1
|
Kim JR, Cho YS, Park JH, Kim TH. Poly(HEMA-co-MMA) Hydrogel Scaffold for Tissue Engineering with Controllable Morphology and Mechanical Properties Through Self-Assembly. Polymers (Basel) 2024; 16:3014. [PMID: 39518224 PMCID: PMC11548049 DOI: 10.3390/polym16213014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Poly(2-hydroxyethyl methacrylate) (PHEMA) has been widely used in medical materials for several decades. However, the poor mechanical properties of this material have limited its application in the field of tissue engineering. The purpose of this study was to fabricate a scaffold with suitable mechanical properties and in vitro cell responses for soft tissue by using poly(HEMA-co-MMA) with various concentration ratios of hydroxyethyl methacrylate (HEMA) and methyl methacrylate (MMA). To customize the concentration ratio of HEMA and MMA, the characteristics of the fabricated scaffold with various concentration ratios were investigated through structural morphology, FT-IR, mechanical property, and contact angle analyses. Moreover, in vitro cell responses were observed according to the various concentration ratios of HEMA and MMA. Consequently, various morphologies and pore sizes were observed by changing the HEMA and MMA ratio. The mechanical properties and contact angle of the fabricated scaffolds were measured according to the HEMA and MMA concentration ratio. The results were as follows: compressive maximum stress: 254.24-932.42 KPa; tensile maximum stress: 4.37-30.64 KPa; compressive modulus: 16.14-38.80 KPa; tensile modulus: 0.5-2 KPa; and contact angle: 36.89-74.74°. In terms of the in vitro cell response, the suitable cell adhesion and proliferation of human dermal fibroblast (HDF) cells were observed in the whole scaffold. Therefore, a synthetic hydrogel scaffold with enhanced mechanical properties and suitable fibroblast cell responses could be easily fabricated for use with soft tissue using a specific HEMA and MMA concentration ratio.
Collapse
Affiliation(s)
- Ja-Rok Kim
- R&D Center, TE BioS, Co., Ltd., 194-41, Osongsaengmyeong 1-ro, Heungdeok-gu, Cheongju-si 28160, Republic of Korea; (J.-R.K.); (J.-H.P.)
| | - Yong Sang Cho
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea;
| | - Jae-Hong Park
- R&D Center, TE BioS, Co., Ltd., 194-41, Osongsaengmyeong 1-ro, Heungdeok-gu, Cheongju-si 28160, Republic of Korea; (J.-R.K.); (J.-H.P.)
| | - Tae-Hyun Kim
- R&D Center, TE BioS, Co., Ltd., 194-41, Osongsaengmyeong 1-ro, Heungdeok-gu, Cheongju-si 28160, Republic of Korea; (J.-R.K.); (J.-H.P.)
| |
Collapse
|
2
|
Zhang C, Cai X, Li M, Peng J, Mei J, Wang F, Zhang R, Zhou Y, Fang S, Xia D, Zhao J. Preclinical Evaluation of Bioactive Small Intestinal Submucosa-PMMA Bone Cement for Vertebral Augmentation. ACS Biomater Sci Eng 2024; 10:2398-2413. [PMID: 38477550 PMCID: PMC11005825 DOI: 10.1021/acsbiomaterials.3c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
In vertebroplasty and kyphoplasty, bioinert poly(methyl methacrylate) (PMMA) bone cement is a conventional filler employed for quick stabilization of osteoporotic vertebral compression fractures (OVCFs). However, because of the poor osteointegration, excessive stiffness, and high curing temperature of PMMA, the implant loosens, the adjacent vertebrae refracture, and thermal necrosis of the surrounding tissue occurs frequently. This investigation addressed these issues by incorporating the small intestinal submucosa (SIS) into PMMA (SIS-PMMA). In vitro analyses revealed that this new SIS-PMMA bone cement had improved porous structure, as well as reduced compressive modulus and polymerization temperature compared with the original PMMA. Furthermore, the handling properties of SIS-PMMA bone cement were not significantly different from PMMA. The in vitro effect of PMMA and SIS-PMMA was investigated on MC3T3-E1 cells via the Transwell insert model to mimic the clinical condition or directly by culturing cells on the bone cement samples. The results indicated that SIS addition substantially enhanced the proliferation and osteogenic differentiation of MC3T3-E1 cells. Additionally, the bone cement's biomechanical properties were also assessed in a decalcified goat vertebrae model with a compression fracture, which indicated the SIS-PMMA had markedly increased compressive strength than PMMA. Furthermore, it was proved that the novel bone cement had good biosafety and efficacy based on the International Standards and guidelines. After 12 weeks of implantation, SIS-PMMA indicated significantly more osteointegration and new bone formation ability than PMMA. In addition, vertebral bodies with cement were also extracted for the uniaxial compression test, and it was revealed that compared with the PMMA-implanted vertebrae, the SIS-PMMA-implanted vertebrae had greatly enhanced maximum strength. Overall, these findings indicate the potential of SIS to induce efficient fixation between the modified cement surface and the host bone, thereby providing evidence that the SIS-PMMA bone cement is a promising filler for clinical vertebral augmentation.
