1
|
Asadian E, Abbaszadeh S, Ghorbani-Bidkorpeh F, Rezaei S, Xiao B, Santos HA, Shahbazi MA. Hijacking plant skeletons for biomedical applications: from regenerative medicine and drug delivery to biosensing. Biomater Sci 2024; 13:9-92. [PMID: 39534968 DOI: 10.1039/d4bm00982g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The field of biomedical engineering continually seeks innovative technologies to address complex healthcare challenges, ranging from tissue regeneration to drug delivery and biosensing. Plant skeletons offer promising opportunities for these applications due to their unique hierarchical structures, desirable porosity, inherent biocompatibility, and adjustable mechanical properties. This review comprehensively discusses chemical principles underlying the utilization of plant-based scaffolds in biomedical engineering. Highlighting their structural integrity, tunable properties, and possibility of chemical modification, the review explores diverse preparation strategies to tailor plant skeleton properties for bone, neural, cardiovascular, skeletal muscle, and tendon tissue engineering. Such applications stem from the cellulosic three-dimensional structure of different parts of plants, which can mimic the complexity of native tissues and extracellular matrices, providing an ideal environment for cell adhesion, proliferation, and differentiation. We also discuss the application of plant skeletons as carriers for drug delivery due to their structural diversity and versatility in encapsulating and releasing therapeutic agents with controlled kinetics. Furthermore, we present the emerging role played by plant-derived materials in biosensor development for diagnostic and monitoring purposes. Challenges and future directions in the field are also discussed, offering insights into the opportunities for future translation of sustainable plant-based technologies to address critical healthcare needs.
Collapse
Affiliation(s)
- Elham Asadian
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, 19689-17313, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19689-17313, Tehran, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saman Rezaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Bo Xiao
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands.
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands.
| |
Collapse
|
2
|
Luca A, Cojocaru FD, Pascal MS, Vlad T, Nacu I, Peptu CA, Butnaru M, Verestiuc L. Decellularized Macroalgae as Complex Hydrophilic Structures for Skin Tissue Engineering and Drug Delivery. Gels 2024; 10:704. [PMID: 39590060 PMCID: PMC11593777 DOI: 10.3390/gels10110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Due to their indisputable biocompatibility and abundant source, biopolymers are widely used to prepare hydrogels for skin tissue engineering. Among them, cellulose is a great option for this challenging application due to its increased water retention capacity, mechanical strength, versatility and unlimited availability. Since algae are an unexploited source of cellulose, the novelty of this study is the decellularization of two different species, freshly collected from the Black Sea coast, using two different chemical surfactants (sodium dodecyl sulphate and Triton X-100), and characterisation of the resulted complex biopolymeric 3D matrices. The algae nature and decellularization agent significantly influenced the matrices porosity, while the values obtained for the hydration degree included them in hydrogel class. Moreover, their capacity to retain and then controllably release an anti-inflammatory drug, ibuprofen, led us to recommend the obtained structures as drug delivery systems. The decellularized macroalgae hydrogels are bioadhesive and cytocompatible in direct contact with human keratinocytes and represent a great support for cells. Finally, it was noticed that human keratinocytes (HaCaT cell line) adhered and populated the structures during a monitoring period of 14 days.
Collapse
Affiliation(s)
- Andreea Luca
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
| | - Florina-Daniela Cojocaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
| | - Maria Stella Pascal
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
| | - Teodora Vlad
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
| | - Isabella Nacu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
- “Petru Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Catalina Anisoara Peptu
- Cristofor Simionescu Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University of Iaşi, 700050 Iasi, Romania;
| | - Maria Butnaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
| | - Liliana Verestiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
| |
Collapse
|
3
|
Luo H, Ruan H, Ye C, Jiang W, Wang X, Chen S, Chen Z, Li D. Plant-derived leaf vein scaffolds for the sustainable production of dog cell-cultured meat. Food Chem X 2024; 23:101603. [PMID: 39100247 PMCID: PMC11295996 DOI: 10.1016/j.fochx.2024.101603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
Animal cell culture technology in the production of slaughter-free meat offers ethical advantages with regards to animal welfare, rendering it a more socially acceptable approach for dog meat production. In this study, edible plant-derived scaffold was used as a platform for cell expansion to construct cell-cultured dog meat slices. Primary dog skeletal muscle satellite cells (MSCs) and adipose stem cells (ASCs) were isolated and cultured as seed cells, and 3D spheroid culture in vitro promoted MSCs and ASCs myogenic and adipogenic differentiation, respectively. Natural leaf veins (NLV) were produced as edible mesh scaffolds to create 3D engineered dog muscle and fat tissues. After MSCs and ASCs adhered, proliferated and differentiated on the NLV scaffolds, and muscle and fat slices were produced with cultured dog muscle fibers and adipocytes, respectively. These findings demonstrate the potential of plant-derived NLV scaffolds in the production of cultured dog meat.
Collapse
Affiliation(s)
- Huina Luo
- Pet Cell Research Center, Deja Lab, Foshan, Guangdong, China
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Huimin Ruan
- Pet Cell Research Center, Deja Lab, Foshan, Guangdong, China
| | - Cailing Ye
- Pet Cell Research Center, Deja Lab, Foshan, Guangdong, China
| | - Wenkang Jiang
- Pet Cell Research Center, Deja Lab, Foshan, Guangdong, China
| | - Xin Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Shengfeng Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zhisheng Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Dongsheng Li
- Pet Cell Research Center, Deja Lab, Foshan, Guangdong, China
| |
Collapse
|
4
|
Yun J, Cho M, Culver M, Pearce DP, Kim C, Witzenburg CM, Murphy WL, Gopalan P. Characterization of Decellularized Plant Leaf as an Emerging Biomaterial Platform. ACS Biomater Sci Eng 2024; 10:6144-6154. [PMID: 39214606 DOI: 10.1021/acsbiomaterials.4c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Decellularized plants have emerged as promising biomaterials for cell culture and tissue engineering applications due to their distinct material characteristics. This study explores the biochemical, mechanical, and structural properties of decellularized leaves that make them useful as biomaterials for cell culture. Five monocot leaf species were decellularized via alkali treatment, resulting in the effective removal of DNA and proteins. The Van Soest method was used to quantitatively evaluate the changes in cellulose, hemicellulose, and lignin content during decellularization. Tensile tests revealed considerable variations in mechanical strength depending on the plant species, the decellularization state, and the direction of applied mechanical force. Decellularized monocot leaves exhibited a notable reduction in mechanical strength and anisotropic properties depending on the leaf orientation. Imaging revealed inherent microgrooves on the epidermis of the monocot leaves. Permeability studies, including water uptake and biomolecule transport through decellularized leaves, confirmed excellent water uptake capability but limited biomolecule transport. Lastly, the plants were enzymatically degradable using typical plant enzymes, which were minimally cytotoxic to mammalian cells. Taken together, the features of decellularized plant leaves characterized in this study suggest ways in which they can be useful in cell culture and tissue engineering applications.
Collapse
Affiliation(s)
- Junsu Yun
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Mina Cho
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Matthew Culver
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
| | - Daniel P Pearce
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
| | - Chanul Kim
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
| | - Colleen M Witzenburg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
| | - William L Murphy
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, United States
| | - Padma Gopalan
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
| |
Collapse
|
5
|
Shang L, Wang S, Mao Y. Recent advances in plant-derived polysaccharide scaffolds in tissue engineering: A review. Int J Biol Macromol 2024; 277:133830. [PMID: 39002914 DOI: 10.1016/j.ijbiomac.2024.133830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/13/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
As a natural three-dimensional biopolymer, decellularized plant-derived scaffolds usually comprise various polysaccharides, mostly cellulose, pectin, and hemicellulose. They are characterized by natural biocompatibility and porous structures. The emergence of decellularized purified polysaccharide scaffolds provides an attractive method to overcome the challenges associated with nutrient delivery and biocompatibility, as they serve as optimal non-immune environments for stem cell adhesion and proliferation. To date, limited corresponding literature is available to systemically summarize the development and potential of these scaffolds in tissue engineering. Therefore, the current review summarized the biomimetic properties of plant-derived polysaccharide scaffolds and the latest progress in tissue engineering applications. This review first discusses the advantages of decellularized plant-derived polysaccharide scaffolds by briefly introducing their features and current limitations in clinical applications. Subsequently, the latest progress in emerging applications of regenerative biomaterials is reviewed, followed by a discussion of the studies on the interactions of biomaterials with cells and tissues. Finally, challenges in obtaining reliable scaffolds and possible future directions are discussed.
