1
|
Guerrero M, Filho D, Ayala A N, Rafael D, Andrade F, Marican A, Vijayakumar S, Durán-Lara EF. Hydrogel-antimicrobial peptide association: A novel and promising strategy to combat resistant infections. Colloids Surf B Biointerfaces 2025; 247:114451. [PMID: 39693724 DOI: 10.1016/j.colsurfb.2024.114451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Infections from multi-drug resistant bacteria (MDRB) have raised a worldwide concern, with projections indicating that fatalities from these infections could surpass those from cancer by 2050. This troubling trend is influenced by several factors, including the scarcity of new antibiotics to tackle challenging infections, the prohibitive costs of last-resort antibiotics, the inappropriate use of antimicrobial agents in agriculture and aquaculture, and the over-prescription of antibiotics in community settings. One promising alternative treatment is the application of antimicrobial peptides (AMPs) against MDRB. Hydrogels can facilitate the delivery of these antimicrobials, enhancing their biocompatibility and bioavailability. The Peptide-Hydrogel Association (PHA) capitalizes on the distinct properties of both peptides and hydrogels, resulting in multifunctional systems suitable for various antibacterial purposes. Multiple strategies can be employed to develop a PHA, including peptide-based hydrogels, hydrogels infused with peptides, and hydrogels modified with peptide functionalities. The research examined in this review showcases the strong effectiveness of these systems against MDRB and underscores their potential in creating multifunctional and multi-responsive solutions for various infection scenarios. The high efficacy of PHAs represents a promising and innovative therapeutic strategy in combating infections caused by MDRB.
Collapse
Affiliation(s)
- Marcelo Guerrero
- Laboratory of Bio & Nano Materials, Drug Delivery and Controlled Release, Department of Microbiology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile
| | - David Filho
- Laboratory of Bio & Nano Materials, Drug Delivery and Controlled Release, Department of Microbiology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile
| | - Nicolás Ayala A
- Department of Genetics, Microbiology and statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Diana Rafael
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Passeig de la Vall d'Hebron, 119-129, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, Madrid, Spain; Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain
| | - Fernanda Andrade
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Passeig de la Vall d'Hebron, 119-129, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, Madrid, Spain; Department of Pharmacy and Pharmaceutical Technology and Physicochemistry, Faculty of Pharmacy and Food Sciences, School of Pharmacy, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain
| | - Adolfo Marican
- Institute of Chemistry of Natural Research, University of Talca, Talca 3460000, Chile
| | - Sekar Vijayakumar
- Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Esteban F Durán-Lara
- Laboratory of Bio & Nano Materials, Drug Delivery and Controlled Release, Department of Microbiology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile.
| |
Collapse
|
2
|
Liao Z, Li J, Ni W, Zhan R, Xu X. Co-delivery of antimicrobial peptide and Prussian blue nanoparticles by chitosan/polyvinyl alcohol hydrogels. Carbohydr Polym 2025; 348:122873. [PMID: 39562133 DOI: 10.1016/j.carbpol.2024.122873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/21/2024]
Abstract
Altered skin integrity increases the chance of infection, and bacterial infections often lead to a persistent inflammatory response that prolongs healing time. Functional artificial hydrogels are receiving increasing attention as suitable wound dressing barrier. However, the antimicrobial effect of the new dressing still needs to be explored in depth. In this work, the antimicrobial peptide MSI-1 was covalently attached to chitosan-modified poly (vinyl alcohol) hydrogels mixed with Prussian blue nanoparticles (PBNPs) via a primary amine group coupled to a carboxyl group. The synthesized hydrogel has a long-lasting antimicrobial surface and is able to maintain its bactericidal effect on Staphylococcus aureus and Escherichia coli for 24 h. Due to the presence of PBNPs, the hydrogel was able to rise to 48.3 °C within 10 min under near infrared (NIR) light irradiation at a wavelength of 808 nm and maintain this mild temperature to avoid bacterial biofilms. The hydrogel showed >90 % survival in co-culture with cells for 3 d and did not damage major organs in animal experiments. Thus, the photothermal dual-mode antimicrobial hydrogel synthesized in this study increases the selectivity as a safe and efficient wound dressing for the treatment of infected skin defects.
Collapse
Affiliation(s)
- Zhiyi Liao
- Department of Burn and Plastic Surgery, the First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Jiayi Li
- Department of Burn and Plastic Surgery, the First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Wenqiang Ni
- Department of Burn and Plastic Surgery, the First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, the Third Military Medical University, Army Medical University, Chongqing 400038, China.
| | - Xisheng Xu
- Department of Burn and Plastic Surgery, the First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China.
| |
Collapse
|
3
|
Atif M, Babuççu G, Riool M, Zaat S, Jonas U. Antimicrobial Peptide SAAP-148-Functionalized Hydrogels from Photocrosslinkable Polymers with Broad Antibacterial Activity. Macromol Rapid Commun 2024; 45:e2400785. [PMID: 39530205 DOI: 10.1002/marc.202400785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Antimicrobial peptides (AMPs) are promising alternatives to traditional antibiotics for treating skin wound infections. Nonetheless, their short half-life in biological environments restricts clinical applicability. Covalent immobilization of AMPs onto suitable substrates offers a comprehensive solution, creating contact-killing surfaces with long-term functionality. Here, a copolymer of poly[(hydroxy ethyl acrylamide)-co-(4-benzophenone acrylamide)-co-(pentafluorophenyl acrylate)-co-(ECOSURF EH-3 acrylate)], in short poly(HEAAm-co-BPAAm-co-PFPA-co-EH3A), is synthesized by free radical polymerization. Subsequent modification of active ester groups with the amine groups of SAAP-148, results in a copolymer, that is non-cytotoxic to human lung fibroblasts. UV photocrosslinking of the benzophenone units yields a polymer network that forms a hydrogel after swelling with aqueous medium. Both the SAAP-148-modified polymer in solution and the photocrosslinked hydrogels show good antimicrobial activity against strains of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, including multidrug-resistant strains, frequently found in wound infections. The covalent attachment of SAAP-148 prevents leaching, ensuring sustained antimicrobial activity for at least 48 h in diluted human blood plasma and 14 days in PBS. This prolonged retention of antimicrobial activity in human blood plasma significantly enhances its clinical potential. Overall, this study shows the potential of the AMP-functionalized photocrosslinkable polymer as antimicrobial wound dressings, providing an effective alternative to antibiotics.
