1
|
Yuan J, Sun W, Zhang Z, Wang Y, Huang D, Ren D, Chen H, Wang X, Li G, Han Z. 5-Fluorouracil/curcumin loaded silk fibroin hydrogel for the adjuvant therapy in colorectal cancer. BIOMATERIALS ADVANCES 2025; 168:214108. [PMID: 39612752 DOI: 10.1016/j.bioadv.2024.214108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/21/2024] [Accepted: 11/03/2024] [Indexed: 12/01/2024]
Abstract
This study employed silk fibroin (SF) as a carrier material to encapsulate curcumin (CUR) and 5-fluorouracil (5-FU), forming a highly effective drug-loaded hydrogel. The process involved mixing SF solution containing 5-FU with curcumin solution dissolved in acetone (AC), leading to the formation of composite drug-loaded nanospheres with particle sizes ranging from 77.87 nm to 299.22 nm, demonstrated enhanced permeability and retention (EPR) effects, enabling passive targeting of solid tumors. After the formation of the nanospheres, they were dispersed into a solution containing SF and polyethylene glycol (PEG). Following gelation and PEG removal, a SF hydrogel loaded with 5-FU and CUR (5-FU/CUR@SF hydrogel) was obtained. Results indicated that the 5-FU/CUR@SF hydrogel exhibited excellent drug release properties, with 5-FU and CUR achieving sustained release of 59.66 ± 3.76 % and 47.94 ± 5.03 %, respectively, over a 400-h of sustainable releasing period. Human colorectal cancer cell line (HT-29) and normal human colon epithelial cell line (NCM-460) were cultured with the 5-FU/CUR@SF hydrogel, resulting an apoptosis rate of only 17.38 ± 1.98 % for NCM-460 cells, whereas the apoptosis rate for HT-29 cells significantly increased to 72.31 ± 2.18 %, and its cell viability dropped to 59.77 ± 0.55 %. These findings suggest that the 5-FU/CUR@SF hydrogel exhibits low cytotoxicity toward normal NCM-460 cells, while exerting significant and sustained inhibitory effects on HT-29 cancer cells. In conclusion, the SF-based drug-loaded composite hydrogel holds great potential as a novel adjuvant therapeutic strategy for the treatment of CRC.
Collapse
Affiliation(s)
- Jingxuan Yuan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China
| | - Weiwei Sun
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhibin Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dandan Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Donglin Ren
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Hong Chen
- Department of Integrated Traditional Chinese and Western Medicine, The Fourth Affiliated Hospital (Suzhou Dushu Lake Hospital) of Soochow University, Suzhou 215000, Jiangsu, China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Zhifen Han
- Department of Integrated Traditional Chinese and Western Medicine, The Fourth Affiliated Hospital (Suzhou Dushu Lake Hospital) of Soochow University, Suzhou 215000, Jiangsu, China.
| |
Collapse
|
2
|
Di KN, Ha PTM, Nguyen NP, Nguyen NY, Truong TC, Nguyen TTV, Truong QK, Nguyen MQ, Pham DT. Enhanced Anti-inflammatory Effects of Diclofenac Delivered Orally via Polyvinylpyrrolidone K30/Silk Fibroin Nanoparticles in a Murine Model of Carrageenan-Induced Paw Edema. ChemMedChem 2024:e202400760. [PMID: 39512215 DOI: 10.1002/cmdc.202400760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
Diclofenac has a relatively low oral bioavailability (50-60 %) and is quickly metabolized with a half-life of less than 1 h. Therefore, the oral therapeutic effect of diclofenac is not optimal. This research developed polyvinylpyrrolidone K30-functionalized silk fibroin nanoparticles as an effective delivery system for diclofenac (FNPs-PVP-DC). The FNPs-DC and FNPs-PVP-DC were formulated by two methods of adsorption and solvent exchange. Depending on the formulation factors, the obtained particles exhibited different properties of nano-scale sizes (400-800 nm), narrow size distribution, negatively charged surfaces (-17 to -19 mV), high PVP K30 incorporation (23 %-50 %), pHpzc of ~6.6, and appropriate chemical interactions. Interestingly, particles formulated by the adsorption method showed low drug encapsulation efficiencies of <15 %, whereas the solvent exchange method yielded moderate results of ~40 %. The FNPs-DC possessed aggregated patterns, while the FNPs-PVP-DC were more uniformly distributed. All formulations limited diclofenac release (<20 %) under gastric conditions and sustained its release in the intestinal environment. In in-vivo carrageenan-induced paw edema mice model, the FNPs-PVP-DC demonstrated a 20-30 % higher anti-inflammatory effect and a faster onset of action (within 1 h) compared to pure diclofenac at the same dose (5 mg/kg). These findings suggest that FNPs-PVP-DC have promising potential as novel oral anti-inflammatory products.