Collapse
Affiliation(s)
- Lijun Shang
- School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Shan Wang
- School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Yingji Mao
- School of Life Sciences, Bengbu Medical University, Bengbu, China.
| |
Collapse
|
6
|
Huang C, Zhang Z, Fang Y, Huang K, Zhao Y, Huang H, Wu J. Cost-effective and natural-inspired lotus root/GelMA scaffolds enhanced wound healing via ROS scavenging, angiogenesis and reepithelialization. Int J Biol Macromol 2024; 278:134496. [PMID: 39128742 DOI: 10.1016/j.ijbiomac.2024.134496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Skin wounds, prevalent and fraught with complications, significantly impact individuals and society. Wound healing encounters numerous obstacles, such as excessive reactive oxygen species (ROS) production and impaired angiogenesis, thus promoting the development of chronic wound. Traditional clinical interventions like hemostasis, debridement, and surgery face considerable challenges, including the risk of secondary infections. While therapies designed to scavenge excess ROS and enhance proangiogenic properties have shown effectiveness in wound healing, their clinical adoption is hindered by high costs, complex manufacturing processes, and the potential for allergic reactions. Lotus root, distinguished by its natural micro and macro porous architecture, exhibits significant promise as a tissue engineering scaffold. This study introduced a novel scaffold based on hybridization of lotus root-inspired and Gelatin Methacryloyl (GelMA), verified with satisfactory physicochemical properties, biocompatibility, antioxidative capabilities and proangiogenic abilities. In vivo tests employing a full-thickness wound model revealed that these scaffolds notably enhanced micro vessel formation and collagen remodeling within the wound bed, thus accelerating the healing process. Given the straightforward accessibility of lotus roots and the cost-effective production of the scaffolds, the novel scaffolds with ROS scavenging, pro-angiogenesis and re-epithelialization abilities are anticipated to have clinical applicability for various chronic wounds.
Collapse
Affiliation(s)
- Chunlin Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhen Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yifei Fang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Keqing Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yi Zhao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China; Division of Life Science, The Hong Kong University of Science and Technology, 999077, Hong Kong, China.
| |
Collapse
|
7
|
Fiorelli E, Scioli MG, Terriaca S, Ul Haq A, Storti G, Madaghiele M, Palumbo V, Pashaj E, De Matteis F, Ribuffo D, Cervelli V, Orlandi A. Comparison of Bioengineered Scaffolds for the Induction of Osteochondrogenic Differentiation of Human Adipose-Derived Stem Cells. Bioengineering (Basel) 2024; 11:920. [PMID: 39329662 PMCID: PMC11429422 DOI: 10.3390/bioengineering11090920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Osteochondral lesions may be due to trauma or congenital conditions. In both cases, therapy is limited because of the difficulty of tissue repair. Tissue engineering is a promising approach that relies on designed scaffolds with variable mechanical attributes to favor cell attachment and differentiation. Human adipose-derived stem cells (hASCs) are a very promising cell source in regenerative medicine with osteochondrogenic potential. Based on the assumption that stiffness influences cell commitment, we investigated three different scaffolds: a semisynthetic animal-derived GelMA hydrogel, a combined scaffold made of rigid PEGDA coated with a thin GelMA layer and a decellularized plant-based scaffold. We investigated the role of different biomechanical stimulations in the scaffold-induced osteochondral differentiation of hASCs. We demonstrated that all scaffolds support cell viability and spontaneous osteochondral differentiation without any exogenous factors. In particular, we observed mainly osteogenic commitment in higher stiffness microenvironments, as in the plant-based one, whereas in a dense and softer matrix, such as in GelMA hydrogel or GelMA-coated-PEGDA scaffold, chondrogenesis prevailed. We can induce a specific cell commitment by combining hASCs and scaffolds with particular mechanical attributes. However, in vivo studies are needed to fully elucidate the regenerative process and to eventually suggest it as a potential approach for regenerative medicine.
Collapse
Affiliation(s)
- Elena Fiorelli
- Anatomic Pathology Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (E.F.); (S.T.); (A.O.)
| | - Maria Giovanna Scioli
- Anatomic Pathology Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (E.F.); (S.T.); (A.O.)
| | - Sonia Terriaca
- Anatomic Pathology Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (E.F.); (S.T.); (A.O.)
- Plastic Surgery Unit, Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00133 Rome, Italy;
| | - Arsalan Ul Haq
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy; (A.U.H.); (F.D.M.)
- Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gabriele Storti
- Department of Plastic Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (G.S.); (V.C.)
| | - Marta Madaghiele
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy;
| | - Valeria Palumbo
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Ermal Pashaj
- Department of Surgical Sciences, Catholic University Our Lady of Good Counsel, 1005 Tirana, Albania;
| | - Fabio De Matteis
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy; (A.U.H.); (F.D.M.)
- Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome Tor Vergata, 00133 Rome, Italy
| | - Diego Ribuffo
- Plastic Surgery Unit, Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00133 Rome, Italy;
| | - Valerio Cervelli
- Department of Plastic Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (G.S.); (V.C.)
| | - Augusto Orlandi
- Anatomic Pathology Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (E.F.); (S.T.); (A.O.)
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1005 Tirana, Albania
| |
Collapse
|
8
|
Dadashi Ouranj Z, Hosseini S, Alipour A, Homaeigohar S, Azari S, Ghazizadeh L, Shokrgozar M, Thomas S, Irian S, Shahsavarani H. The potent osteo-inductive capacity of bioinspired brown seaweed-derived carbohydrate nanofibrous three-dimensional scaffolds. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:515-534. [PMID: 39219680 PMCID: PMC11358581 DOI: 10.1007/s42995-024-00241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to investigate the osteo-inductive capacity of a fucoidan polysaccharide network derived from brown algae on human adipose-derived stem cells (HA-MSCs) for bone regeneration. The physiochemical properties of the scaffold including surface morphology, surface chemistry, hydrophilicity, mechanical stiffness, and porosity were thoroughly characterized. Both in vitro and in vivo measurements implied a superior cell viability, proliferation, adhesion, and osteo-inductive performance of obtained scaffolds compared to using specific osteogenic induction medium with increased irregular growth of calcium crystallites, which mimic the structure of natural bones. That scaffold was highly biocompatible and suitable for cell cultures. Various examinations, such as quantification of mineralization, alkaline phosphatase, gene expression, and immunocytochemical staining of pre-osteocyte and bone markers confirmed that HAD-MSCs differentiate into osteoblasts, even without an osteogenic induction medium. This study provides evidence for the positive relationship and synergistic effects between the physical properties of the decellularized seaweed scaffold and the chemical composition of fucoidan in promoting the osteogenic differentiation of HA-MSCs. Altogether, the natural matrices derived from brown seaweed offers a sustainable, cost-effective, non-toxic bioinspired scaffold and holds promise for future clinical applications in orthopedics.
Collapse
Affiliation(s)
- Zahra Dadashi Ouranj
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911 Iran
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Saadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Atefeh Alipour
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN UK
| | - Shahram Azari
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Leila Ghazizadeh
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Mohammadali Shokrgozar
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala India
| | - Saeed Irian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911 Iran
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 19839-69411 Iran
- Iranian Biological Resource Center, Academic Center for Education, Culture and Research (ACECR), Tehran, 1533734716 Iran
| |
Collapse
|
9
|
Raundal K, Kharat A, Sanap A, Kheur S, Potdar P, Sakhare S, Bhonde R. Decellularized leaf-based biomaterial supports osteogenic differentiation of dental pulp mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00937-9. [PMID: 38935255 DOI: 10.1007/s11626-024-00937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Decellularized tissues are an attractive scaffolds for 3D tissue engineering. Decellularized animal tissues have certain limitations such as the availability of tissue, high costs and ethical concerns related to the use of animal sources. Plant-based tissue decellularized scaffolds could be a better option to overcome the problem. The leaves of different plants offer a unique opportunity for the development of tissue-specific scaffolds, depending on the reticulate or parallel veination. Herein, we decellularized spinach leaves and employed these for the propagation and osteogenic differentiation of dental pulp stem cells (DPSCs). DPSCs were characterized by using mesenchymal stem cell surface markers CD90, CD105 and CD73 and CD34, CD45 and HLA-DR using flow cytometry. Spinach leaves were decellularized using ethanol, NaOH and HCL. Cytotoxicity of spinach leaf scaffolds were analysed by MTT assay. Decellularized spinach leaves supported dental pulp stem cell adhesion, proliferation and osteogenic differentiation. Our data demonstrate that the decellularized spinach cellulose scaffolds can stimulate the growth, proliferation and osteogenic differentiation of DPSCs. In this study, we showed the versatile nature of decellularized plant leaves as a biological scaffold and their potential for bone regeneration in vitro.
Collapse
Affiliation(s)
- Kaustubh Raundal
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimri, Pune, India
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimri, Pune, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimri, Pune, India
| | - Supriya Kheur
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimri, Pune, India
| | - Pranjali Potdar
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimri, Pune, India
| | - Swapnali Sakhare
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimri, Pune, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimri, Pune, India.
| |
Collapse
|
10
|
Barbinta-Patrascu ME, Bita B, Negut I. From Nature to Technology: Exploring the Potential of Plant-Based Materials and Modified Plants in Biomimetics, Bionics, and Green Innovations. Biomimetics (Basel) 2024; 9:390. [PMID: 39056831 PMCID: PMC11274542 DOI: 10.3390/biomimetics9070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
This review explores the extensive applications of plants in areas of biomimetics and bioinspiration, highlighting their role in developing sustainable solutions across various fields such as medicine, materials science, and environmental technology. Plants not only serve essential ecological functions but also provide a rich source of inspiration for innovations in green nanotechnology, biomedicine, and architecture. In the past decade, the focus has shifted towards utilizing plant-based and vegetal waste materials in creating eco-friendly and cost-effective materials with remarkable properties. These materials are employed in making advancements in drug delivery, environmental remediation, and the production of renewable energy. Specifically, the review discusses the use of (nano)bionic plants capable of detecting explosives and environmental contaminants, underscoring their potential in improving quality of life and even in lifesaving applications. The work also refers to the architectural inspirations drawn from the plant world to develop novel design concepts that are both functional and aesthetic. It elaborates on how engineered plants and vegetal waste have been transformed into value-added materials through innovative applications, especially highlighting their roles in wastewater treatment and as electronic components. Moreover, the integration of plants in the synthesis of biocompatible materials for medical applications such as tissue engineering scaffolds and artificial muscles demonstrates their versatility and capacity to replace more traditional synthetic materials, aligning with global sustainability goals. This paper provides a comprehensive overview of the current and potential uses of living plants in technological advancements, advocating for a deeper exploration of vegetal materials to address pressing environmental and technological challenges.
