI and PCI pooled from two prospective studies and stratified according to the apnea-hypopnea index (AHI, with SDB: AHI ≥ 15 h-1). We analyzed circulating levels of hs-CRP and PIIINP 3-5 days after PCI. Patients with SDB had significantly higher levels of hs-CRP (18.3 mg/L [95% CI, 8.0-42.6] vs. 5.8 mg/L [95% CI, 4.2-19.8], p = 0.002) and PIIINP (0.49 U/mL [95% CI, 0.40-0.60] vs. 0.33 U/mL [95% CI, 0.28-0.43], p < 0.001). In a multivariable linear regression model accounting for important clinical confounders, SDB significantly predicted circulating levels of hs-CRP (p = 0.028). Similarly, only SDB was independently associated with PIIINP (p < 0.001). Only obstructive but not central AHI correlated with circulating levels of hs-CRP (p = 0.012) and PIIINP (p = 0.006) levels. CONCLUSIONS The presence of obstructive SDB after AMI was independently associated with increased circulating levels of hs-CRP and PIIINP. Our results emphasize the important role of SDB as a common comorbidity and indicate increased inflammation and myocardial fibrosis in these patients.
Collapse
Affiliation(s)
- Jan Pec
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany (L.S.M.); (M.A.); (S.W.)
| | - Stefan Buchner
- Department of Internal Medicine, Cham Hospital, 93413 Cham, Germany
| | - Henrik Fox
- Clinic for General and Interventional Cardiology/Angiology, Heart and Diabetes Center NRW, Ruhr University Bochum, 32545 Bad Oeynhausen, Germany
| | - Olaf Oldenburg
- Center for Cardiology, Ludgerus-Kliniken, 48153 Münster, Germany;
| | - Stefan Stadler
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany (L.S.M.); (M.A.); (S.W.)
| | - Lars S. Maier
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany (L.S.M.); (M.A.); (S.W.)
| | - Michael Arzt
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany (L.S.M.); (M.A.); (S.W.)
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany (L.S.M.); (M.A.); (S.W.)
| |
Collapse
|
4
|
Vetter VC, Bouten CVC, van der Pol A. Hydrogels for Cardiac Restorative Support: Relevance of Gelation Mechanisms for Prospective Clinical Use. Curr Heart Fail Rep 2023; 20:519-529. [PMID: 37812347 PMCID: PMC10746579 DOI: 10.1007/s11897-023-00630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE OF REVIEW Cardiac tissue regenerative strategies have gained much traction over the years, in particular those utilizing hydrogels. With our review, and with special focus on supporting post-myocardial infarcted tissue, we aim to provide insights in determining crucial design considerations of a hydrogel and the implications these could have for future clinical use. RECENT FINDINGS To date, two hydrogel delivery strategies are being explored, cardiac injection or patch, to treat myocardial infarction. Recent advances have demonstrated that the mechanism by which a hydrogel is gelated (i.e., physically or chemically cross-linked) not only impacts the biocompatibility, mechanical properties, and chemical structure, but also the route of delivery of the hydrogel and thus its effect on cardiac repair. With regard to cardiac regeneration, various hydrogels have been developed with the ability to function as a delivery system for therapeutic strategies (e.g., drug and stem cells treatments), as well as a scaffold to guide cardiac tissue regeneration following myocardial infarction. However, these developments remain within the experimental and pre-clinical realm and have yet to transition towards the clinical setting.