Collapse
Affiliation(s)
- Chi Zhang
- Department
of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, China
- Zhejiang
Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiongxiong Cai
- Department
of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, China
| | - Mei Li
- Key
Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang
Province, The First Affiliated Hospital
of Ningbo University, Ningbo 315010, China
| | - Jing Peng
- Zhejiang
Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Jin Mei
- Institute
of Biomaterials, The First Affiliated Hospital
of Ningbo University, Ningbo 315010, China
| | - Fangfang Wang
- Institute
of Biomaterials, The First Affiliated Hospital
of Ningbo University, Ningbo 315010, China
| | - Rui Zhang
- Institute
of Biomaterials, The First Affiliated Hospital
of Ningbo University, Ningbo 315010, China
| | - Yingjie Zhou
- Institute
of Biomaterials, The First Affiliated Hospital
of Ningbo University, Ningbo 315010, China
| | - Shuyu Fang
- Department
of Clinical Laboratory, The First Affiliated
Hospital of Ningbo University, Ningbo 315010, China
| | - Dongdong Xia
- Department
of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, China
| | - Jiyuan Zhao
- Zhejiang
Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Sui B, Xu Z, Xue Z, Xiang Y, Zhou T, Beltrán AM, Zheng K, Liu X, Boccaccini AR. Mussel-Inspired Polydopamine Composite Mesoporous Bioactive Glass Nanoparticles: An Exploration of Potential Metal-Ion Loading Platform and In Vitro Bioactivity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:29550-29560. [PMID: 37278380 DOI: 10.1021/acsami.3c03680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Exploring new approaches to realize the possibility of incorporating biologically active elements into mesoporous silicate bioactive glass nanoparticles (MBG NPs) and guaranteeing their meso- structural integrity and dimensional stability has become an attractive and interesting challenge in biomaterials science. We present a postgrafting strategy for introducing different metal elements into MBG NPs. This strategy is mediated by polydopamine (PDA) coating, achieving uniform loading of copper or copper-cobalt on the particles efficiently and ensuring the stability of MBG NPs in terms of particle size, mesoporous structure, and chemical structure. However, the PDA coating reduced the ion-binding free energy of the MBG NPs for calcium and phosphate ions, resulting in the deposition of minimal CaP clusters on the PDA@MBG NP surface when immersed for 7 days in simulated body fluid, indicating the absence of hydroxyapatite mineralization.