Collapse
Affiliation(s)
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 077125 Magurele, Romania;
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| |
Collapse
|
11
|
González-Itier S, Miranda M, Corrales-Orovio R, Vera C, Veloso-Giménez V, Cárdenas-Calderón C, Egaña JT. Plants as a cost-effective source for customizable photosynthetic wound dressings: A proof of concept study. Biotechnol Bioeng 2024; 121:1961-1972. [PMID: 38555480 DOI: 10.1002/bit.28705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
Oxygen is essential for tissue regeneration, playing a crucial role in several processes, including cell metabolism and immune response. Therefore, the delivery of oxygen to wounds is an active field of research, and recent studies have highlighted the potential use of photosynthetic biomaterials as alternative oxygenation approach. However, while plants have traditionally been used to enhance tissue regeneration, their potential to produce and deliver local oxygen to wounds has not yet been explored. Hence, in this work we studied the oxygen-releasing capacity of Marchantia polymorpha explants, showing their capacity to release oxygen under different illumination settings and temperatures. Moreover, co-culture experiments revealed that the presence of these explants had no adverse effects on the viability and morphology of fibroblasts in vitro, nor on the viability of zebrafish larvae in vivo. Furthermore, oxygraphy assays demonstrate that these explants could fulfill the oxygen metabolic requirements of zebrafish larvae and freshly isolated skin biopsies ex vivo. Finally, the biocompatibility of explants was confirmed through a human skin irritation test conducted in healthy volunteers following the ISO-10993-10-2010. This proof-of-concept study provides valuable scientific insights, proposing the potential use of freshly isolated plants as biocompatible low-cost oxygen delivery systems for wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Sergio González-Itier
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel Miranda
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Veterinary Medicine and Agronomy, Universidad de las Américas, Santiago, Chile
| | - Rocío Corrales-Orovio
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Constanza Vera
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina Veloso-Giménez
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Cárdenas-Calderón
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Tomás Egaña
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
12
|
Hasan MM, Swapon AR, Dipti TI, Choi YJ, Yi HG. Plant-Based Decellularization: A Novel Approach for Perfusion-Compatible Tissue Engineering Structures. J Microbiol Biotechnol 2024; 34:1003-1016. [PMID: 38563106 PMCID: PMC11180914 DOI: 10.4014/jmb.2401.01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/13/2024] [Accepted: 02/24/2024] [Indexed: 04/04/2024]
Abstract
This study explores the potential of plant-based decellularization in regenerative medicine, a pivotal development in tissue engineering focusing on scaffold development, modification, and vascularization. Plant decellularization involves removing cellular components from plant structures, offering an eco-friendly and cost-effective alternative to traditional scaffold materials. The use of plant-derived polymers is critical, presenting both benefits and challenges, notably in mechanical properties. Integration of plant vascular networks represents a significant bioengineering breakthrough, aligning with natural design principles. The paper provides an in-depth analysis of development protocols, scaffold fabrication considerations, and illustrative case studies showcasing plant-based decellularization applications. This technique is transformative, offering sustainable scaffold design solutions with readily available plant materials capable of forming perfusable structures. Ongoing research aims to refine protocols, assess long-term implications, and adapt the process for clinical use, indicating a path toward widespread adoption. Plant-based decellularization holds promise for regenerative medicine, bridging biological sciences with engineering through eco-friendly approaches. Future perspectives include protocol optimization, understanding long-term impacts, clinical scalability, addressing mechanical limitations, fostering collaboration, exploring new research areas, and enhancing education. Collectively, these efforts envision a regenerative future where nature and scientific innovation converge to create sustainable solutions, offering hope for generations to come.
Collapse
Affiliation(s)
- Md Mehedee Hasan
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences (CALS), Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ashikur Rahman Swapon
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences (CALS), Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Republic of Korea
| | - Tazrin Islam Dipti
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences (CALS), Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Republic of Korea
| | - Yeong-Jin Choi
- Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
| | - Hee-Gyeong Yi
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences (CALS), Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Republic of Korea
| |
Collapse
|
13
|
Bl O, Panneer Selvam S, Ramadoss R, Sundar S, Ramani P, P B. Fabrication of Periodontal Membrane From Nelumbo nucifera: A Novel Approach for Dental Applications. Cureus 2024; 16:e59848. [PMID: 38854282 PMCID: PMC11157470 DOI: 10.7759/cureus.59848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Background The periodontal membrane plays a crucial role in tooth support and maintenance. Natural materials with biocompatible and bioactive properties are of interest for periodontal membrane fabrication. Nelumbo nucifera, known for its therapeutic properties, presents a potential source for such materials. Aim This study aimed to fabricate a periodontal membrane from N. nucifera and evaluate its biocompatibility and potential for periodontal tissue regeneration. Materials and methods N. nucifera stems were collected dried, and aqueous extract was prepared. The extracted material was then processed into a membrane scaffold using a standardized fabrication method. The fabricated membrane was characterized by its physical and chemical properties. Biocompatibility was assessed using human periodontal ligament fibroblast (hPDLF) cells cultured on the membrane, followed by viability, proliferation, and anti-microbial assays. Results The fabricated N. nucifera membrane exhibited a porous structure with suitable mechanical properties for periodontal membrane application. The membrane supported the adhesion, viability, and proliferation of hPDLF cells in vitro. Conclusion The fabrication of a periodontal membrane from N. nucifera shows promise as a natural and biocompatible material for periodontal tissue regeneration. Further studies are warranted to explore its clinical potential in periodontal therapy.
Collapse
Affiliation(s)
- Ojastha Bl
- Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Suganya Panneer Selvam
- Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ramya Ramadoss
- Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sandhya Sundar
- Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Pratibha Ramani
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Bargavi P
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
14
|
de Oliveira BEG, Maia FLM, Massimino LC, Garcia CF, Plepis AMDG, Martins VDCA, Reis CHB, Silva VR, Bezerra AA, Pauris CC, Buchaim DV, Silva YBE, Buchaim RL, da Cunha MR. Use of Plant Extracts in Polymeric Scaffolds in the Regeneration of Mandibular Injuries. Pharmaceutics 2024; 16:491. [PMID: 38675152 PMCID: PMC11053713 DOI: 10.3390/pharmaceutics16040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
Severe loss of bone mass may require grafting, and, among the alternatives available, there are natural biomaterials that can act as scaffolds for the cell growth necessary for tissue regeneration. Collagen and elastin polymers are a good alternative due to their biomimetic properties of bone tissue, and their characteristics can be improved with the addition of polysaccharides such as chitosan and bioactive compounds such as jatoba resin and pomegranate extract due to their antigenic actions. The aim of this experimental protocol was to evaluate bone neoformation in experimentally made defects in the mandible of rats using polymeric scaffolds with plant extracts added. Thirty rats were divided into group 1, with a mandibular defect filled with a clot from the lesion and no graft implant (G1-C, n = 10); group 2, filled with collagen/chitosan/jatoba resin scaffolds (G2-CCJ, n = 10); and group 3, with collagen/nanohydroxyapatite/elastin/pomegranate extract scaffolds (G3-CHER, n = 10). Six weeks after surgery, the animals were euthanized and samples from the surgical areas were submitted to macroscopic, radiological, histological, and morphometric analysis of the mandibular lesion repair process. The results showed no inflammatory infiltrates in the surgical area, indicating good acceptance of the scaffolds in the microenvironment of the host area. In the control group (G1), there was a predominance of reactive connective tissue, while in the grafted groups (G2 and G3), there was bone formation from the margins of the lesion, but it was still insufficient for total bone repair of the defect within the experimental period standardized in this study. The histomorphometric analysis showed that the mean percentage of bone volume formed in the surgical area of groups G1, G2, and G3 was 17.17 ± 2.68, 27.45 ± 1.65, and 34.07 ± 0.64 (mean ± standard deviation), respectively. It can be concluded that these scaffolds with plant extracts added can be a viable alternative for bone repair, as they are easily manipulated, have a low production cost, and stimulate the formation of new bone by osteoconduction.
Collapse
Affiliation(s)
| | | | - Lívia Contini Massimino
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (L.C.M.); (A.M.d.G.P.); (M.R.d.C.)
| | - Claudio Fernandes Garcia
- São Carlos Institute of Chemistry, University of São Paulo, USP, São Carlos 13566-590, Brazil; (C.F.G.); (V.d.C.A.M.)
| | - Ana Maria de Guzzi Plepis
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (L.C.M.); (A.M.d.G.P.); (M.R.d.C.)
- São Carlos Institute of Chemistry, University of São Paulo, USP, São Carlos 13566-590, Brazil; (C.F.G.); (V.d.C.A.M.)
| | | | - Carlos Henrique Bertoni Reis
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil; (C.H.B.R.); (D.V.B.)
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, Brazil
| | - Vinícius Rodrigues Silva
- Department of Human Anatomy, University of San Francisco (USF), Bragança Paulista 12916-900, Brazil;
| | - Andre Alves Bezerra
- Orthopedics and Traumatology Sector, Faculty of Medicine of Jundiaí, Jundiaí 13202-550, Brazil; (B.E.G.d.O.)
| | - Carolina Chen Pauris
- Postgraduate Program in Health Sciences, Faculty of Medicine of Jundiaí, Jundiaí 13202-550, Brazil; (C.C.P.); (Y.B.e.S.)