Collapse
Affiliation(s)
- Muhammad Atif
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany
| | - Gizem Babuççu
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam institute for Immunology and Infectious Diseases, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam institute for Immunology and Infectious Diseases, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Am Biopark 9, 93053, Regensburg, Germany
| | - Sebastian Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam institute for Immunology and Infectious Diseases, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany
| |
Collapse
|
4
|
Joshi S, Barman P, Maan M, Goyal H, Sharma S, Kumar R, Verma G, Saini A. Development of a two-dimensional peptide functionalized-reduced graphene oxide biomaterial for wound care applications. NANOSCALE 2024; 16:20986-21001. [PMID: 39463433 DOI: 10.1039/d4nr02233e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Increased incidences of antibiotic resistance have necessitated the development of novel wound disinfection strategies with minimal risk of resistance development. This study aimed at developing a biocompatible wound dressing biomaterial with the potential to treat acute and chronic wounds infected with multidrug-resistant Pseudomonas aeruginosa. A multifunctional antibacterial nanoconjugate was synthesized by covalently coupling a synthetically designed peptide (DP1, i.e., RFGRFLRKILRFLKK) with reduced graphene oxide (rGO). The conjugate displayed antibacterial and antibiofilm activities against multidrug-resistant Pseudomonas aeruginosa. In vitro studies demonstrated 94% hemocompatibility of the nanoconjugate even at concentrations as high as 512 μg mL-1. Cytotoxicity studies on 3T3-L1 cells showed 95% cell viability, signifying biocompatibility. Owing to these properties, the biomedical applicability of the nanoconjugate was assessed as an antibacterial wound dressing agent. rGO-DP1-loaded wound dressing exhibited enhanced reduction in bacterial bioburden (6 log 10 CFU) with potential for wound re-epithelization (77.3%) compared to the uncoated bandage. Moreover, an improvement in the material properties of the bandage was observed in terms of enhanced tensile strength and decreased elongation at break (%). Collectively, these findings suggest that rGO-DP1 is an effective biomaterial that, when loaded on wound dressings, has the potential to be used as a facile, sustainable and progressive agent for bacterial wound disinfection as well as healing.
Collapse
Affiliation(s)
- Shubhi Joshi
- Department of Biophysics, Panjab University, Chandigarh, U.T., 160014, India.
- Energy Research Centre, Panjab University, Chandigarh, U.T., 160014, India
| | - Panchali Barman
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh, U.T., 160014, India
| | - Mayank Maan
- Department of Biophysics, Panjab University, Chandigarh, U.T., 160014, India.
| | - Hemant Goyal
- Department of Biophysics, Panjab University, Chandigarh, U.T., 160014, India.
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Chandigarh, U.T., 160014, India.
| | - Rajesh Kumar
- Department of Physics, Panjab University, Chandigarh, U.T., 160014, India
| | - Gaurav Verma
- Dr Shanti Swarup Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, U.T., 160014, India
- Centre for Nanoscience & Nanotechnology (U.I.E.A.S.T), Panjab University, Chandigarh, U.T., 160014, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Chandigarh, U.T., 160014, India.
| |
Collapse
|
5
|
Stepulane A, Rajasekharan AK, Andersson M. Antibacterial efficacy of antimicrobial peptide-functionalized hydrogel particles combined with vancomycin and oxacillin antibiotics. Int J Pharm 2024; 664:124630. [PMID: 39216651 DOI: 10.1016/j.ijpharm.2024.124630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The rise of antibiotic resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), requires novel approaches to combat infections. Medical devices like implants and wound dressings are frequently used in conjunction with antibiotics, motivating the development of antibacterial biomaterials capable of exhibiting combined antibacterial effects with conventional antibiotics. This study explores the synergistic antibacterial effects of combining antimicrobial peptide (AMP) functionalized hydrogel particles with conventional antibiotics, vancomycin (VCM) and oxacillin (OXA), against Staphylococcus aureus and MRSA. The AMP employed, RRPRPRPRPWWWW-NH2, has previously demonstrated broad-spectrum activity and enhanced stability when attached to hydrogel substrates. Here, checkerboard assays revealed additive and synergistic interactions between the free AMP and both VCM and OXA against Staphylococcus aureus and MRSA. Notably, the AMP-OXA combination displayed a significant synergistic effect against MRSA, with a 512-fold reduction in OXA's minimum inhibitory concentration (MIC) when combined with free AMP. The observed synergism against MRSA was retained upon covalent AMP immobilization onto the hydrogel particles; however, at a lower rate with a 64-fold reduction in OXA MIC. Despite this, the OXA-AMP hydrogel particle combinations retained considerable synergistic potential against MRSA, a strain resistant to OXA, highlighting the potential of AMP-functionalized materials for enhancing antibiotic efficacy. These findings underscore the importance of developing antimicrobial biomaterials for future medical devices to fight biomaterial-associated infections and reverse antimicrobial resistance.
Collapse
Affiliation(s)
- Annija Stepulane
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden; Centre for Antibiotic Resistance Research in Gothenburg (CARe), SE-405 30 Gothenburg, Sweden
| | | | - Martin Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden; Amferia AB, AZ BioVentureHub, Mölndal SE-431 83, Sweden; Centre for Antibiotic Resistance Research in Gothenburg (CARe), SE-405 30 Gothenburg, Sweden.
| |
Collapse
|
6
|
Carton F, Rizzi M, Canciani E, Sieve G, Di Francesco D, Casarella S, Di Nunno L, Boccafoschi F. Use of Hydrogels in Regenerative Medicine: Focus on Mechanical Properties. Int J Mol Sci 2024; 25:11426. [PMID: 39518979 PMCID: PMC11545898 DOI: 10.3390/ijms252111426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Bioengineered materials represent an innovative option to support the regenerative processes of damaged tissues, with the final objective of creating a functional environment closely mimicking the native tissue. Among the different available biomaterials, hydrogels represent the solution of choice for tissue regeneration, thanks to the easy synthesis process and the highly tunable physical and mechanical properties. Moreover, hydrogels are biocompatible and biodegradable, able to integrate in biological environments and to support cellular interactions in order to restore damaged tissues' functionality. This review offers an overview of the current knowledge concerning hydrogel synthesis and characterization and of the recent achievements in their experimental use in supporting skin, bone, cartilage, and muscle regeneration. The currently available in vitro and in vivo results are of great interest, highlighting the need for carefully designed and controlled preclinical studies and clinical trials to support the transition of these innovative biomaterials from the bench to the bedside.