Collapse
Affiliation(s)
- Khanh Nguyen Di
- Technology, Medicine and Social Sciences Research Group, Dong Nai Technology University, Bien Hoa City, Vietnam
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Vietnam
| | - Phuong T M Ha
- Department of Chemistry, Faculty of Pharmacy and Nursing, Tay Do University, 68 Tran Chien Street, Can Tho, 900000, Vietnam
| | - Ngoc Phuc Nguyen
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Ngoc Yen Nguyen
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho, 900000, Vietnam
| | - Tri Cuong Truong
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho, 900000, Vietnam
| | - Thi Tuong Van Nguyen
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho, 900000, Vietnam
| | - Quoc-Ky Truong
- Faculty of Pharmacy, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, 700000, Vietnam
| | - Manh Quan Nguyen
- Department of Analytical Chemistry-Drug Quality Control, Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, Can Tho, 900000, Vietnam
| | - Duy Toan Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho, 900000, Vietnam
| |
Collapse
|
3
|
Li Y, Xiong Z, Feng Y, Jiang H, Sun Y, Kwok MH. Facile Preparation of Silica/Tannic Acid/Zein Microcapsules Templated from Non-Aqueous Pickering Emulsions and their Application in Cargo Protection. Macromol Rapid Commun 2024; 45:e2400289. [PMID: 39073047 DOI: 10.1002/marc.202400289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Microcapsules have attracted significant attention in academia and industry due to their unique properties for protecting and controlling the release of active substances. However, based on water-insoluble biopolymers, developing a straightforward approach to prepare microcapsules with improved biocompatibility and functional shells remains a great challenge. In this study, zein, a water-insoluble protein, is employed to prepare robust microcapsules facilely using oil-in-aqueous ethanol Pickering emulsions as templates. First, the emulsion template is stabilized by hydrophobic silica nanoparticles with in situ surface modification of tannic acid. The zein is then precipitated at the interface in a controlled manner using antisolvent approach to obtain silica/tannic acid/zein (STZ) microcapsules. It is found that the concentration of zein and the presence of tannic acid played a significant role in the formation of STZ microcapsules with well-defined morphology and a robust shell. The uniform deposition of zein on the surface of template droplets is facilitated by the interactions between tannic acid and zein via hydrogen bond and electrostatic force. Finally, the resulting STZ microcapsules showed super resistance to ultraviolet (UV) radiation and high temperature for the unstable, lipophilic, and active substance of β-carotene.
Collapse
Affiliation(s)
- Yunxing Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhiqiang Xiong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yikai Feng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hang Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yajuan Sun
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Man-Hin Kwok
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China
| |
Collapse
|
4
|
Lin C, Chen Z, Feng W, Wang R, Wang T. Salting-out effect-mediated size-control of protein nanoparticles towards controllable microstructures for sustained release of eugenol. Food Chem 2024; 439:138080. [PMID: 38070237 DOI: 10.1016/j.foodchem.2023.138080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024]
Abstract
Size and monodispersity of solid particles are essential to their structuring behaviors at biphasic interfaces. However, delicate control over biomolecular nanoparticle sizes is challenging. In this study, we prepared monodisperse rice protein (RP) nanoparticles by neutralizing RP solutions (pH 12.0) using combined treatments of cationic exchange resins (CERs) and HCl. CERs absorbed Na+ by releasing H+ without producing salt during neutralization. By compromising the usages of CERs and HCl when preparing RPs, the generation of NaCl can be delicately tailored, leading to controllable nanoparticle sizes from 20 nm to 30 nm. By mixing these nanoparticles with eugenol in an aqueous solution, the nanoparticles accommodated eugenol in their cores due to inward diffusion. Furthermore, such eugenol-contained nanoparticles with different sizes demonstrated tunable releases of eugenol due to size-dependent capillary forces, which can be harnessed for suppression of microbial growth on fruit with prolonged effective eugenol concentration.