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil; (C.H.B.R.); (D.V.B.)
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), São Paulo 05508-270, Brazil
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Yggor Biloria e Silva
- Postgraduate Program in Health Sciences, Faculty of Medicine of Jundiaí, Jundiaí 13202-550, Brazil; (C.C.P.); (Y.B.e.S.)
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), São Paulo 05508-270, Brazil
| | - Marcelo Rodrigues da Cunha
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (L.C.M.); (A.M.d.G.P.); (M.R.d.C.)
- Postgraduate Program in Health Sciences, Faculty of Medicine of Jundiaí, Jundiaí 13202-550, Brazil; (C.C.P.); (Y.B.e.S.)
| |
Collapse
|
15
|
Cevik M, Dikici S. Development of tissue-engineered vascular grafts from decellularized parsley stems. SOFT MATTER 2024; 20:338-350. [PMID: 38088147 DOI: 10.1039/d3sm01236k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Cardiovascular diseases are mostly associated with narrowing or blockage of blood vessels, and it is the most common cause of death worldwide. The use of vascular grafts is a promising approach to bypass or replace the blocked vessels for long-term treatment. Although autologous arteries or veins are the most preferred tissue sources for vascular bypass, the limited presence and poor quality of autologous vessels necessitate seeking alternative biomaterials. Recently, synthetic grafts have gained attention as an alternative to autologous grafts. However, the high failure rate of synthetic grafts has been reported primarily due to thrombosis, atherosclerosis, intimal hyperplasia, or infection. Thrombosis, the main reason for failure upon implantation, is associated with damage or absence of endothelial cell lining in the vascular graft's luminal surface. To overcome this, tissue-engineered vascular grafts (TEVGs) have come into prominence. Alongside the well-established scaffold manufacturing techniques, decellularized plant-based constructs have recently gained significant importance and are an emerging field in tissue engineering and regenerative medicine. Accordingly, in this study, we demonstrated the fabrication of tubular scaffolds from decellularized parsley stems and recellularized them with human endothelial cells to be used as a potential TEVG. Our results suggested that the native plant DNA was successfully removed, and soft tubular biomaterials were successfully manufactured via the chemical decellularization of the parsley stems. The decellularized parsley stems showed suitable mechanical and biological properties to be used as a TEVG material, and they provided a suitable environment for the culture of human endothelial cells to attach and create a pseudo endothelium prior to implantation. This study is the first one to demonstrate the potential of the parsley stems to be used as a potential TEVG biomaterial.
Collapse
Affiliation(s)
- Merve Cevik
- Department of Biotechnology, Graduate School of Education, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Serkan Dikici
- Department of Bioengineering, Faculty of Engineering, Izmir Institute of Technology, 35430, Izmir, Turkey.
| |
Collapse
|
16
|
Toker-Bayraktar M, Ertugrul Mİ, Odabas S, Garipcan B. A typical method for decellularization of plants as biomaterials. MethodsX 2023; 11:102385. [PMID: 37817976 PMCID: PMC10561109 DOI: 10.1016/j.mex.2023.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 09/16/2023] [Indexed: 10/12/2023] Open
Abstract
Decellularization is a process by which cells are removed from tissues or organs, leaving behind the extracellular matrix (ECM) structure. This process has gained interest in the fields of tissue engineering and regenerative medicine as a way to prepare suitable scaffolds for tissue reconstruction. Although the initial efforts come with the animal tissues, this technique can also be applied to various plant tissues with simple modifications, as plant-derived biomaterials have the benefit of being biocompatible and serving as a safe, all-natural substitute for synthetic or animal originated materials. Additionally, plant-derived biomaterials may help cells grow and differentiate, creating a three-dimensional environment for tissue regeneration and repair. Here we demonstrate a general method for plant tissue decellularization, including already experienced approaches and techniques.•Exhibit the basic steps for plant decellularization, which may be applied to several other plant tissues.•The proposed approach may be optimized considering various intended uses.•Gives basic information for the determination of decellularization efficiency.
Collapse
Affiliation(s)
- Melis Toker-Bayraktar
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul 34684, Turkey
| | - Melek İpek Ertugrul
- Faculty of Science, Department of Chemistry, Biomaterials and Tissue Engineering Laboratory (bteLAB), Ankara University, Ankara 06560, Turkey
- Interdisciplinary Research Unit for Advanced Materials (INTRAM), Ankara University, Ankara 06560, Turkey
| | - Sedat Odabas
- Faculty of Science, Department of Chemistry, Biomaterials and Tissue Engineering Laboratory (bteLAB), Ankara University, Ankara 06560, Turkey
- Interdisciplinary Research Unit for Advanced Materials (INTRAM), Ankara University, Ankara 06560, Turkey
| | - Bora Garipcan
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul 34684, Turkey
| |
Collapse
|
17
|
Couvrette LJ, Walker KLA, Bui TV, Pelling AE. Plant Cellulose as a Substrate for 3D Neural Stem Cell Culture. Bioengineering (Basel) 2023; 10:1309. [PMID: 38002433 PMCID: PMC10669287 DOI: 10.3390/bioengineering10111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Neural stem cell (NSC)-based therapies are at the forefront of regenerative medicine strategies for various neural defects and injuries such as stroke, traumatic brain injury, and spinal cord injury. For several clinical applications, NSC therapies require biocompatible scaffolds to support cell survival and to direct differentiation. Here, we investigate decellularized plant tissue as a novel scaffold for three-dimensional (3D), in vitro culture of NSCs. Plant cellulose scaffolds were shown to support the attachment and proliferation of adult rat hippocampal neural stem cells (NSCs). Further, NSCs differentiated on the cellulose scaffold had significant increases in their expression of neuron-specific beta-III tubulin and glial fibrillary acidic protein compared to 2D culture on a polystyrene plate, indicating that the scaffold may enhance the differentiation of NSCs towards astrocytic and neuronal lineages. Our findings suggest that plant-derived cellulose scaffolds have the potential to be used in neural tissue engineering and can be harnessed to direct the differentiation of NSCs.
Collapse
Affiliation(s)
- Lauren J. Couvrette
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 5N5, Canada
| | - Krystal L. A. Walker
- Department of Physics, University of Ottawa, STEM Complex, 150 Louis Pasteur Pvt., Ottawa, ON K1N 5N5, Canada
| | - Tuan V. Bui
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 5N5, Canada
| | - Andrew E. Pelling
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 5N5, Canada
- Department of Physics, University of Ottawa, STEM Complex, 150 Louis Pasteur Pvt., Ottawa, ON K1N 5N5, Canada
| |
Collapse
|
18
|
Fiorentini F, Suarato G, Summa M, Miele D, Sandri G, Bertorelli R, Athanassiou A. Plant-Based, Hydrogel-like Microfibers as an Antioxidant Platform for Skin Burn Healing. ACS APPLIED BIO MATERIALS 2023; 6:3103-3116. [PMID: 37493659 PMCID: PMC10445266 DOI: 10.1021/acsabm.3c00214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
Natural polymers from organic wastes have gained increasing attention in the biomedical field as resourceful second raw materials for the design of biomedical devices which can perform a specific bioactive function and eventually degrade without liberating toxic residues in the surroundings. In this context, patches and bandages, that need to support the skin wound healing process for a short amount of time to be then discarded, certainly constitute good candidates in our quest for a more environmentally friendly management. Here, we propose a plant-based microfibrous scaffold, loaded with vitamin C (VitC), a bioactive molecule which acts as a protecting agent against UV damages and as a wound healing promoter. Fibers were fabricated via electrospinning from various zein/pectin formulations, and subsequently cross-linked in the presence of Ca2+ to confer them a hydrogel-like behavior, which we exploited to tune both the drug release profile and the scaffold degradation. A comprehensive characterization of the physico-chemical properties of the zein/pectin/VitC scaffolds, either pristine or cross-linked, has been carried out, together with the bioactivity assessment with two representative skin cell populations (human dermal fibroblast cells and skin keratinocytes, HaCaT cells). Interestingly, col-1a gene expression of dermal fibroblasts increased after 3 days of growth in the presence of the microfiber extraction media, indicating that the released VitC was able to stimulate collagen mRNA production overtime. Antioxidant activity was analyzed on HaCaT cells via DCFH-DA assay, highlighting a fluorescence intensity decrease proportional to the amount of loaded VitC (down to 50 and 30%), confirming the protective effect of the matrices against oxidative stress. Finally, the most performing samples were selected for the in vivo test on a skin UVB-burn mouse model, where our constructs demonstrated to significantly reduce the inflammatory cytokines expression in the injured area (50% lower than the control), thus constituting a promising, environmentally sustainable alternative to skin patches.