Collapse
Affiliation(s)
- Flavia Carton
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
| | - Manuela Rizzi
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
| | - Elena Canciani
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
| | - Gianluca Sieve
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
| | - Dalila Di Francesco
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Simona Casarella
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
| | - Luca Di Nunno
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Francesca Boccafoschi
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
| |
Collapse
|
7
|
Li Y, Yang X, Chen Q, Li Y, Gao R. Unlocking Industrial Potential: Phase-Transition Coimmobilization of Multienzyme Systems for High-Efficiency Uridine Diphosphate Galactose Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22217-22228. [PMID: 39316733 DOI: 10.1021/acs.jafc.4c07173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Transitioning from batch to continuous industrial production often improves the economic returns and production efficiency. Immobilization is a critical strategy that can facilitate this shift. This study refined the previously established method for synthesizing uridine diphosphate galactose (UDP-Gal) by employing thermophilic enzymes. Three thermophilic enzymes (galactokinase, uridine diphosphate glucose pyrophosphorylase, and inorganic pyrophosphatase) were coimmobilized on the pH-responsive carrier Eudragit S-100, promoting enzyme recovery and reuse while their industrial potential was assessed. The coimmobilization system efficiently catalyzed UDP-Gal production, yielding 13.69 mM in 1.5 h, attaining a UTP conversion rate of 91.2% and a space-time yield (STY) of 5.16 g/L/h. Moreover, the system exhibited exceptional reproducibility, retaining 58.9% of its initial activity after five cycles. This research highlighted promising prospects for coimmobilization in industrial synthesis and proposed a novel methodology for enhancing UDP-Gal production in the industry. In addition, the phase-transition property of Eudragit S-100 paves the way for further exploration with the one-pot synthesis of poorly soluble galactosides.
Collapse
Affiliation(s)
- Yajing Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130000, China
| | - Xinrui Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130000, China
| | - Qi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130000, China
| | - Yuejun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130000, China
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130000, China
| |
Collapse
|
8
|
Ahuja R, Shivhare V, Konar AD. Recent Advances in Smart Self-Assembled Bioinspired Hydrogels: A Bridging Weapon for Emerging Health Care Applications from Bench to Bedside. Macromol Rapid Commun 2024; 45:e2400255. [PMID: 38802265 DOI: 10.1002/marc.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Stimuli-responsive low molecular weight hydrogel interventions for Biomedical challenges are a rapidly evolving paradigm in the bottom-up approach recently. Peptide-based self-assembled nano biomaterials present safer alternatives to their non-degradable counterparts as demanded for today's most urged clinical needs.Although a plethora of work has already been accomplished, programming hydrogelators with appropriate functionalities requires a better understanding as the impact of the macromolecular structure of the peptides and subsequently, their self-assembled nanostructures remain unidentified. Henceforth this review focuses on two aspects: Firstly, the underlying guidelines for building biomimetic strategies to tailor scaffolds leading to hydrogelation along with the role of non-covalent interactions that are the key components of various self-assembly processes. In the second section, it is aimed to bring together the recent achievements with designer assembly concerning their self-aggregation behaviour and applications mainly in the biomedical arena like drug delivery carrier design, antimicrobial, anti-inflammatory as well as wound healing materials. Furthermore, it is anticipated that this article will provide a conceptual demonstration of the different approaches taken towards the construction of these task-specific designer hydrogels. Finally, a collective effort among the material scientists is required to pave the path for the entrance of these intelligent materials into medicine from bench to bedside.
Collapse
Affiliation(s)
- Rishabh Ahuja
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
| | - Vaibhav Shivhare
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
| | - Anita Dutt Konar
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
- University Grants Commission, New Delhi, 110002, India
| |
Collapse
|
9
|
Recktenwald M, Kaur M, Benmassaoud MM, Copling A, Khanna T, Curry M, Cortes D, Fleischer G, Carabetta VJ, Vega SL. Antimicrobial Peptide Screening for Designing Custom Bactericidal Hydrogels. Pharmaceutics 2024; 16:860. [PMID: 39065557 PMCID: PMC11279943 DOI: 10.3390/pharmaceutics16070860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic pathogen that lives on surfaces and skin and can cause serious infections inside the body. Antimicrobial peptides (AMPs) are part of the innate immune system and can eliminate pathogens, including bacteria and viruses, and are a promising alternative to antibiotics. Although studies have reported that AMP-functionalized hydrogels can prevent bacterial adhesion and biofilm formation, AMP dosing and the combined effects of multiple AMPs are not well understood. Here, three AMPs with different antibacterial properties were synthesized and the soluble minimum inhibitory concentrations (MICs) of each AMP against methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) were determined. Hydrogels with immobilized AMPs at their MIC (DD13-RIP 27.5 µM; indolicidin 43.8 µM; P10 120 µM) were effective in preventing MRSA adhesion and biofilm formation. Checkerboard AMP screens identified synergy between indolicidin (3.1 µM) and P10 (12.5 µM) based on soluble fractional inhibitory concentration indices (FICIs) against MRSA, and hydrogels formed with these AMPs at half of their synergistic concentrations (total peptide concentration, 7.8 µM) were highly efficacious in killing MRSA. Mammalian cells cultured atop these hydrogels were highly viable, demonstrating that these AMP hydrogels are biocompatible and selectively eradicate bacteria, based on soluble checkerboard-screening data.
Collapse
Affiliation(s)
- Matthias Recktenwald
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (M.R.); (M.M.B.)
| | - Muskanjot Kaur
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.K.); (M.C.); (D.C.); (G.F.)
| | - Mohammed M. Benmassaoud
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (M.R.); (M.M.B.)
| | - Aryanna Copling
- Department of Translational Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA;
| | - Tulika Khanna
- Department of Biological Sciences, Rowan University, Glassboro, NJ 08028, USA;
| | - Michael Curry
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.K.); (M.C.); (D.C.); (G.F.)
| | - Dennise Cortes
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.K.); (M.C.); (D.C.); (G.F.)
| | - Gilbert Fleischer
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.K.); (M.C.); (D.C.); (G.F.)
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.K.); (M.C.); (D.C.); (G.F.)
| | - Sebastián L. Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (M.R.); (M.M.B.)