Collapse
Affiliation(s)
- Chen Lin
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengxing Chen
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Feng
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ren Wang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tao Wang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Xu L, Wu C, Lay Yap P, Losic D, Zhu J, Yang Y, Qiao S, Ma L, Zhang Y, Wang H. Recent advances of silk fibroin materials: From molecular modification and matrix enhancement to possible encapsulation-related functional food applications. Food Chem 2024; 438:137964. [PMID: 37976879 DOI: 10.1016/j.foodchem.2023.137964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Silk fibroin materials are emergingly explored for food applications due to their inherent properties including safe oral consumption, biocompatibility, gelatinization, antioxidant performance, and mechanical properties. However, silk fibroin possesses drawbacks like brittleness owing to its inherent specific composition and structure, which limit their applications in this field. This review discusses current progress about molecular modification methods on silk fibroin such as extraction, blending, self-assembly, enzymatic catalysis, etc., to address these limitations and improve their physical/chemical properties. It also summarizes matrix enhancement strategies including freeze drying, spray drying, electrospinning/electrospraying, microfluidic spinning/wheel spinning, desolvation and supercritical fluid, to generate nano-, submicron-, micron-, or bulk-scale materials. It finally highlights the food applications of silk fibroin materials, including nutraceutical improvement, emulsions, enzyme immobilization and 3D/4D printing. This review also provides insights on potential opportunities (like safe modification, toxicity risk evaluation, and digestion conditions) and possibilities (like digital additive manufacturing) in functional food industry.
Collapse
Affiliation(s)
- Liang Xu
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China
| | - Chaoyang Wu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Pei Lay Yap
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Juncheng Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuxin Yang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shihao Qiao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China.
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China.
| |
Collapse
|
6
|
Yao S, Qin L, Ma L, Zhang X, Jiang H, Zhang J, Zhou C, Wu J. Novel antimicrobial and self-healing dental resin to combat secondary caries and restoration fracture. Dent Mater 2023; 39:1040-1050. [PMID: 37777432 DOI: 10.1016/j.dental.2023.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
OBJECTIVE Dental resin composites have been the most popular materials for repairing tooth decay in recent years. However, secondary caries and bulk fracture are the major hurdles that affect the lifetime of dental resin composites. This current study synthesized a novel antimicrobial and self-healing dental resin containing nanoparticle-modified self-healing microcapsules to combat secondary caries and restoration fracture. METHODS Multifunctional dental resins containing 0-20% nanoparticle-modified self-healing microcapsules were prepared. The water contact angle, antimicrobial properties, mechanical properties, cell toxicity, and self-healing capability of the dental resins were tested. RESULTS A novel multifunctional dental resin was synthesized. When the microcapsule mass fraction was 10%, the resin presented a strong bacteriostasis rate (80.3%) and excellent self-healing efficiency (66.1%), while the hydrophilicity, mechanical properties, and cell toxicity were not affected. SIGNIFICANCE The novel antimicrobial self-healing dental resin is a promising candidate for use in clinical practice, which provides a simple and highly efficient strategy to combat secondary caries and restoration fracture. This novel dental resin also gives the inspiration to prolong the service life of dental restorations.
Collapse
Affiliation(s)
- Shuo Yao
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Ludan Qin
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Li Ma
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Xiaoran Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - He Jiang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Jiajia Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Chuanjian Zhou
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Junling Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China.
| |
Collapse
|
7
|
Lin X, Cai L, Cao X, Zhao Y. Stimuli-responsive silk fibroin for on-demand drug delivery. SMART MEDICINE 2023; 2:e20220019. [PMID: 39188280 PMCID: PMC11235688 DOI: 10.1002/smmd.20220019] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 08/28/2024]
Abstract
Stimuli-responsive "smart" hydrogel biomaterials have attracted great attention in the biomedical field, especially in designing novel on-demand drug delivery systems. As a handful natural biomaterial approved by US Food and Drug Administration, silk fibroin (SF) has unique high temperature resistance as well as tunable structural composition. These properties make it one of the most ideal candidates for on-demand drug delivery. Meanwhile, recent advances in polymer modification and nanomaterials have fostered the development of various stimuli-responsive delivery systems. Here, we first review the recent advance in designing responsive SF-based delivery systems in different stimulus sources. These systems are able to release mediators in a desired manner in response to specific stimuli in active or passive manners. We then describe applications of these specially designed responsive delivery systems in wound healing, tumor therapy, as well as immunomodulation. We also discuss the future challenges and prospects of stimuli-responsive SF-based delivery systems.