Collapse
Affiliation(s)
- Fabrizio Fiorentini
- Smart
Materials Group, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
- DIBRIS, Università di
Genova, Via Opera Pia
13, Genova 16145, Italy
| | - Giulia Suarato
- Smart
Materials Group, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
- Translational
Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Maria Summa
- Translational
Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Dalila Miele
- Department
of Drug Science, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Giuseppina Sandri
- Department
of Drug Science, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Rosalia Bertorelli
- Translational
Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Athanassia Athanassiou
- Smart
Materials Group, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| |
Collapse
|
19
|
Galefi A, Nourany M, Hosseini S, Alipour A, Azari S, Jahanfar M, Farrokhi N, Homaeigohar S, Shahsavarani H. Enhanced osteogenesis on proantocyanidin-loaded date palm endocarp cellulosic matrices: A novel sustainable approach for guided bone regeneration. Int J Biol Macromol 2023; 242:124857. [PMID: 37187421 DOI: 10.1016/j.ijbiomac.2023.124857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Developing inexpensive, biocompatible natural scaffolds that can support the differentiation and proliferation of stem cells has been recently emphasized by the research community to faster obtain the FDA approvals for regenerative medicine. In this regard, plant-derived cellulose materials are a novel class of sustainable scaffolding materials with high potentials for bone tissue engineering (BTE). However, low bioactivity of the plant-derived cellulose scaffolds restricts cell proliferation and cell differentiation. This limitation can be addressed though surface-functionalization of cellulose scaffolds with natural antioxidant polyphenols, e.g., grape seed proanthocyanidin (PCA)-rich extract (GSPE). Despite the various merits of GSPE as a natural antioxidant, its impact on the proliferation and adhesion of osteoblast precursor cells, and on their osteogenic differentiation is an as-yet unknown issue. Here, we investigated the effects of GSPE surface functionalization on the physicochemical properties of decellularized date (Phoenix dactyliferous) fruit inner layer (endocarp) (DE) scaffold. In this regard, various physiochemical characteristics of the DE-GSPE scaffold such as hydrophilicity, surface roughness, mechanical stiffness, porosity, and swelling, and biodegradation behavior were compared with those of the DE scaffold. Additionally, the impact of the GSPE treatment of the DE scaffold on the osteogenic response of human mesenchymal stem cells (hMSCs) was thoroughly studied. For this purpose, cellular activities including cell adhesion, calcium deposition and mineralization, alkaline phosphatase (ALP) activity, and expression levels of bone-related genes were monitored. Taken together, the GSPE treatment enhanced the physicochemical and biological properties of the DE-GSPE scaffold, thereby raising its potentials as a promising candidate for guided bone regeneration.
Collapse
Affiliation(s)
- Atena Galefi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran 13169-43551, Iran
| | - Mohammad Nourany
- Amirkabir University of Technology, Polymer Engineering and Color Technology, Tehran, Iran; Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran 13169-43551, Iran
| | - Saadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran 13169-43551, Iran
| | - Atefeh Alipour
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran.
| | - Shahram Azari
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran 13169-43551, Iran
| | - Mehdi Jahanfar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Naser Farrokhi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Shahin Homaeigohar
- School of Science & Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran 13169-43551, Iran.
| |
Collapse
|
20
|
Ahmadian M, Hosseini S, Alipour A, Jahanfar M, Farrokhi N, Homaeigohar S, Shahsavarani H. In vitro modeling of hepatocellular carcinoma niche on decellularized tomato thorny leaves: a novel natural three-dimensional (3D) scaffold for liver cancer therapeutics. Front Bioeng Biotechnol 2023; 11:1189726. [PMID: 37251569 PMCID: PMC10212619 DOI: 10.3389/fbioe.2023.1189726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Liver cancer is now one of the main causes leading to death worldwide. To achieve reliable therapeutic effects, it is crucial to develop efficient approaches to test novel anticancer drugs. Considering the significant contribution of tumor microenvironment to cell's response to medications, in vitro 3D bioinspiration of cancer cell niches can be regarded as an advanced strategy to improve the accuracy and reliability of the drug-based treatment. In this regard, decellularized plant tissues can perform as suitable 3D scaffolds for mammalian cell culture to create a near-to-real condition to test drug efficacy. Here, we developed a novel 3D natural scaffold made from decellularized tomato hairy leaves (hereafter called as DTL) to mimic the microenvironment of human hepatocellular carcinoma (HCC) for pharmaceutical purposes. The surface hydrophilicity, mechanical properties, and topography measurement and molecular analyses revealed that the 3D DTL scaffold is an ideal candidate for liver cancer modeling. The cells exhibited a higher growth and proliferation rate within the DTL scaffold, as verified by quantifying the expression of related genes, DAPI staining, and SEM imaging of the cells. Moreover, prilocaine, an anticancer drug, showed a higher effectiveness against the cancer cells cultured on the 3D DTL scaffold, compared to a 2D platform. Taken together, this new cellulosic 3D scaffold can be confidently proposed for chemotherapeutic testing of drugs on hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mariye Ahmadian
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran, Iran
| | - Saadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran, Iran
| | - Atefeh Alipour
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Jahanfar
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Naser Farrokhi
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran, Iran
| |
Collapse
|
21
|
Santos ACA, Camarena DEM, Roncoli Reigado G, Chambergo FS, Nunes VA, Trindade MA, Stuchi Maria-Engler S. Tissue Engineering Challenges for Cultivated Meat to Meet the Real Demand of a Global Market. Int J Mol Sci 2023; 24:6033. [PMID: 37047028 PMCID: PMC10094385 DOI: 10.3390/ijms24076033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 04/14/2023] Open
Abstract
Cultivated meat (CM) technology has the potential to disrupt the food industry-indeed, it is already an inevitable reality. This new technology is an alternative to solve the environmental, health and ethical issues associated with the demand for meat products. The global market longs for biotechnological improvements for the CM production chain. CM, also known as cultured, cell-based, lab-grown, in vitro or clean meat, is obtained through cellular agriculture, which is based on applying tissue engineering principles. In practice, it is first necessary to choose the best cell source and type, and then to furnish the necessary nutrients, growth factors and signalling molecules via cultivation media. This procedure occurs in a controlled environment that provides the surfaces necessary for anchor-dependent cells and offers microcarriers and scaffolds that favour the three-dimensional (3D) organisation of multiple cell types. In this review, we discuss relevant information to CM production, including the cultivation process, cell sources, medium requirements, the main obstacles to CM production (consumer acceptance, scalability, safety and reproducibility), the technological aspects of 3D models (biomaterials, microcarriers and scaffolds) and assembly methods (cell layering, spinning and 3D bioprinting). We also provide an outlook on the global CM market. Our review brings a broad overview of the CM field, providing an update for everyone interested in the topic, which is especially important because CM is a multidisciplinary technology.
Collapse
Affiliation(s)
- Andressa Cristina Antunes Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.C.A.S.)
| | - Denisse Esther Mallaupoma Camarena
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.C.A.S.)
| | - Gustavo Roncoli Reigado
- Department of Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
| | - Felipe S. Chambergo
- Department of Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
| | - Viviane Abreu Nunes
- Department of Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
| | - Marco Antonio Trindade
- Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, Pirassununga 13635-900, Brazil
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.C.A.S.)
| |
Collapse
|
22
|
New vegetable-waste biomaterials by Lupin albus L. as cellular scaffolds for applications in biomedicine and food. Biomaterials 2023; 293:121984. [PMID: 36580717 DOI: 10.1016/j.biomaterials.2022.121984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
The reprocessing of vegetal-waste represents a new research field in order to design novel biomaterials for potential biomedical applications and in food industry. Here we obtained a biomaterial from Lupinus albus L. hull (LH) that was characterized micro-structurally by scanning electron microscopy and for its antimicrobial and scaffolding properties. A good adhesion and proliferation of human mesenchymal stem cells (hMSCs) seeded on LH scaffold were observed. Thanks to its high content of cellulose and beneficial phytochemical substances, LH and its derivatives can represent an available source for fabrication of biocompatible and bioactive scaffolds. Therefore, a reprocessing protocol of LH was optimized for producing a new LH bioplastic named BPLH. This new biomaterial was characterized by chemico-physical analyses. The water uptake, degradability and antimicrobial properties of BPLH were evaluated, as well as the mechanical properties. A good adhesion and proliferation of both fibroblasts and hMSCs on BPLH were observed over 2 weeks, and immunofluorescence analysis of hMSCs after 3 weeks indicates an initial commitment toward muscle differentiation. Our work represents a new approach toward the recovery and valorization of the vegetal waste showing the remarkable properties of LH and BPLH as cellular waste-based scaffold with potential applications in cell-based food field as well as in medicine for topical patches in wound healing and bedsores treatment.
Collapse
|
23
|
Harris AF, Lacombe J, Sanchez-Ballester NM, Victor S, Curran KAJ, Nordquist AR, Thomas B, Gu J, Veuthey JL, Soulairol I, Zenhausern F. Decellularized Spinach Biomaterials Support Physiologically Relevant Mechanical Cyclic Strain and Prompt a Stretch-Induced Cellular Response. ACS APPLIED BIO MATERIALS 2022; 5:5682-5692. [PMID: 36368008 DOI: 10.1021/acsabm.2c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recently, decellularized plant biomaterials have been explored for their use as tissue engineered substitutes. Herein, we expanded upon the investigation of the mechanical properties of these materials to explore their elasticity as many anatomical areas of the body require biomechanical dynamism. We first constructed a device to secure the scaffold and induce a strain within the physiological range of the normal human adult lung during breathing (12-20 movements/min; 10-20% elongation). Results showed that decellularized spinach leaves can support cyclic strain for 24 h and displayed heterogeneous local strain values (7.76-15.88%) as well as a Poisson's ratio (0.12) similar to that of mammalian lungs (10.67-19.67%; 0.01), as opposed to an incompressible homogeneous standard polymer (such as PDMS (10.85-12.71%; 0.4)). Imaging and mechanical testing showed that the vegetal scaffold exhibited strain hardening but maintained its structural architecture and water retention capacity, suggesting an unaltered porosity. Interestingly, we also showed that cells seeded on the scaffold can also sense the mechanical strain as demonstrated by a nuclear reorientation perpendicular to strain direction (63.3° compared to 41.2° for nonstretched cells), a nuclear location of YAP and increased expression of YAP target genes, a high cytoplasmic calcium level, and an elevated expression level of collagen genes (COL1A1, COL3A1, COL4A1, and COL6A) with an increased collagen secretion at the protein level. Taken together, these data demonstrated that decellularized plant leaf tissues have an inherent elastic property similar to that found in the mammalian system to which cells can sense and respond.