- Department of Orthopedic Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
10
|
Lin Y, Tan Y, Deng R, Gong L, Feng X, Cai Z, He Y, Feng L, Cheng B, Chen Y. Antibacterial Antimicrobial Peptide Grafted HA/SF/Alg Wound Dressing Containing AIEgens for Infected Wound Treating. ACS OMEGA 2024; 9:23499-23511. [PMID: 38854545 PMCID: PMC11154921 DOI: 10.1021/acsomega.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024]
Abstract
Chronic wounds are characterized with excessive biofluid and persistent infection. Therefore, there is an urgent desire to develop a multifunctional wound dressing that can meet the extreme requirements including effective antibacterial and powerful wound microenvironment regulation and protection function to promote wounds heal quickly. In this study, a multifunctional composite dressing (HA-AMP/SF/Alg/Rb-BG-AIEgens) was synthesized by combining a mesoporous bioactive glass framework loaded with AIEgens (Rb-BG-AIEgens) with cross-linked antimicrobial peptide grafted hyaluronic acid (HA-AMP), sodium alginate (Alg), and silk fibroin (SF). It is important to note that the Rb-BG-AIEgens can achieve real-time and sensitive bacterial detection. HA-AMP can achieve broad spectrum antibacterial and avoid the residue of drug-resistant bacteria. The HA-AMP/SF/Alg/Rb-BG-AIEgens dressing can up-regulate related proliferative proteins, thereby promoting regeneration of tissue and the rapid healing of chronic wounds. With good biocompatibility and antibacterial ability, HA-AMP/SF/Alg/Rb-BG-AIEgens dressing has great potential to become a next generation wound dressing for clinical biological fluid management and chronic bacterial infection treatment.
Collapse
Affiliation(s)
- Yize Lin
- Graduate
School, Guangzhou University of Traditional
Chinese Medicine, Guangzhou 510006, P. R. China
| | - Yan Tan
- Department
of Cadre Ward, General Hospital of Southern
Theater Command, PLA, Guangzhou 510010, P. R. China
| | - Rong Deng
- Department
of Health Medicine, General Hospital of
Southern Theater Command, PLA, Guangzhou 510010, P. R. China
| | - Li Gong
- Department
of Cadre Ward, General Hospital of Southern
Theater Command, PLA, Guangzhou 510010, P. R. China
| | - Xiaoshan Feng
- Department
of Cadre Ward, General Hospital of Southern
Theater Command, PLA, Guangzhou 510010, P. R. China
| | - Zhongqi Cai
- Department
of Cadre Ward, General Hospital of Southern
Theater Command, PLA, Guangzhou 510010, P. R. China
| | - Yanxian He
- Department
of Cadre Ward, General Hospital of Southern
Theater Command, PLA, Guangzhou 510010, P. R. China
| | - Longbao Feng
- Key
Laboratory of Biomaterials of Guangdong Higher Education
Institutes, Guangdong Provincial Engineering and
Technological Research Centre for Drug Carrier Development, Department
of Biomedical Engineering, Jinan University, Guangzhou 510632, P. R. China
| | - Biao Cheng
- Department
of Burns and Plastic Surgery, General Hospital
of Southern Theater Command, PLA, Guangzhou 510010, P. R. China
| | - Yi Chen
- Department
of Cadre Ward, General Hospital of Southern
Theater Command, PLA, Guangzhou 510010, P. R. China
| |
Collapse
|
11
|
Ekhtiari-Sadegh S, Samani S, Barneh F, Dashtbin S, Shokrgozar MA, Pooshang Bagheri K. Rapid eradication of vancomycin and methicillin-resistant Staphylococcus aureus by MDP1 antimicrobial peptide coated on photocrosslinkable chitosan hydrogel: in vitro antibacterial and in silico molecular docking studies. Front Bioeng Biotechnol 2024; 12:1385001. [PMID: 38681961 PMCID: PMC11047131 DOI: 10.3389/fbioe.2024.1385001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Antibiotic resistance and weak bioavailability of antibiotics in the skin due to systemic administration leads to failure in eradication of vancomycin- and methicillin-resistant Staphylococcus aureus (VRSA and MRSA)-associated wound infections and subsequent septicemia and even death. Accordingly, this study aimed at designing a photocrosslinkable methacrylated chitosan (MECs) hydrogel coated by melittin-derived peptide 1 (MDP1) that integrated the antibacterial activity with the promising skin regenerative capacity of the hydrogel to eradicate bacteria by burst release strategy. Methods The MECs was coated with MDP1 (MECs-MDP1), characterized, and the hydrogel-peptide interaction was evaluated by molecular docking. Antibacterial activities of MECs-MDP1 were evaluated against VRSA and MRSA bacteria and compared to MECs-vancomycin (MECs-vanco). Antibiofilm activity of MECs-MDP1 was studied by our novel 'in situ biofilm inhibition zone (IBIZ)' assay, and SEM. Biocompatibility with human dermal fibroblast cells (HDFs) was also evaluated. Results and Discussion Molecular docking showed hydrogen bonds as the most interactions between MDP1 and MECs at a reasonable affinity. MECs-MDP1 eradicated the bacteria rapidly by burst release strategy whereas MECs-vanco failed to eradicate them at the same time intervals. Antibiofilm activity of MECs-MDP1 were also proved successfully. As a novel report, molecular docking analysis has demonstrated that MDP1 covers the structure of MECs and also binds to lysozyme with a reasonable affinity, which may explain the inhibition of lysozyme. MECs-MDP1 was also biocompatible with human dermal fibroblast skin cells, which indicates its safe future application. The antibacterial properties of a photocrosslinkable methacrylated chitosan-based hydrogel coated with MDP1 antimicrobial peptide were successfully proved against the most challenging antibiotic-resistant bacteria causing nosocomial wound infections; VRSA and MRSA. Molecular docking analysis revealed that MDP1 interacts with MECs mainly through hydrogen bonds with reasonable binding affinity. MECs-MDP1 hydrogels eradicated the planktonic state of bacteria by burst release of MDP1 in just a few hours whereas MECs-vanco failed to eradicate them. inhibition zone assay showed the anti-biofilm activity of the MECs-MDP1 hydrogel too. These findings emphasize that MECs-MDP1 hydrogel would be suggested as a biocompatible wound-dressing candidate with considerable and rapid antibacterial activities to prevent/eradicate VRSA/MRSA bacterial wound infections.
Collapse
Affiliation(s)
- Sarvenaz Ekhtiari-Sadegh
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Samani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Barneh
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Szałapata K, Pięt M, Kasela M, Grąz M, Kapral-Piotrowska J, Mordzińska-Rak A, Samorek E, Pieniądz P, Polak J, Osińska-Jaroszuk M, Paduch R, Pawlikowska-Pawlęga B, Malm A, Jarosz-Wilkołazka A. Modified polymeric biomaterials with antimicrobial and immunomodulating properties. Sci Rep 2024; 14:8025. [PMID: 38580807 PMCID: PMC10997598 DOI: 10.1038/s41598-024-58730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
The modification of the surgical polypropylene mesh and the polytetrafluoroethylene vascular prosthesis with cecropin A (small peptide) and puromycin (aminonucleoside) yielded very stable preparations of modified biomaterials. The main emphasis was placed on analyses of their antimicrobial activity and potential immunomodulatory and non-cytotoxic properties towards the CCD841 CoTr model cell line. Cecropin A did not significantly affect the viability or proliferation of the CCD 841 CoTr cells, regardless of its soluble or immobilized form. In contrast, puromycin did not induce a significant decrease in the cell viability or proliferation in the immobilized form but significantly decreased cell viability and proliferation when administered in the soluble form. The covalent immobilization of these two molecules on the surface of biomaterials resulted in stable preparations that were able to inhibit the multiplication of Staphylococcus aureus and S. epidermidis strains. It was also found that the preparations induced the production of cytokines involved in antibacterial protection mechanisms and stimulated the immune response. The key regulator of this activity may be related to TLR4, a receptor recognizing bacterial LPS. In the present study, these factors were produced not only in the conditions of LPS stimulation but also in the absence of LPS, which indicates that cecropin A- and puromycin-modified biomaterials may upregulate pathways leading to humoral antibacterial immune response.