Collapse
Affiliation(s)
- Xiang Lin
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
| | - Lijun Cai
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
| | - Xinyue Cao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| |
Collapse
|
8
|
Liang H, Chen K, Xie J, Yao L, Liu Y, Hu F, Li H, Lei Y, Wang Y, Lv L, Chen Z, Liu S, Liu Q, Wang Z, Li J, Chang YN, Li J, Yuan H, Xing G, Xing G. A Bone-Penetrating Precise Controllable Drug Release System Enables Localized Treatment of Osteoporotic Fracture Prevention via Modulating Osteoblast-Osteoclast Communication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207195. [PMID: 36971278 DOI: 10.1002/smll.202207195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Improving local bone mineral density (BMD) at fracture-prone sites of bone is a clinical concern for osteoporotic fracture prevention. In this study, a featured radial extracorporeal shock wave (rESW) responsive nano-drug delivery system (NDDS) is developed for local treatment. Based on a mechanic simulation, a sequence of hollow zoledronic acid (ZOL)-contained nanoparticles (HZNs) with controllable shell thickness that predicts various mechanical responsive properties is constructed by controlling the deposition time of ZOL and Ca2+ on liposome templates. Attributed to the controllable shell thickness, the fragmentation of HZNs and the release of ZOL and Ca2+ can be precisely controlled with the intervention of rESW. Furthermore, the distinct effect of HZNs with different shell thicknesses on bone metabolism after fragmentation is verified. In vitro co-culture experiments demonstrate that although HZN2 does not have the strongest osteoclasts inhibitory effect, the best pro-osteoblasts mineralization results are achieved via maintaining osteoblast-osteoclast (OB-OC) communication. In vivo, the HZN2 group also shows the strongest local BMD enhancement after rESW intervention and significantly improves bone-related parameters and mechanical properties in the ovariectomy (OVX)-induced osteoporosis (OP) rats. These findings suggest that an adjustable and precise rESW-responsive NDDS can effectively improve local BMD in OP therapy.
Collapse
Affiliation(s)
- Haojun Liang
- Department of Orthopedic, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, P. R. China
| | - Kui Chen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Jing Xie
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lei Yao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Yunpeng Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Fan Hu
- Department of Orthopedic, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, P. R. China
| | - Hao Li
- Department of Orthopedic, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, P. R. China
| | - Yinze Lei
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yujiao Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Linwen Lv
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Ziteng Chen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Sen Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Qiuyang Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Zhijie Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Jiacheng Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Ya-Nan Chang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Juan Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Hui Yuan
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Gengyan Xing
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Gengmei Xing
- Department of Orthopedic, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, P. R. China
| |
Collapse
|
9
|
Gu J, Liu M, Li L, Zhou L, He L, Deng W, Hu J. Osmanthus fragrance polyurethane/silk
fibroin‐based double‐shell
microcapsules for aromatic leather with sustained release fragrance. FLAVOUR FRAG J 2023. [DOI: 10.1002/ffj.3727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jiaying Gu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Ming Liu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Lin Li
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Lulu Zhou
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Lei He
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Weijun Deng
- School of Chemical and Environmental Engineering Shanghai Institute of Technology Shanghai China
| | - Jing Hu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| |
Collapse
|
10
|
Spray drying co-encapsulation of lactic acid bacteria and lipids: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Liu M, Millard PE, Urch H, Zeyons O, Findley D, Konradi R, Marelli B. Microencapsulation of High-Content Actives Using Biodegradable Silk Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201487. [PMID: 35802906 DOI: 10.1002/smll.202201487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/25/2022] [Indexed: 06/15/2023]
Abstract
There is a compelling need across several industries to substitute non-degradable, intentionally added microplastics with biodegradable alternatives. Nonetheless, stringent performance criteria in actives' controlled release and manufacturing at scale of emerging materials hinder the replacement of polymers used for microplastics fabrication with circular ones. Here, the authors demonstrate that active microencapsulation in a structural protein such as silk fibroin can be achieved by modulating protein protonation and chain relaxation at the point of material assembly. Silk fibroin micelles' size is tuned from several to hundreds of nanometers, enabling the manufacturing-by retrofitting spray drying and spray freeze drying techniques-of microcapsules with tunable morphology and structure, that is, hollow-spongy, hollow-smooth, hollow crumpled matrices, and hollow crumpled multi-domain. Microcapsules degradation kinetics and sustained release of soluble and insoluble payloads typically used in cosmetic and agriculture applications are controlled by modulating fibroin's beta-sheet content from 20% to near 40%. Ultraviolet-visible studies indicate that burst release of a commonly used herbicide (i.e., saflufenacil) significantly decreases from 25% to 0.8% via silk fibroin microencapsulation. As a proof-of-concept for agrochemicals applications, a 6-day greenhouse trial demonstrates that saflufenacil delivered on corn plants via silk microcapsules reduces crop injury when compared to the non-encapsulated version.