Collapse
Affiliation(s)
- Ashlee F Harris
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, Arizona85004, United States
| | - Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, Arizona85004, United States.,Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 425 N 5th St., Phoenix, Arizona85004, United States
| | - Noelia M Sanchez-Ballester
- ICGM, CNRS, ENSCM, University Montpellier, 34000Montpellier, France.,Department of Pharmacy, Nîmes University Hospital, 30900Nîmes, France
| | - Shaun Victor
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, Arizona85004, United States
| | - Killian A J Curran
- School of Pharmaceutical Sciences, University of Geneva, Quai Ernest-Ansermet, 1211 Genève 4, Geneva, Switzerland
| | - Alan R Nordquist
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, Arizona85004, United States
| | - Baiju Thomas
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, Arizona85004, United States
| | - Jian Gu
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, Arizona85004, United States.,Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 425 N 5th St., Phoenix, Arizona85004, United States
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, Quai Ernest-Ansermet, 1211 Genève 4, Geneva, Switzerland
| | - Ian Soulairol
- ICGM, CNRS, ENSCM, University Montpellier, 34000Montpellier, France.,Department of Pharmacy, Nîmes University Hospital, 30900Nîmes, France
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, Arizona85004, United States.,Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 425 N 5th St., Phoenix, Arizona85004, United States.,School of Pharmaceutical Sciences, University of Geneva, Quai Ernest-Ansermet, 1211 Genève 4, Geneva, Switzerland.,Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, Arizona85721, United States
| |
Collapse
|
24
|
Iravani S, Varma RS. Cellulose-Based Composites as Scaffolds for Tissue Engineering: Recent Advances. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248830. [PMID: 36557963 PMCID: PMC9784432 DOI: 10.3390/molecules27248830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Today, numerous studies have focused on the design of novel scaffolds for tissue engineering and regenerative medicine applications; however, several challenges still exist in terms of biocompatibility/cytocompatibility, degradability, cell attachment/proliferation, nutrient diffusion, large-scale production, and clinical translation studies. Greener and safer technologies can help to produce scaffolds with the benefits of cost-effectiveness, high biocompatibility, and biorenewability/sustainability, reducing their toxicity and possible side effects. However, some challenges persist regarding their degradability, purity, having enough porosity, and possible immunogenicity. In this context, naturally derived cellulose-based scaffolds with high biocompatibility, ease of production, availability, sustainability/renewability, and environmentally benign attributes can be applied for designing scaffolds. These cellulose-based scaffolds have shown unique mechanical properties, improved cell attachment/proliferation, multifunctionality, and enhanced biocompatibility/cytocompatibility, which make them promising candidates for tissue engineering applications. Herein, the salient developments pertaining to cellulose-based scaffolds for neural, bone, cardiovascular, and skin tissue engineering are deliberated, focusing on the challenges and opportunities.
Collapse
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Correspondence: (S.I.); (R.S.V.)
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Correspondence: (S.I.); (R.S.V.)
| |
Collapse
|
25
|
Grilli F, Pitton M, Altomare L, Farè S. Decellularized fennel and dill leaves as possible 3D channel network in GelMA for the development of an in vitro adipose tissue model. Front Bioeng Biotechnol 2022; 10:984805. [DOI: 10.3389/fbioe.2022.984805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
The development of 3D scaffold-based models would represent a great step forward in cancer research, offering the possibility of predicting the potential in vivo response to targeted anticancer or anti-angiogenic therapies. As regards, 3D in vitro models require proper materials, which faithfully recapitulated extracellular matrix (ECM) properties, adequate cell lines, and an efficient vascular network. The aim of this work is to investigate the possible realization of an in vitro 3D scaffold-based model of adipose tissue, by incorporating decellularized 3D plant structures within the scaffold. In particular, in order to obtain an adipose matrix capable of mimicking the composition of the adipose tissue, methacrylated gelatin (GelMA), UV photo-crosslinkable, was selected. Decellularized fennel, wild fennel and, dill leaves have been incorporated into the GelMA hydrogel before crosslinking, to mimic a 3D channel network. All leaves showed a loss of pigmentation after the decellularization with channel dimensions ranging from 100 to 500 µm up to 3 μm, comparable with those of human microcirculation (5–10 µm). The photo-crosslinking process was not affected by the embedded plant structures in GelMA hydrogels. In fact, the weight variation test, performed on hydrogels with or without decellularized leaves showed a weight loss in the first 96 h, followed by a stability plateau up to 5 weeks. No cytotoxic effects were detected comparing the three prepared GelMA/D-leaf structures; moreover, the ability of the samples to stimulate differentiation of 3T3-L1 preadipocytes in mature adipocytes was investigated, and cells were able to grow and proliferate in the structure, colonizing the entire microenvironment and starting to differentiate. The developed GelMA hydrogels mimicked adipose tissue together with the incorporated plant structures seem to be an adequate solution to ensure an efficient vascular system for a 3D in vitro model. The obtained results showed the potentiality of the innovative proposed approach to mimic the tumoral microenvironment in 3D scaffold-based models.
Collapse
|
26
|
Driscoll K, Butani MS, Gultian KA, McSweeny A, Patel JM, Vega SL. Plant Tissue Parenchyma and Vascular Bundles Selectively Regulate Stem Cell Mechanosensing and Differentiation. Cell Mol Bioeng 2022; 15:439-450. [PMID: 36444354 PMCID: PMC9700532 DOI: 10.1007/s12195-022-00737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022] Open
Abstract
Introduction Plant tissues are plentiful, diverse, and due to convergent evolution are structurally similar to many animal tissues. Decellularized plant tissues feature microtopographies that resemble cancellous bone (porous parenchyma) and skeletal muscle (fibrous vascular bundles). However, the use of plant tissues as an inexpensive and abundant biomaterial for controlling stem cell behavior has not been widely explored. Methods Celery plant tissues were cut cross-sectionally (porous parenchyma) or longitudinally (fibrous vascular bundles) and decellularized. Human mesenchymal stem cells (MSCs) were then cultured atop plant tissues and confocal imaging of single cells was used to evaluate the early effects of microtopography on MSC adhesion, morphology, cytoskeletal alignment, Yes-associated protein (YAP) signaling, and downstream lineage commitment to osteogenic or myogenic phenotypes. Results Microtopography was conserved post plant tissue decellularization and MSCs attached and proliferated on plant tissues. MSCs cultured on porous parenchyma spread isotropically along the periphery of plant tissue pores. In contrast, MSCs cultured on vascular bundles spread anisotropically and aligned in the direction of fibrous vascular bundles. Differences in microtopography also influenced MSC nuclear YAP localization and actin anisotropy, with higher values observed on fibrous tissues. When exposed to osteogenic or myogenic culture medium, MSCs on porous parenchyma had a higher percentage of cells stain positive for bone biomarker alkaline phosphatase, whereas myoblast determination protein 1 (MyoD) was significantly upregulated for MSCs on fibrous vascular bundles. Conclusions Together, these results show that plant tissues are an abundant biomaterial with defined microarchitecture that can reproducibly regulate MSC morphology, mechanosensing, and differentiation. Supplementary Information The online version of this article contains supplementary material available 10.1007/s12195-022-00737-9.
Collapse
Affiliation(s)
- Kathryn Driscoll
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028 USA
| | - Maya S. Butani
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028 USA
| | - Kirstene A. Gultian
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028 USA
| | - Abigail McSweeny
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028 USA
| | - Jay M. Patel
- Department of Veterans Affairs, Atlanta VA Medical Center, Decatur, GA 30033 USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329 USA
| | - Sebastián L. Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028 USA
| |
Collapse
|
27
|
Design and development of novel formulation of Aloe Vera nanoemulsion gel contained erythromycin for topical antibacterial therapy: In vitro and in vivo assessment. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Mahendiran B, Muthusamy S, Sampath S, Jaisankar SN, Selvakumar R, Krishnakumar GS. In vitro and in vivo biocompatibility of decellularized cellulose scaffolds functionalized with chitosan and platelet rich plasma for tissue engineering applications. Int J Biol Macromol 2022; 217:522-535. [PMID: 35841966 DOI: 10.1016/j.ijbiomac.2022.07.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 01/14/2023]
Abstract
This study describes the fabrication of cellulose scaffold (CS) and cellulose-chitosan (CS/CHI) scaffolds from the immature endosperm of Borassus flabellifer (Linn.) (BF) loaded with platelet rich plasma (PRP). Thus, developed scaffolds were evaluated for their physicochemical and mechanical behavior, growth factor release and biological performance. Additionally, in vivo response was assessed in a sub cutaneous rat model to study vascularization, host inflammatory response and macrophage polarization. The results of this study demonstrated that CS and CS/CHI scaffolds with PRP demonstrated favorable physiochemical and morphogical properties. The scaffold groups CS-PRP and CS/CHI-PRP were able to release growth factors in a well sustained manner under physiological conditions. The presence of PRP in cellulosic scaffolds did show significant differences in their behavior when investigated under in vitro studies, where the release of diverse cytokines improved the cellular proliferation and differentiation of osteoblasts. Finally, the PRP enriched scaffolds when studied under in vivo conditions showed increased angiogenesis and re-epithelialization with adequate collagen deposition and tissue remodeling. Our results suggest that besides the conventional carrier systems, this new-generation of plant-based cellulosic scaffolds with/without any modification can serve as a suitable carrier for PRP encapsulation and release, which can be used in numerous tissue regenerative therapies.