Collapse
Affiliation(s)
- Katarzyna Szałapata
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka, 19, 20-033, Lublin, Poland
| | - Mateusz Pięt
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Martyna Kasela
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Marcin Grąz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka, 19, 20-033, Lublin, Poland
| | - Justyna Kapral-Piotrowska
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Aleksandra Mordzińska-Rak
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka, 19, 20-033, Lublin, Poland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Elżbieta Samorek
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Pulawy, Poland
| | - Paulina Pieniądz
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Jolanta Polak
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka, 19, 20-033, Lublin, Poland
| | - Monika Osińska-Jaroszuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka, 19, 20-033, Lublin, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Bożena Pawlikowska-Pawlęga
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka, 19, 20-033, Lublin, Poland.
| |
Collapse
|
13
|
Mulukutla A, Shreshtha R, Kumar Deb V, Chatterjee P, Jain U, Chauhan N. Recent advances in antimicrobial peptide-based therapy. Bioorg Chem 2024; 145:107151. [PMID: 38359706 DOI: 10.1016/j.bioorg.2024.107151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Antimicrobial peptides (AMPs) are a group of polypeptide chains that have the property to target and kill a myriad of microbial organisms including viruses, bacteria, protists, etc. The first discovered AMP was named gramicidin, an extract of aerobic soil bacteria. Further studies discovered that these peptides are present not only in prokaryotes but in eukaryotes as well. They play a vital role in human innate immunity and wound repair. Consequently, they have maintained a high level of intrigue among scientists in the field of immunology, especially so with the rise of antibiotic-resistant pathogens decreasing the reliability of antibiotics in healthcare. While AMPs have promising potential to substitute for common antibiotics, their use as effective replacements is barred by certain limitations. First, they have the potential to be cytotoxic to human cells. Second, they are unstable in the blood due to action by various proteolytic agents and ions that cause their degradation. This review provides an overview of the mechanism of AMPs, their limitations, and developments in recent years that provide techniques to overcome those limitations. We also discuss the advantages and drawbacks of AMPs as a replacement for antibiotics as compared to other alternatives such as synthetically modified bacteriophages, traditional medicine, and probiotics.
Collapse
Affiliation(s)
- Aditya Mulukutla
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Romi Shreshtha
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Vishal Kumar Deb
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Pallabi Chatterjee
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Utkarsh Jain
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Nidhi Chauhan
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
14
|
Liu X, Li J, Liu S, Long Y, Kang C, Zhao C, Wei L, Huang S, Luo Y, Dai B, Zhu X. Fabrication of a 3D bioprinting model for posterior capsule opacification using GelMA and PLMA hydrogel-coated resin. Regen Biomater 2024; 11:rbae020. [PMID: 38529352 PMCID: PMC10963077 DOI: 10.1093/rb/rbae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/27/2024] Open
Abstract
Posterior capsule opacification (PCO) remains the predominant complication following cataract surgery, significantly impairing visual function restoration. In this study, we developed a PCO model that closely mimics the anatomical structure of the crystalline lens capsule post-surgery. The model incorporated a threaded structure for accurate positioning and observation, allowing for opening and closing. Utilizing 3D printing technology, a stable external support system was created using resin material consisting of a rigid, hollow base and cover. To replicate the lens capsule structure, a thin hydrogel coating was applied to the resin scaffold. The biocompatibility and impact on cellular functionality of various hydrogel compositions were assessed through an array of staining techniques, including calcein-AM/PI staining, rhodamine staining, BODIPY-C11 staining and EdU staining in conjunction with transwell assays. Additionally, the PCO model was utilized to investigate the effects of eight drugs with anti-inflammatory and anti-proliferative properties, including 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), THZ1, sorbinil, 4-octyl itaconate (4-OI), xanthohumol, zebularine, rapamycin and caffeic acid phenethyl ester, on human lens epithelial cells (HLECs). Confocal microscopy facilitated comprehensive imaging of the PCO model. The results demonstrated that the GelMA 60 5% + PLMA 2% composite hydrogel exhibited superior biocompatibility and minimal lipid peroxidation levels among the tested hydrogels. Moreover, compared to using hydrogel as the material for 3D printing the entire model, applying surface hydrogel spin coating with parameters of 2000 rpm × 2 on the resin-based 3D printed base yielded a more uniform cell distribution and reduced apoptosis. Furthermore, rapamycin, 4-OI and AICAR demonstrated potent antiproliferative effects in the drug intervention study. Confocal microscopy imaging revealed a uniform distribution of HLECs along the anatomical structure of the crystalline lens capsule within the PCO model, showcasing robust cell viability and regular morphology. In conclusion, the PCO model provides a valuable experimental platform for studying PCO pathogenesis and exploring potential therapeutic interventions.
Collapse
Affiliation(s)
- Xin Liu
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Jiale Li
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuyu Liu
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Yan Long
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ching Kang
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Chen Zhao
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Ling Wei
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Shaoqi Huang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yi Luo
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiangjia Zhu
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| |
Collapse
|
15
|
Zhou H, Zhu Y, Yang B, Huo Y, Yin Y, Jiang X, Ji W. Stimuli-responsive peptide hydrogels for biomedical applications. J Mater Chem B 2024; 12:1748-1774. [PMID: 38305498 DOI: 10.1039/d3tb02610h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Stimuli-responsive hydrogels can respond to external stimuli with a change in the network structure and thus have potential application in drug release, intelligent sensing, and scaffold construction. Peptides possess robust supramolecular self-assembly ability, enabling spontaneous formation of nanostructures through supramolecular interactions and subsequently hydrogels. Therefore, peptide-based stimuli-responsive hydrogels have been widely explored as smart soft materials for biomedical applications in the last decade. Herein, we present a review article on design strategies and research progress of peptide hydrogels as stimuli-responsive materials in the field of biomedicine. The latest design and development of peptide hydrogels with responsive behaviors to stimuli are first presented. The following part provides a systematic overview of the functions and applications of stimuli-responsive peptide hydrogels in tissue engineering, drug delivery, wound healing, antimicrobial treatment, 3D cell culture, biosensors, etc. Finally, the remaining challenges and future prospects of stimuli-responsive peptide hydrogels are proposed. It is believed that this review will contribute to the rational design and development of stimuli-responsive peptide hydrogels toward biomedical applications.