Collapse
Affiliation(s)
- Muchun Liu
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Henning Urch
- BASF SE, BASF Agricultural Center, Speyerer Str. 2, 67117, Limburgerhof, Germany
| | - Ophelie Zeyons
- BASF SE, Carl-Bosch-Straße 38, 67063, Ludwigshafen am Rhein, Germany
| | - Douglas Findley
- BASF Corporation, Research Triangle Park, Durham, NC, 27709, USA
| | - Rupert Konradi
- BASF Corporation, Harvard University, Pierce Hall 113, 29 Oxford St, Cambridge, MA, 02138, USA
| | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
12
|
Cai Y, Zhang Y, Qu Q, Xiong R, Tang H, Huang C. Encapsulated Microstructures of Beneficial Functional Lipids and Their Applications in Foods and Biomedicines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8165-8187. [PMID: 35767840 DOI: 10.1021/acs.jafc.2c02248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Beneficial functional lipids are essential nutrients for the growth and development of humans and animals, which nevertheless possess poor chemical stability because of heat/light-sensitivity. Various encapsulation technologies have been developed to protect these nutrients against adverse factors. Different microstructures are exhibited through different encapsulation methods, which influence the encapsulation efficiency and release behavior at the same time. This review summarizes the effects of preparation methods and process parameters on the microstructures of capsules at first. The mechanisms of the different microstructures on encapsulation efficiency and controlled release behavior of core materials are analyzed. Next, a comprehensive overview on the beneficial functional lipids capsules in the latest food and biomedicine applications are provided as well as the matching relationship between the microstructures of the capsules and applications are discussed. Finally, the remaining challenges and future possible directions that have potential interest are outlined. The purpose of this review is to convey the construction of beneficial functional lipids capsules and the function mechanism, a critical analysis on its current status and challenges, and opinions on its future development. This review is believed to promote communication among the food, pharmacy, agronomy, engineering, and nutrition industries.
Collapse
Affiliation(s)
- Yixin Cai
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Hu Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, P. R. China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| |
Collapse
|
13
|
Zheng C, Liu F, Xu K, Wu Y, Wang J. Preparation of ethyl cellulose–glycerol tribenzoate microcapsules in CO
2
/N
2
‐switchable hydrophilicity solvent and solvent recycling. J Appl Polym Sci 2022. [DOI: 10.1002/app.52788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cunchuan Zheng
- School of Chemistry and Chemical Engineering Southwest Petroleum University Chengdu People's Republic of China
| | - Fuchuan Liu
- School of Chemistry and Chemical Engineering Southwest Petroleum University Chengdu People's Republic of China
| | - Ke Xu
- PetroChina Research Institute of Petroleum Exploration & Development Beijing People's Republic of China
| | - Yang Wu
- School of Chemistry and Chemical Engineering Southwest Petroleum University Chengdu People's Republic of China
| | - Jinyu Wang
- School of Chemistry and Chemical Engineering Southwest Petroleum University Chengdu People's Republic of China
| |
Collapse
|
14
|
Yao S, Qin L, Wang Z, Zhu L, Zhou C, Wu J. Novel nanoparticle-modified multifunctional microcapsules with self-healing and antibacterial activities for dental applications. Dent Mater 2022; 38:1301-1315. [PMID: 35718598 DOI: 10.1016/j.dental.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Although microcapsules (MCs) have been used for dental resins to achieve self-healing capabilities, the fragile organic shell and single healing event functions during the service period limit their use. Herein, a novel nanoparticle-modified MC with a nano-antibacterial inorganic filler (NIF) containing a quaternary ammonium salt was synthesized to address these issues. METHODS MCs with 0 %-30 % NIFs were prepared via an in situ polymerization method and characterized their morphology, chemical composition, thermal stability, roughness, mechanical properties, and antibacterial effect. Subsequently, M-10 MCs were mixed into the resin matrix at a mass fraction of 7.5 %. The self-healing capability and cytotoxicity were