Collapse
Affiliation(s)
- Balaji Mahendiran
- Department of Biotechnology, Applied Biomaterials Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Shalini Muthusamy
- Department of Biotechnology, Applied Biomaterials Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Sowndarya Sampath
- Department of Polymer Science and Technology, Council of Scientific and Industrial Research-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, India
| | - S N Jaisankar
- Department of Polymer Science and Technology, Council of Scientific and Industrial Research-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, India
| | - R Selvakumar
- Department of Nanobiotechnology, Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Gopal Shankar Krishnakumar
- Department of Biotechnology, Applied Biomaterials Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
29
|
Abstract
Advances in microfabrication and biomaterials have enabled the development of microfluidic chips for studying tissue and organ models. While these platforms have been developed primarily for modeling human diseases, they are also used to uncover cellular and molecular mechanisms through in vitro studies, especially in the neurovascular system, where physiological mechanisms and three-dimensional (3D) architecture are difficult to reconstruct via conventional assays. An extracellular matrix (ECM) model with a stable structure possessing the ability to mimic the natural extracellular environment of the cell efficiently is useful for tissue engineering applications. Conventionally used techniques for this purpose, for example, Matrigels, have drawbacks of owning complex fabrication procedures, in some cases not efficient enough in terms of functionality and expenses. Here, we proposed a fabrication protocol for a GelMA hydrogel, which has shown structural stability and the ability to imitate the natural environment of the cell accurately, inside a microfluidic chip utilizing co-culturing of two human cell lines. The chemical composition of the synthesized GelMA was identified by Fourier transform infrared spectrophotometry (FTIR), its surface morphology was observed by field emission electron microscopy (FESEM), and the structural properties were analyzed by atomic force microscopy (AFM). The swelling behavior of the hydrogel in the microfluidic chip was imaged, and its porosity was examined for 72 h by tracking cell localization using immunofluorescence. GelMA exhibited the desired biomechanical properties, and the viability of cells in both platforms was more than 80% for seven days. Furthermore, GelMA was a viable platform for 3D cell culture studies and was structurally stable over long periods, even when prepared by photopolymerization in a microfluidic platform. This work demonstrated a viable strategy to conduct co-culturing experiments as well as modeling invasion and migration events. This microfluidic assay may have application in drug delivery and dosage optimization studies.
Collapse
|
30
|
Xia B, Chen G. Research progress of natural tissue-derived hydrogels for tissue repair and reconstruction. Int J Biol Macromol 2022; 214:480-491. [PMID: 35753517 DOI: 10.1016/j.ijbiomac.2022.06.137] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 12/26/2022]
Abstract
There are many different grafts to repair damaged tissue. Various types of biological scaffolds, including films, fibers, microspheres, and hydrogels, can be used for tissue repair. A hydrogel, which is composed a natural or synthetic polymer network with high water absorption capacity, can provide a microenvironment closely resembling the extracellular matrix (ECM) of natural tissues to stimulate cell adhesion, proliferation, and differentiation. It has been shown to have great application potential in the field of tissue repair and regeneration. Hydrogels derived from natural tissues retain a variety of proteins and growth factors in optimal proportions, which is beneficial for the regeneration of specific tissues. This article reviews the latest research advances in the field of hydrogels from a variety of natural tissue sources, including bone tissue, blood vessels, nerve tissue, adipose tissue, skin tissue, and muscle tissue, including preparation methods, advantages, and applications in tissue engineering and regenerative medicine. Finally, it summarizes and discusses the challenges faced by natural tissue-derived hydrogels used in tissue repair, as well as future research and application directions.
Collapse
Affiliation(s)
- Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, PR China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China; Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, PR China.
| |
Collapse
|
31
|
Abstract
Drug testing, either on animals or on 2D cell cultures, has its limitations due to inaccurate mimicking of human pathophysiology. The liver, as one of the key organs that filters and detoxifies the blood, is susceptible to drug-induced injuries. Integrating 3D bioprinting with microfluidic chips to fabricate organ-on-chip platforms for 3D liver cell cultures with continuous perfusion can offer a more physiologically relevant liver-mimetic platform for screening drugs and studying liver function. The development of organ-on-chip platforms may ultimately contribute to personalized medicine as well as body-on-chip technology that can test drug responses and organ–organ interactions on a single or linked chip model.
Collapse
|
32
|
Recent Advances in Development of Natural Cellulosic Non-Woven Scaffolds for Tissue Engineering. Polymers (Basel) 2022; 14:polym14081531. [PMID: 35458282 PMCID: PMC9030052 DOI: 10.3390/polym14081531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, tissue engineering researchers have exploited a variety of biomaterials that can potentially mimic the extracellular matrix (ECM) for tissue regeneration. Natural cellulose, mainly obtained from bacterial (BC) and plant-based (PC) sources, can serve as a high-potential scaffold material for different regenerative purposes. Natural cellulose has drawn the attention of researchers due to its advantages over synthetic cellulose including its availability, cost effectiveness, perfusability, biocompatibility, negligible toxicity, mild immune response, and imitation of native tissues. In this article, we review recent in vivo and in vitro studies which aimed to assess the potential of natural cellulose for the purpose of soft (skin, heart, vein, nerve, etc.) and hard (bone and tooth) tissue engineering. Based on the current research progress report, it is sensible to conclude that this emerging field of study is yet to satisfy the clinical translation criteria, though reaching that level of application does not seem far-fetched.
Collapse
|
33
|
Li Y, Fu Y, Zhang H, Wang X, Chen T, Wu Y, Xu X, Yang S, Ji P, Song J. Natural Plant Tissue with Bioinspired Nano Amyloid and Hydroxyapatite as Green Scaffolds for Bone Regeneration. Adv Healthc Mater 2022; 11:e2102807. [PMID: 35285169 DOI: 10.1002/adhm.202102807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Indexed: 12/17/2022]
Abstract
Bone defects have been increasingly prevalent around the globe and traditional bone substitutes are constantly limited by low abundance and biosafety due to their animal-based resources. Plant-based scaffolds are currently studied as a green candidate but the bioinertia of cellulose to mammalian cells leads to uncertain bone regeneration. Inspired by the cross-kingdom adhesion of plants and bacteria, this work proposes a concept of a novel plant bone substitute, involving coating decellularized plant with nano amyloids and nano hydroxyapatites, to bridge the plant scaffold and animal tissue regeneration. Natural microporosity of plants can guide alignment of mammalian cells into various organ-like structures. Taking advantage of the bioactive nano amyloids, the scaffolds drastically promote cell adhesion, viability, and proliferation. The enhanced bio-affinity is elucidated as positively charged nano amyloids and serum deposition on the nanostructure. Nano-hydroxyapatite crystals deposited on amyloid further prompt osteogenic differentiation of pre-osteoblasts. In vivo experiments prove successful trabeculae regeneration in the scaffold. Such a hierarchical design leverages the dedicated microstructure of natural plants and high bioactivity of nano amyloid/hydroxyapatite coatings, and addresses the abundant resource of bone substitutes. Not limited to their current application, plant materials functionalized with nano amyloid/hydroxyapatite coatings allow many cross-kingdom tissue engineering and biomedical applications.
Collapse
Affiliation(s)
- Yuzhou Li
- Stomatological Hospital of Chongqing Medical University Chongqing 401147 P.R. China
| | - Yiru Fu
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P.R. China
| | - He Zhang
- Stomatological Hospital of Chongqing Medical University Chongqing 401147 P.R. China
| | - Xu Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences Chongqing 401147 P.R. China
| | - Tao Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences Chongqing 401147 P.R. China
| | - Yanqiu Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences Chongqing 401147 P.R. China
| | - Xinxin Xu
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P.R. China
| | - Sheng Yang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences Chongqing 401147 P.R. China
| | - Ping Ji
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P.R. China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University Chongqing 401147 P.R. China
| |
Collapse
|
34
|
Mechanosensitive Osteogenesis on Native Cellulose Scaffolds for Bone Tissue Engineering. J Biomech 2022; 135:111030. [DOI: 10.1016/j.jbiomech.2022.111030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 12/23/2022]
|
35
|
Pajčin I, Knežić T, Savic Azoulay I, Vlajkov V, Djisalov M, Janjušević L, Grahovac J, Gadjanski I. Bioengineering Outlook on Cultivated Meat Production. MICROMACHINES 2022; 13:402. [PMID: 35334693 PMCID: PMC8950996 DOI: 10.3390/mi13030402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Cultured meat (also referred to as cultivated meat or cell-based meat)-CM-is fabricated through the process of cellular agriculture (CA), which entails application of bioengineering, i.e., tissue engineering (TE) principles to the production of food. The main TE principles include usage of cells, grown in a controlled environment provided by bioreactors and cultivation media supplemented with growth factors and other needed nutrients and signaling molecules, and seeded onto the immobilization elements-microcarriers and scaffolds that provide the adhesion surfaces necessary for anchor-dependent cells and offer 3D organization for multiple cell types. Theoretically, many solutions from regenerative medicine and biomedical engineering can be applied in CM-TE, i.e., CA. However, in practice, there are a number of specificities regarding fabrication of a CM product that needs to fulfill not only the majority of functional criteria of muscle and fat TE, but also has to possess the sensory and nutritional qualities of a traditional food component, i.e., the meat it aims to replace. This is the reason that bioengineering aimed at CM production needs to be regarded as a specific scientific discipline of a multidisciplinary nature, integrating principles from biomedical engineering as well as from food manufacturing, design and development, i.e., food engineering. An important requirement is also the need to use as little as possible of animal-derived components in the whole CM bioprocess. In this review, we aim to present the current knowledge on different bioengineering aspects, pertinent to different current scientific disciplines but all relevant for CM engineering, relevant for muscle TE, including different cell sources, bioreactor types, media requirements, bioprocess monitoring and kinetics and their modifications for use in CA, all in view of their potential for efficient CM bioprocess scale-up. We believe such a review will offer a good overview of different bioengineering strategies for CM production and will be useful to a range of interested stakeholders, from students just entering the CA field to experienced researchers looking for the latest innovations in the field.