Collapse
Affiliation(s)
- Haoran Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Yanhua Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Bingbing Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Yehong Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
| | - Xuemei Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| |
Collapse
|
16
|
Zhang B, Wang M, Tian H, Cai H, Wu S, Jiao S, Zhao J, Li Y, Zhou H, Guo W, Qu W. Functional hemostatic hydrogels: design based on procoagulant principles. J Mater Chem B 2024; 12:1706-1729. [PMID: 38288779 DOI: 10.1039/d3tb01900d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Uncontrolled hemorrhage results in various complications and is currently the leading cause of death in the general population. Traditional hemostatic methods have drawbacks that may lead to ineffective hemostasis and even the risk of secondary injury. Therefore, there is an urgent need for more effective hemostatic techniques. Polymeric hemostatic materials, particularly hydrogels, are ideal due to their biocompatibility, flexibility, absorption, and versatility. Functional hemostatic hydrogels can enhance hemostasis by creating physical circumstances conducive to hemostasis or by directly interfering with the physiological processes of hemostasis. The procoagulant principles include increasing the concentration of localized hemostatic substances or establishing a physical barrier at the physical level and intervention in blood cells or the coagulation cascade at the physiological level. Moreover, synergistic hemostasis can combine these functions. However, some hydrogels are ineffective in promoting hemostasis or have a limited application scope. These defects have impeded the advancement of hemostatic hydrogels. To provide inspiration and resources for new designs, this review provides an overview of the procoagulant principles of hemostatic hydrogels. We also discuss the challenges in developing effective hemostatic hydrogels and provide viewpoints.
Collapse
Affiliation(s)
- Boxiang Zhang
- Department of Colorectal & Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Min Wang
- Department of Colorectal & Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Heng Tian
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Hang Cai
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, P. R. China
| | - Yan Li
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden
- The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Huidong Zhou
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| |
Collapse
|
17
|
Ren Z, Wang Y, Wu H, Cong H, Yu B, Shen Y. Preparation and application of hemostatic microspheres containing biological macromolecules and others. Int J Biol Macromol 2024; 257:128299. [PMID: 38008144 DOI: 10.1016/j.ijbiomac.2023.128299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Bleeding from uncontrollable wounds can be fatal, and the body's clotting mechanisms are unable to control bleeding in a timely and effective manner in emergencies such as battlefields and traffic accidents. For irregular and inaccessible wounds, hemostatic materials are needed to intervene to stop bleeding. Hemostatic microspheres are promising for hemostasis, as their unique structural features can promote coagulation. There is a wide choice of materials for the preparation of microspheres, and the modification of natural macromolecular materials such as chitosan to enhance the hemostatic properties and make up for the deficiencies of synthetic macromolecular materials makes the hemostatic microspheres multifunctional and expands the application fields of hemostatic microspheres. Here, we focus on the hemostatic mechanism of different materials and the preparation methods of microspheres, and introduce the modification methods, related properties and applications (in cancer therapy) for the structural characteristics of hemostatic microspheres. Finally, we discuss the future trends of hemostatic microspheres and research opportunities for developing the next generation of hemostatic microsphere materials.
Collapse
Affiliation(s)
- Zekai Ren
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yumei Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Han Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
18
|
Garvey M. Medical Device-Associated Healthcare Infections: Sterilization and the Potential of Novel Biological Approaches to Ensure Patient Safety. Int J Mol Sci 2023; 25:201. [PMID: 38203372 PMCID: PMC10778788 DOI: 10.3390/ijms25010201] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Healthcare-associated infections caused by multi-drug-resistant pathogens are increasing globally, and current antimicrobial options have limited efficacy against these robust species. The WHO details the critically important bacterial and fungal species that are often associated with medical device HAIs. The effective sterilization of medical devices plays a key role in preventing infectious disease morbidity and mortality. A lack of adherence to protocol and limitations associated with each sterilization modality, however, allows for the incidence of disease. Furthermore, issues relating to carcinogenic emissions from ethylene oxide gas (EtO) have motivated the EPA to propose limiting EtO use or seeking alternative sterilization methods for medical devices. The Food and Drug Administration supports the sterilization of healthcare products using low-temperature VH2O2 as an alternative to EtO. With advances in biomaterial and medical devices and the increasing use of combination products, current sterilization modalities are becoming limited. Novel approaches to disinfection and sterilization of medical devices, biomaterials, and therapeutics are warranted to safeguard public health. Bacteriophages, endolysins, and antimicrobial peptides are considered promising options for the prophylactic and meta-phylactic control of infectious diseases. This timely review discusses the application of these biologics as antimicrobial agents against critically important WHO pathogens, including ESKAPE bacterial species.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland;
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
19
|
Zhu C, Bai Y, Zhao X, Liu S, Xia X, Zhang S, Wang Y, Zhang H, Xu Y, Chen S, Jiang J, Wu Y, Wu X, Zhang G, Zhang X, Hu J, Wang L, Zhao Y, Bai Y. Antimicrobial Peptide MPX with Broad-Spectrum Bactericidal Activity Promotes Proper Abscess Formation and Relieves Skin Inflammation. Probiotics Antimicrob Proteins 2023; 15:1608-1625. [PMID: 36626016 DOI: 10.1007/s12602-022-10035-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Abstract
Bacteria have developed antibiotic resistance during the large-scale use of antibiotics, and multidrug-resistant strains are common. The development of new antibiotics or antibiotic substitutes has become an important challenge for humankind. MPX is a 14 amino acid peptide belonging to the MP antimicrobial peptide family. In this study, the antibacterial spectrum of the antimicrobial peptide MPX was first tested. The antimicrobial peptide MPX was tested for antimicrobial activity against the gram-positive bacterium S. aureus ATCC 25923, the gram-negative bacteria E. coli ATCC 25922 and Salmonella enterica serovar Typhimurium CVCC541, and the fungus Candida albicans ATCC 90029. The results showed that MPX had good antibacterial activity against the above four strains, especially against E. coli, for which the MIC was as low as 15.625 μg/mL. The study on the bactericidal mechanism of the antimicrobial peptide revealed that MPX can destroy the integrity of the cell membrane, increase membrane permeability, and change the electromotive force of the membrane, thereby allowing the contents to leak out and mediating bacterial death. A mouse acute infection model was used to evaluate the therapeutic effect of MPX after acute infection of subcutaneous tissue by S. aureus. The study showed that MPX could promote tissue repair in S. aureus infection and alleviate lung damage caused by S. aureus. In addition, skin H&E staining showed that MPX treatment facilitated the formation of appropriate abscesses at the subcutaneous infection site and facilitated the clearance of bacteria by the skin immune system. The above results show that MPX has good antibacterial activity and broad-spectrum antibacterial potential and can effectively prevent the invasion of subcutaneous tissue by S. aureus, providing new ideas and directions for the immunotherapy of bacterial infections.