Collapse
Affiliation(s)
- Baiyan Sui
- Department of Dental Materials, Shanghai Biomaterials Research and Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, 200011 Shanghai, China
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Zhiyan Xu
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Zhiyu Xue
- School of Materials and Energy, Advanced Energy Research Institute, Sichuan Provincial Engineering Research Center of Flexible Display Material Genome, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, 610054 Chengdu, China
| | - Yong Xiang
- School of Materials and Energy, Advanced Energy Research Institute, Sichuan Provincial Engineering Research Center of Flexible Display Material Genome, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, 610054 Chengdu, China
| | - Tian Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, No. 639 Zhizaoju Road, 200011 Shanghai, China
| | - Ana M Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine and Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Hanzhong Rd.136, 210029 Nanjing, China
| | - Xin Liu
- Department of Dental Materials, Shanghai Biomaterials Research and Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, 200011 Shanghai, China
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| |
Collapse
|
4
|
Arakkal A, Sirajunnisa P, Sailaja GS. Natural rubber latex films with effective growth inhibition against S. aureus via surface conjugated gentamicin. J BIOACT COMPAT POL 2023. [DOI: 10.1177/08839115231153823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Hospital-associated infections and related complications are of extreme concern in the healthcare sector since biofilms generated over material surfaces not only create turbulence in the healthcare practices followed but also ruin the device performance, and increased medication, leading to significant chances of drug resistance. Natural rubber latex (NRL) being the first choice for the manufacture of several conventional biomedical devices, it is essential to ensure the surfaces of the same are inherently inactive against most microorganisms. This study presents NRL film surface conjugated with a well-known antibiotic, gentamicin through an amide linkage to generate antibacterial activity to the surface with a significant growth inhibition rate, especially against Staphylococcus aureus. The NRL films were surface-oxidized under controlled acidic conditions to generate carboxyl groups exploring the unsaturation of the base monomer unit. The carboxyl group reacts with the amine groups of gentamicin facilitating its surface conjugation. The surface anchoring was authenticated by FTIR-ATR complimented further by contact angle measurement as a function of hydrophilicity and elemental analysis by EDX spectroscopy. The antibacterial efficacy of modified NRL films was evaluated using antibacterial drop test and the results indicated a substantial growth inhibition rate (>60%) against Pseudomonas aeruginosa and Staphylococcus aureus. The study could be further optimized and proposed as a viable route for the conjugation of active molecules over inert polymer molecules.
Collapse
Affiliation(s)
- Aswin Arakkal
- Department of Polymer Science & Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Paramban Sirajunnisa
- Department of Polymer Science & Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Gopalakrishnanchettiar Sivakamiammal Sailaja
- Department of Polymer Science & Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala, India
- Inter-University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kochi, Kerala, India
| |
Collapse
|
5
|
Xu C, Guan S, Hou W, Dong X, Qi M. Magnesium-organic framework modified biodegradable electrospun scaffolds for promoting osteogenic differentiation and bone regeneration. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Mercatali L, Vanni S, Miserocchi G, Liverani C, Spadazzi C, Cocchi C, Calabrese C, Gurrieri L, Fausti V, Riva N, Genovese D, Lucarelli E, Focarete ML, Ibrahim T, Calabrò L, De Vita A. The emerging role of cancer nanotechnology in the panorama of sarcoma. Front Bioeng Biotechnol 2022; 10:953555. [PMID: 36324885 PMCID: PMC9618700 DOI: 10.3389/fbioe.2022.953555] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
In the field of nanomedicine a multitude of nanovectors have been developed for cancer application. In this regard, a less exploited target is represented by connective tissue. Sarcoma lesions encompass a wide range of rare entities of mesenchymal origin affecting connective tissues. The extraordinary diversity and rarity of these mesenchymal tumors is reflected in their classification, grading and management which are still challenging. Although they include more than 70 histologic subtypes, the first line-treatment for advanced and metastatic sarcoma has remained unchanged in the last fifty years, excluding specific histotypes in which targeted therapy has emerged. The role of chemotherapy has not been completely elucidated and the outcomes are still very limited. At the beginning of the century, nano-sized particles clinically approved for other solid lesions were tested in these neoplasms but the results were anecdotal and the clinical benefit was not substantial. Recently, a new nanosystem formulation NBTXR3 for the treatment of sarcoma has landed in a phase 2-3 trial. The preliminary results are encouraging and could open new avenues for research in nanotechnology. This review provides an update on the recent advancements in the field of nanomedicine for sarcoma. In this regard, preclinical evidence especially focusing on the development of smart materials and drug delivery systems will be summarized. Moreover, the sarcoma patient management exploiting nanotechnology products will be summed up. Finally, an overlook on future perspectives will be provided.