Collapse
Affiliation(s)
- Ivana Pajčin
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Teodora Knežić
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Ivana Savic Azoulay
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Vanja Vlajkov
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Mila Djisalov
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Ljiljana Janjušević
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Jovana Grahovac
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Ivana Gadjanski
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| |
Collapse
|
36
|
Yap JX, Leo CP, Mohd Yasin NH, Show PL, Chu DT, Singh V, Derek CJC. Recent advances of natural biopolymeric culture scaffold: synthesis and modification. Bioengineered 2022; 13:2226-2247. [PMID: 35030968 PMCID: PMC8974151 DOI: 10.1080/21655979.2021.2024322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Traditionally existing 2D culture scaffold has been inappropriately validated due to the failure in generating the precise therapeutic response. Therefore, this leads to the fabrication of 3D culture scaffold resolving the limitations in the in vivo environment. In recent years, tissue engineering played an important role in the field of bio-medical engineering. Biopolymer material, a novel natural material with excellent properties of nontoxic and biodegradable merits can be served as culture scaffold. This review summarizes the modifications of natural biopolymeric culture scaffold with different crosslinkers and their application. In addition, this review provides the recent progress of natural biopolymeric culture scaffold mainly focusing on their properties, synthesizing and modification and application.
Collapse
Affiliation(s)
- Jia Xin Yap
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - C P Leo
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Nazlina Haiza Mohd Yasin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, India
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| |
Collapse
|
37
|
Insuasti‐Cruz E, Suárez‐Jaramillo V, Mena Urresta KA, Pila‐Varela KO, Fiallos‐Ayala X, Dahoumane SA, Alexis F. Natural Biomaterials from Biodiversity for Healthcare Applications. Adv Healthc Mater 2022; 11:e2101389. [PMID: 34643331 DOI: 10.1002/adhm.202101389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/20/2021] [Indexed: 12/22/2022]
Abstract
Natural biomaterials originating during the growth cycles of all living organisms have been used for many applications. They span from bioinert to bioactive materials including bioinspired ones. As they exhibit an increasing degree of sophistication, natural biomaterials have proven suitable to address the needs of the healthcare sector. Here the different natural healthcare biomaterials, their biodiversity sources, properties, and promising healthcare applications are reviewed. The variability of their properties as a result of considered species and their habitat is also discussed. Finally, some limitations of natural biomaterials are discussed and possible future developments are provided as more natural biomaterials are yet to be discovered and studied.
Collapse
Affiliation(s)
- Erick Insuasti‐Cruz
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | | | | | - Kevin O. Pila‐Varela
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | - Xiomira Fiallos‐Ayala
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | - Si Amar Dahoumane
- Department of Chemical Engineering Polytech Montreal Montreal Quebec H3C 3A7 Canada
- Center for Advances in Water and Air Quality (CAWAQ) Lamar University Beaumont TX 77710 USA
| | - Frank Alexis
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| |
Collapse
|
38
|
Harris AF, Lacombe J, Zenhausern F. The Emerging Role of Decellularized Plant-Based Scaffolds as a New Biomaterial. Int J Mol Sci 2021; 22:12347. [PMID: 34830229 PMCID: PMC8625747 DOI: 10.3390/ijms222212347] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
The decellularization of plant-based biomaterials to generate tissue-engineered substitutes or in vitro cellular models has significantly increased in recent years. These vegetal tissues can be sourced from plant leaves and stems or fruits and vegetables, making them a low-cost, accessible, and sustainable resource from which to generate three-dimensional scaffolds. Each construct is distinct, representing a wide range of architectural and mechanical properties as well as innate vasculature networks. Based on the rapid rise in interest, this review aims to detail the current state of the art and presents the future challenges and perspectives of these unique biomaterials. First, we consider the different existing decellularization techniques, including chemical, detergent-free, enzymatic, and supercritical fluid approaches that are used to generate such scaffolds and examine how these protocols can be selected based on plant cellularity. We next examine strategies for cell seeding onto the plant-derived constructs and the importance of the different functionalization methods used to assist in cell adhesion and promote cell viability. Finally, we discuss how their structural features, such as inherent vasculature, porosity, morphology, and mechanical properties (i.e., stiffness, elasticity, etc.) position plant-based scaffolds as a unique biomaterial and drive their use for specific downstream applications. The main challenges in the field are presented throughout the discussion, and future directions are proposed to help improve the development and use of vegetal constructs in biomedical research.
Collapse
Affiliation(s)
- Ashlee F. Harris
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA;
| | - Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA;
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA;
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
39
|
Antinori ME, Contardi M, Suarato G, Armirotti A, Bertorelli R, Mancini G, Debellis D, Athanassiou A. Advanced mycelium materials as potential self-growing biomedical scaffolds. Sci Rep 2021; 11:12630. [PMID: 34135362 PMCID: PMC8209158 DOI: 10.1038/s41598-021-91572-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Mycelia, the vegetative part of fungi, are emerging as the avant-garde generation of natural, sustainable, and biodegradable materials for a wide range of applications. They are constituted of a self-growing and interconnected fibrous network of elongated cells, and their chemical and physical properties can be adjusted depending on the conditions of growth and the substrate they are fed upon. So far, only extracts and derivatives from mycelia have been evaluated and tested for biomedical applications. In this study, the entire fibrous structures of mycelia of the edible fungi Pleurotus ostreatus and Ganoderma lucidum are presented as self-growing bio-composites that mimic the extracellular matrix of human body tissues, ideal as tissue engineering bio-scaffolds. To this purpose, the two mycelial strains are inactivated by autoclaving after growth, and their morphology, cell wall chemical composition, and hydrodynamical and mechanical features are studied. Finally, their biocompatibility and direct interaction with primary human dermal fibroblasts are investigated. The findings demonstrate the potentiality of mycelia as all-natural and low-cost bio-scaffolds, alternative to the tissue engineering systems currently in place.
Collapse
Affiliation(s)
- Maria Elena Antinori
- Smart Materials, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
- DIBRIS, University of Genoa, Genoa, Italy
| | - Marco Contardi
- Smart Materials, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Giulia Suarato
- Smart Materials, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
- Translational Pharmacology, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Giorgio Mancini
- Smart Materials, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Doriana Debellis
- Electron Microscopy Facility, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Athanassia Athanassiou
- Smart Materials, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| |
Collapse
|
40
|
Djisalov M, Knežić T, Podunavac I, Živojević K, Radonic V, Knežević NŽ, Bobrinetskiy I, Gadjanski I. Cultivating Multidisciplinarity: Manufacturing and Sensing Challenges in Cultured Meat Production. BIOLOGY 2021; 10:204. [PMID: 33803111 PMCID: PMC7998526 DOI: 10.3390/biology10030204] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Abstract
Meat cultivation via cellular agriculture holds great promise as a method for future food production. In theory, it is an ideal way of meat production, humane to the animals and sustainable for the environment, while keeping the same taste and nutritional values as traditional meat and having additional benefits such as controlled fat content and absence of antibiotics and hormones used in the traditional meat industry. However, in practice, there is still a number of challenges, such as those associated with the upscale of cultured meat (CM). CM food safety monitoring is a necessary factor when envisioning both the regulatory compliance and consumer acceptance. To achieve this, a multidisciplinary approach is necessary. This includes extensive development of the sensitive and specific analytical devices i.e., sensors to enable reliable food safety monitoring throughout the whole future food supply chain. In addition, advanced monitoring options can help in the further optimization of the meat cultivation which may reduce the currently still high costs of production. This review presents an overview of the sensor monitoring options for the most relevant parameters of importance for meat cultivation. Examples of the various types of sensors that can potentially be used in CM production are provided and the options for their integration into bioreactors, as well as suggestions on further improvements and more advanced integration approaches. In favor of the multidisciplinary approach, we also include an overview of the bioreactor types, scaffolding options as well as imaging techniques relevant for CM research. Furthermore, we briefly present the current status of the CM research and related regulation, societal aspects and challenges to its upscaling and commercialization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (M.Dj.); (T.K.); (I.P.); (K.Ž.); (V.R.); (N.Ž.K.); (I.B.)
| |
Collapse
|