Collapse
Affiliation(s)
- Chunling Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
- College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Yilin Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xueqin Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Shanqin Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Shouping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yimin Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Huihui Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yanzhao Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Shijun Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yundi Wu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, China
| | - Xilong Wu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xueming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, China.
| | - Yaya Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Yueyu Bai
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
20
|
Chen Y, Chen Y, Han T, Xie Z, Yang Y, Chen S, Wang C. Enhanced osteogenic and antibacterial properties of polyetheretherketone by ultraviolet-initiated grafting polymerization of a gelatin methacryloyl/epsilon-poly-L-lysine/laponite hydrogel coating. J Biomed Mater Res A 2023; 111:1808-1821. [PMID: 37548424 DOI: 10.1002/jbm.a.37589] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023]
Abstract
Polyetheretherketone (PEEK) is a promising material for use in orthopedic implants, but its bio-inert character and lack of antibacterial activity limit its applications in bone repair. In the present study, considering the advantages of PEEK in self-initiated graft polymerization and of hydrogels in bone tissue engineering, we constructed a hydrogel coating (GPL) consisting of Gelatin methacryloyl (GelMA), methacrylamide-modified ε-poly-l-lysine (ε-PLMA) and Laponite on PEEK through UV-initiated crosslinking. The coating improved the hydrophilicity of PEEK, and the coating degraded slowly so that approximately 80% was retained after incubation in PBS for 8 weeks. In vitro studies revealed that as compared to culturing on PEEK, culturing on PEEK-GPL led to enhanced viability and adhesion of cultured human umbilical cord Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs). Due to the synergistic effect of the micron-scale three-dimensional surface and Laponite, PEEK-GPL exhibited a significantly improved induction of osteogenic differentiation of hWJ-MSCs compared to PEEK, as demonstrated by increased alkaline phosphatase activity, matrix mineralization, and expression of osteogenesis-related genes. Furthermore, PEEK-GPL showed antibacterial activity upon contact with Staphylococcus aureus and Escherichia coli, and this activity would be maintained before complete degradation of the hydrogel because the ε-PLMA was cross-linked covalently into the coating. Thus, PEEK-GPL achieved both osteogenesis and infection prevention in a single simple step, providing a feasible approach for the extensive use of PEEK in bone implants.
Collapse
Affiliation(s)
- Yuhong Chen
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Yiyi Chen
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Tianlei Han
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Zhe Xie
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Yuchen Yang
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Siyuan Chen
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Chen Wang
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| |
Collapse
|
21
|
Ortega MA, De Leon-Oliva D, Boaru DL, Fraile-Martinez O, García-Montero C, Diaz R, Coca S, Barrena-Blázquez S, Bujan J, García-Honduvilla N, Saez MA, Álvarez-Mon M, Saz JV. Unraveling the New Perspectives on Antimicrobial Hydrogels: State-of-the-Art and Translational Applications. Gels 2023; 9:617. [PMID: 37623072 PMCID: PMC10453485 DOI: 10.3390/gels9080617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
The growing impact of infections and the rapid emergence of antibiotic resistance represent a public health concern worldwide. The exponential development in the field of biomaterials and its multiple applications can offer a solution to the problems that derive from these situations. In this sense, antimicrobial hydrogels represent a promising opportunity with multiple translational expectations in the medical management of infectious diseases due to their unique physicochemical and biological properties as well as for drug delivery in specific areas. Hydrogels are three-dimensional cross-linked networks of hydrophilic polymers that can absorb and retain large amounts of water or biological fluids. Moreover, antimicrobial hydrogels (AMH) present good biocompatibility, low toxicity, availability, viscoelasticity, biodegradability, and antimicrobial properties. In the present review, we collect and discuss the most promising strategies in the development of AMH, which are divided into hydrogels with inherent antimicrobial activity and antimicrobial agent-loaded hydrogels based on their composition. Then, we present an overview of the main translational applications: wound healing, tissue engineering and regeneration, drug delivery systems, contact lenses, 3D printing, biosensing, and water purification.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Raul Diaz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Immune System Diseases-Rheumatology Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Jose V. Saz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| |
Collapse
|
22
|
Ioannou P, Baliou S, Kofteridis DP. Antimicrobial Peptides in Infectious Diseases and Beyond-A Narrative Review. Life (Basel) 2023; 13:1651. [PMID: 37629508 PMCID: PMC10455936 DOI: 10.3390/life13081651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Despite recent medical research and clinical practice developments, the development of antimicrobial resistance (AMR) significantly limits therapeutics for infectious diseases. Thus, novel treatments for infectious diseases, especially in this era of increasing AMR, are urgently needed. There is ongoing research on non-classical therapies for infectious diseases utilizing alternative antimicrobial mechanisms to fight pathogens, such as bacteriophages or antimicrobial peptides (AMPs). AMPs are evolutionarily conserved molecules naturally produced by several organisms, such as plants, insects, marine organisms, and mammals, aiming to protect the host by fighting pathogenic microorganisms. There is ongoing research regarding developing AMPs for clinical use in infectious diseases. Moreover, AMPs have several other non-medical applications in the food industry, such as preservatives, animal husbandry, plant protection, and aquaculture. This review focuses on AMPs, their origins, biology, structure, mechanisms of action, non-medical applications, and clinical applications in infectious diseases.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stella Baliou
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Diamantis P. Kofteridis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
23
|
Vilarrasa J, Àlvarez G, Soler-Ollé A, Gil J, Nart J, Blanc V. Bacterial Adhesion of TESPSA and Citric Acid on Different Titanium Surfaces Substrate Roughness: An In Vitro Study with a Multispecies Oral Biofilm Model. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4592. [PMID: 37444905 DOI: 10.3390/ma16134592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/11/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
This in vitro study analyzed the influence of substrate roughness on biofilm adhesion and cellular viability over triethoxysilylpropyl succinic anhydride silane (TESPSA)- and citric acid (CA)-coated surfaces at 12 and 24 h, respectively. A multispecies biofilm composed of S. oralis, A. naslundii, V. parvula, F. nucleatum, P. intermedia, P. gingivalis, P. endodontalis and F. alocis was developed over titanium discs grouped depending on their roughness (low, medium, high) and antibacterial coating (low-TESPSA, medium-TESPSA, high-TESPSA, and CA). The biofilm was quantified by means of quantitative polymerase chain reaction (PCR) and viability PCR and assessed through confocal laser scanning microscope (CLSM). Quantitative PCR revealed no significant differences in bacterial adhesion and biofilm mortality. CA was the surface with the lowest bacterial counts and highest mortality at 12 and 24 h, respectively, while high harbored the highest amount of biofilm at 24 h. By CLSM, CA presented significant amounts of dead cells compared to medium-TESPSA and high-TESPSA. A significantly greater volume of dead cells was found at 12 h in low-TESPSA compared to medium-TESPSA, while CA also presented significant amounts of dead cells compared to medium-TESPSA and high-TESPSA. With regard to the live/dead ratio, low-TESPSA presented a significantly higher ratio at 12 h compared to medium-TESPSA and high-TESPSA. Similarly, CA exhibited a significantly higher live/dead ratio compared to medium-TESPSA and high-TESPSA at 12 h. This multispecies in vitro biofilm did not evidence clear antiadhesive and bactericidal differences between surfaces, although a tendency to reduce adhesion and increase antibacterial effect was observed in the low-TESPSA and CA.