Collapse
Affiliation(s)
- Valentine C Vetter
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Atze van der Pol
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
5
|
Li P, Hu J, Wang J, Zhang J, Wang L, Zhang C. The Role of Hydrogel in Cardiac Repair and Regeneration for Myocardial Infarction: Recent Advances and Future Perspectives. Bioengineering (Basel) 2023; 10:bioengineering10020165. [PMID: 36829659 PMCID: PMC9952459 DOI: 10.3390/bioengineering10020165] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
A myocardial infarction (MI) is the leading cause of morbidity and mortality, seriously threatens human health, and becomes a major health burden of our society. It is urgent to pursue effective therapeutic strategies for the regeneration and restore myocardial function after MI. This review discusses the role of hydrogel in cardiac repair and regeneration for MI. Hydrogel-based cardiac patches and injectable hydrogels are the most commonly used applications in cardiac regeneration medicine. With injectable hydrogels, bioactive compounds and cells can be delivered in situ, promoting in situ repair and regeneration, while hydrogel-based cardiac patches reduce myocardial wall stress, which passively inhibits ventricular expansion. Hydrogel-based cardiac patches work as mechanically supportive biomaterials. In cardiac regeneration medicine, clinical trials and commercial products are limited. Biomaterials, biochemistry, and biological actives, such as intelligent hydrogels and hydrogel-based exosome patches, which may serve as an effective treatment for MI in the future, are still under development. Further investigation of clinical feasibility is warranted. We can anticipate hydrogels having immense translational potential for cardiac regeneration in the near future.
Collapse
Affiliation(s)
- Ping Li
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiajia Hu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jian Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Junjie Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lu Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chengliang Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence:
| |
Collapse
|
6
|
Chen X, Zhu L, Wang X, Xiao J. Insight into Heart-Tailored Architectures of Hydrogel to Restore Cardiac Functions after Myocardial Infarction. Mol Pharm 2023; 20:57-81. [PMID: 36413809 DOI: 10.1021/acs.molpharmaceut.2c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With permanent heart muscle injury or death, myocardial infarction (MI) is complicated by inflammatory, proliferation and remodeling phases from both the early ischemic period and subsequent infarct expansion. Though in situ re-establishment of blood flow to the infarct zone and delays of the ventricular remodeling process are current treatment options of MI, they fail to address massive loss of viable cardiomyocytes while transplanting stem cells to regenerate heart is hindered by their poor retention in the infarct bed. Equipped with heart-specific mimicry and extracellular matrix (ECM)-like functionality on the network structure, hydrogels leveraging tissue-matching biomechanics and biocompatibility can mechanically constrain the infarct and act as localized transport of bioactive ingredients to refresh the dysfunctional heart under the constant cyclic stress. Given diverse characteristics of hydrogel including conductivity, anisotropy, adhesiveness, biodegradability, self-healing and mechanical properties driving local cardiac repair, we aim to investigate and conclude the dynamic balance between ordered architectures of hydrogels and the post-MI pathological milieu. Additionally, our review summarizes advantages of heart-tailored architectures of hydrogels in cardiac repair following MI. Finally, we propose challenges and prospects in clinical translation of hydrogels to draw theoretical guidance on cardiac repair and regeneration after MI.
Collapse
Affiliation(s)
- Xuerui Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Liyun Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xu Wang
- Hangzhou Medical College, Binjiang Higher Education Park, Binwen Road 481, Hangzhou 310053, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
7
|
Hu C, Liu W, Long L, Wang Z, Zhang W, He S, Lu L, Fan H, Yang L, Wang Y. Regeneration of infarcted hearts by myocardial infarction-responsive injectable hydrogels with combined anti-apoptosis, anti-inflammatory and pro-angiogenesis properties. Biomaterials 2022; 290:121849. [DOI: 10.1016/j.biomaterials.2022.121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/02/2022] [Indexed: 11/26/2022]
|
8
|
Meganathan I, Pachaiyappan M, Aarthy M, Radhakrishnan J, Mukherjee S, Shanmugam G, You J, Ayyadurai N. Recombinant and genetic code expanded collagen-like protein as a tailorable biomaterial. MATERIALS HORIZONS 2022; 9:2698-2721. [PMID: 36189465 DOI: 10.1039/d2mh00652a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Collagen occurs in nature with a dedicated triple helix structure and is the most preferred biomaterial in commercialized medical products. However, concerns on purity, disease transmission, and the reproducibility of animal derived collagen restrict its applications and warrants alternate recombinant sources. The expression of recombinant collagen in different prokaryotic and eukaryotic hosts has been reported with varying degrees of success, however, it is vital to elucidate the structural and biological characteristics of natural collagen. The recombinant production of biologically functional collagen is restricted by its high molecular weight and post-translational modification (PTM), especially the hydroxylation of proline to hydroxyproline. Hydroxyproline plays a key role in the structural stability and higher order self-assembly to form fibrillar matrices. Advancements in synthetic biology and recombinant technology are being explored for improving the yield and biomimicry of recombinant collagen. It emerges as reliable, sustainable source of collagen, promises tailorable properties and thereby custom-made protein biomaterials. Remarkably, the evolutionary existence of collagen-like proteins (CLPs) has been identified in single-cell organisms. Interestingly, CLPs exhibit remarkable ability to form stable triple helical structures similar to animal collagen and have gained increasing attention. Strategies to expand the genetic code of CLPs through the incorporation of unnatural amino acids promise the synthesis of highly tunable next-generation triple helical proteins required for the fabrication of smart biomaterials. The review outlines the importance of collagen, sources and diversification, and animal and recombinant collagen-based biomaterials and highlights the limitations of the existing collagen sources. The emphasis on genetic code expanded tailorable CLPs as the most sought alternate for the production of functional collagen and its advantages as translatable biomaterials has been highlighted.