evaluated. RESULTS The introduction of nanomaterials enhances the shell of the MCs and endows them with an antibacterial effect. With the addition of NIFs, the roughness, modulus, and hardness values of MCs all increased (p < 0.05). The presence of M-10 MCs reduced the CFU by 2-3 orders of magnitude compared to the control group. The dental resin containing 7.5 % M-10 MCs obtained almost 69 % self-healing efficiency, without significantly compromising cell viability (p < 0.05). SIGNIFICANCE Self-healing MCs with NIFs were prepared for the first time with strong antibacterial properties, a substantial self-healing capability, and low toxicity. This multifunctional MC is a promising candidate for use in dental resins to extend the service life and resolve the problem of bulk fracture and secondary caries.
Collapse
Affiliation(s)
- Shuo Yao
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Ludan Qin
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Zonghua Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Lin Zhu
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Chuanjian Zhou
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Junling Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China.
| |
Collapse
|
15
|
Xiao Z, Liu H, Zhao Q, Niu Y, Chen Z, Zhao D. Application of microencapsulation technology in silk fibers. J Appl Polym Sci 2022. [DOI: 10.1002/app.52351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
- School of Agriculture and Biology Shanghai Jiaotong University Shanghai China
| | - Huiqin Liu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Qixuan Zhao
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Yunwei Niu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Ziqian Chen
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Di Zhao
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| |
Collapse
|
16
|
Jiang W, Zhou G, Duan J, Liu D, Zhang Q, Tian F. Synthesis and Characterization of a Multifunctional Sustained-Release Organic-Inorganic Hybrid Microcapsule with Self-Healing and Flame-Retardancy Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15668-15679. [PMID: 33754691 DOI: 10.1021/acsami.1c01540] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As their service life increases, cement-based materials inevitably undergo microcracking and local damage. In response to this problem, this study used phacoemulsification-solvent volatilization to prepare a multifunctional sustained-release microcapsule (SFRM) with self-healing and flame-retardant characteristics. The synthesis of SFRM is based on the modification of ethyl cellulose with nano-SiO2 particles and cross-linking with a silane coupling agent to form an organic-inorganic hybrid wall material. The epoxy resin is blended with hexaphenoxy cyclotriphosphazene (HPCTP) to form a composite core emulsion. The surface morphology, particle size distribution, core-shell composition, and thermal stability of SFRM were analyzed via scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), Malvern, Fourier-transform infrared (FT-IR), and TD-DSC-DTG. It is concluded that SFRM was successfully synthesized with superior particle size distribution and thermal stability. When the ratio of SiO2 solution and EC alcohol solution reached 1:2, the particle size distribution of the microcapsules was 30-190 μm, and the D50 decreased to 70 μm. The core material content, slow-release performance, and flame retardancy of SFRM were measured using a UV-1800 spectrophotometer and Hartmann tubes, and the compressive and repair properties of SFRM were evaluated by uniaxial compression tests. The results demonstrate that SFRM has satisfactory slow-release and flame-retardancy properties, the LC is 67%, and the first-order kinetic model shows the best fit and conforms to the non-Fickian diffusion mechanism. The SFRM repair rate can reach approximately 61%. This is of substantial significance to the field of self-repairing cement-based materials.
Collapse
Affiliation(s)
- Wenjing Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Gang Zhou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jinjie Duan
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Dong Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qingtao Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Fuchao Tian
- State Key Laboratory of Coal Mine Safety Technology, Shenyang Research Institute, China Coal Technology and Engineering Group, Fushun 113122, China
| |
Collapse
|