Collapse
Affiliation(s)
- Laura Mercatali
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Silvia Vanni
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giacomo Miserocchi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Liverani
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Spadazzi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Claudia Cocchi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Calabrese
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lorena Gurrieri
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Valentina Fausti
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Nada Riva
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Damiano Genovese
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Enrico Lucarelli
- Osteoncologia, Sarcomi dell’osso e dei tessuti molli, e Terapie Innovative, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Toni Ibrahim
- Osteoncologia, Sarcomi dell’osso e dei tessuti molli, e Terapie Innovative, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luana Calabrò
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Alessandro De Vita
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Alessandro De Vita,
| |
Collapse
|
7
|
Dong X, Wang Y, Zhuang H, An G. Hydroxygenkwanin suppresses proliferation, invasion and migration of osteosarcoma cells via the miR‑320a/SOX9 axis. Mol Med Rep 2022; 26:299. [PMID: 35929504 PMCID: PMC9434992 DOI: 10.3892/mmr.2022.12815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Hydroxygenkwanin (HGK) has an anticancer effect in a variety of tumors, but its role in osteosarcoma has not been explored. The purpose of the present study was to investigate the therapeutic effect of HGK on osteosarcoma and its specific molecular mechanism. Osteosarcoma cells (MG-63 and U2OS) treated with various concentrations of HGK were assigned to the treatment group. MTT, clone formation, wound healing and Transwell assays were performed to assess the viability, proliferation, migration, and invasion of MG-63 and U2OS cells. RT-qPCR was conducted to quantify the expression levels of of microRNA (miR)-320a and SRY-box transcription factor 9 (SOX9) in MG-63 and U2OS cells. The binding sites of miR-320a and SOX9 were predicted by starBase database, and verified using the dual-luciferase reporter assay. The expression levels of SOX9 and EMT-related proteins (N-cadherin, E-cadherin and vimentin) were detected by western blot analysis. HGK inhibited cell proliferation, migration, invasion, but promoted the expression of miR-320a in MG-63 and U2OS cells. Downregulation of miR-320a reversed the effects of HGK on proliferation, migration and invasion of MG-63 and U2OS cells, while upregulation of miR-320a had the opposite effect. HGK inhibited the expression of SOX9 by promoting the expression of miR-320a. Upregulation of SOX9 could partially reverse miR-320a-induced migration and invasion of MG-63 and U2OS cells. In addition, upregulation of miR-320a promoted E-cadherin expression and inhibited the expression of N-cadherin and vimentin, and the effect of miR-320a was also reversed by SOX9. In conclusion, HGK inhibited proliferation, migration and invasion of MG-63 and U2OS cells through the miR-320a/SOX9 axis.
Collapse
Affiliation(s)
- Xinli Dong
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Binzhou, Binzhou, Shandong 256600, P.R. China
| | - Yanhua Wang
- Department of Nursing, Traditional Chinese Medicine Hospital of Binzhou, Binzhou, Shandong 256600, P.R. China
| | - Hua Zhuang
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Binzhou, Binzhou, Shandong 256600, P.R. China
| | - Gang An
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
8
|
Yuan J, Ye Z, Zeng Y, Pan Z, Feng Z, Bao Y, Li Y, Liu X, He Y, Feng Q. Bifunctional scaffolds for tumor therapy and bone regeneration: Synergistic effect and interplay between therapeutic agents and scaffold materials. Mater Today Bio 2022; 15:100318. [PMID: 35734197 PMCID: PMC9207581 DOI: 10.1016/j.mtbio.2022.100318] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 10/26/2022] Open
Abstract
Bone tumor patients often face the problems with cancer cell residues and bone defects after the operation. Therefore, researchers have developed many bifunctional scaffolds with both tumor treatment and bone repair functions. Therapeutic agents are usually combined with bioactive scaffolds to achieve the "bifunctional". However, the synergistic effect of bifunctional scaffolds on tumor therapy and bone repair, as well as the interplay between therapeutic agents and scaffold materials in bifunctional scaffolds, have not been emphasized and discussed. This review proposes a promising design scheme for bifunctional scaffolds: the synergistic effect and interplay between the therapeutic agents and scaffold materials. This review summarizes the latest research progress in bifunctional scaffolds for therapeutic applications and regeneration. In particular, it summarizes the role of tumor therapeutic agents in bone regeneration and the role of scaffold materials in tumor treatment. Finally, a perspective on the future development of bifunctional scaffolds for tumor therapy and bone regeneration is discussed.
Collapse
Affiliation(s)
- Jiongpeng Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhaoyi Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhenxing Pan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - ZhenZhen Feng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Bao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yushan Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qingling Feng
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|