Collapse
Affiliation(s)
- Ilamaran Meganathan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Mohandass Pachaiyappan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Mayilvahanan Aarthy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Janani Radhakrishnan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Smriti Mukherjee
- Division of Organic and Bio-organic Chemistry, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India
| | - Ganesh Shanmugam
- Division of Organic and Bio-organic Chemistry, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jingjing You
- Save Sight Institute, Sydney Medical School, University of Sydney, Australia
| | - Niraikulam Ayyadurai
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Hu W, Yang C, Guo X, Wu Y, Loh XJ, Li Z, Wu YL, Wu C. Research Advances of Injectable Functional Hydrogel Materials in the Treatment of Myocardial Infarction. Gels 2022; 8:423. [PMID: 35877508 PMCID: PMC9316750 DOI: 10.3390/gels8070423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 12/10/2022] Open
Abstract
Myocardial infarction (MI) has become one of the serious diseases threatening human life and health. However, traditional treatment methods for MI have some limitations, such as irreversible myocardial necrosis and cardiac dysfunction. Fortunately, recent endeavors have shown that hydrogel materials can effectively prevent negative remodeling of the heart and improve the heart function and long-term prognosis of patients with MI due to their good biocompatibility, mechanical properties, and electrical conductivity. Therefore, this review aims to summarize the research progress of injectable hydrogel in the treatment of MI in recent years and to introduce the rational design of injectable hydrogels in myocardial repair. Finally, the potential challenges and perspectives of injectable hydrogel in this field will be discussed, in order to provide theoretical guidance for the development of new and effective treatment strategies for MI.
Collapse
Affiliation(s)
- Wei Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Cui Yang
- School of Medicine, Xiamen University, Xiamen 361003, China;
| | - Xiaodan Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Yihong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE) Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This review describes the latest advances in cell therapy, biomaterials and 3D bioprinting for the treatment of cardiovascular disease. RECENT FINDINGS Cell therapies offer the greatest benefit for patients suffering from chronic ischemic and nonischemic cardiomyopathy. Rather than replacing lost cardiomyocytes, the effects of most cell therapies are mediated by paracrine signalling, mainly through the induction of angiogenesis and immunomodulation. Cell preconditioning, or genetic modifications are being studied to improve the outcomes. Biomaterials offer stand-alone benefits such as bioactive cues for cell survival, proliferation and differentiation, induction of vascularization or prevention of further cardiomyocyte death. They also provide mechanical support or electroconductivity, and can be used to deliver cells, growth factors or drugs to the injured site. Apart from classical biomaterial manufacturing techniques, 3D bioprinting offers greater spatial control over biomaterial deposition and higher resolution of the details, including hollow vessel-like structures. SUMMARY Cell therapy induces mainly angiogenesis and immunomodulation. The ability to induce direct cardiomyocyte regeneration to replace the lost cardiomyocytes is, however, still missing until embryonic or induced pluripotent stem cell use becomes available. Cell therapy would benefit from combinatorial use with biomaterials, as these can prolong cell retention and survival, offer additional mechanical support and provide inherent bioactive cues. Biomaterials can also be used to deliver growth factors, drugs, and other molecules. 3D bioprinting is a high-resolution technique that has great potential in cardiac therapy.
Collapse
|