Collapse
Affiliation(s)
- Javi Vilarrasa
- Department of Periodontology, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| | - Gerard Àlvarez
- Department of Microbiology, DENTAID Research Center, 08290 Cerdanyola del Vallès, Spain
| | - Agnès Soler-Ollé
- Department of Microbiology, DENTAID Research Center, 08290 Cerdanyola del Vallès, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallés, Spain
| | - José Nart
- Department of Periodontology, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| | - Vanessa Blanc
- Department of Microbiology, DENTAID Research Center, 08290 Cerdanyola del Vallès, Spain
| |
Collapse
|
24
|
Blomstrand E, Atefyekta S, Rajasekharan AK, Andersson M. Clinical investigation of use of an antimicrobial peptide hydrogel wound dressing on intact skin. J Wound Care 2023; 32:368-375. [PMID: 37300860 DOI: 10.12968/jowc.2023.32.6.368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A material with the ability to rapidly eradicate bacteria via a contact-killing mechanism has the benefit of a more localised treatment that is easy to implement when needed to prevent or treat a bacterial infection. Here, we present an antimicrobial material based on covalently attached antimicrobial peptides (AMPs) to a soft amphiphilic hydrogel. This results in a material that exhibits an antimicrobial effect based on contact-killing. In this study, the antimicrobial efficacy of the AMP-hydrogel was investigated by observing the changes in total bioburden on the intact skin of healthy human volunteers when the AMP-hydrogel dressing was placed on the forearm for three hours. The AMP-hydrogel significantly reduced the bioburden on the skin from a mean value of 1200CFU/cm2 for the untreated skin to 23CFU/cm2. Biocompatibility evaluations of the AMP-hydrogel showed no sign of cytotoxicity, acute systemic toxicity, irritation or sensitisation, demonstrating the safety of the AMP-hydrogel as a potential wound dressing. Leachability studies confirmed no release of AMPs and that the antimicrobial effect was localised to the surface of the hydrogels, demonstrating a pure contact-killing mode of action.
Collapse
Affiliation(s)
- Edvin Blomstrand
- Amferia AB, Astra Zeneca BioVentureHub, c/o Astra Zeneca, Pepparedsleden 1, Mölndal SE-431 83, Sweden
- Department of Chemistry and Chemical Engineering, Applied Chemistry, Chalmers University of Technology, Kemigården 4 Göteborg SE-41296, Sweden
| | - Saba Atefyekta
- Amferia AB, Astra Zeneca BioVentureHub, c/o Astra Zeneca, Pepparedsleden 1, Mölndal SE-431 83, Sweden
| | - Anand K Rajasekharan
- Amferia AB, Astra Zeneca BioVentureHub, c/o Astra Zeneca, Pepparedsleden 1, Mölndal SE-431 83, Sweden
| | - Martin Andersson
- Amferia AB, Astra Zeneca BioVentureHub, c/o Astra Zeneca, Pepparedsleden 1, Mölndal SE-431 83, Sweden
- Department of Chemistry and Chemical Engineering, Applied Chemistry, Chalmers University of Technology, Kemigården 4 Göteborg SE-41296, Sweden
| |
Collapse
|
25
|
Chawla V, Sharma S, Singh Y. Yttrium Oxide Nanoparticle-Loaded, Self-Assembled Peptide Gel with Antibacterial, Anti-Inflammatory, and Proangiogenic Properties for Wound Healing. ACS Biomater Sci Eng 2023; 9:2647-2662. [PMID: 37097124 DOI: 10.1021/acsbiomaterials.3c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Chronic wounds are a major healthcare challenge owing to their complex healing mechanism and number of impediments to the healing process, like infections, unregulated inflammation, impaired cellular functions, poor angiogenesis, and enhanced protease activity. Current topical care strategies, such as surgical debridement, absorption of exudates, drug-loaded hydrogels for infection and inflammation management, and exogenous supply of growth factors for angiogenesis and cell proliferation, slow the progression of wounds and reduce patient suffering but suffer from low overall cure rates. Therefore, we have developed a proteolytically stable, multifunctional nanoparticle loaded-peptide gel with inherent anti-inflammatory, antibacterial, and pro-angiogenic properties to provide a favorable wound healing milieu by restoring impaired cellular functions. We have fabricated a self-assembled, lauric acid-peptide conjugate gel, LA-LLys-DPhe-LLys-NH2, loaded with yttrium oxide (Y2O3) nanoparticles (NLG). Gel formed a nanofibrous structure, and nanoparticles were passively entrapped within the network. The surface morphology, stability, viscoelastic, and self-healing characteristics of gels were characterized. It showed a high stability against degradation by proteolytic enzymes and highly potent antibacterial activities against E. coli and S. aureus due to the presence of positively charged side chains of lysine in the peptide chain. It also exhibited an excellent antioxidant activity as well as ability to stimulate cell proliferation in murine fibroblast (L929) cells and human umbilical vein endothelial cells (HUVECs). The incorporation of nanoparticles promoted angiogenesis by upregulating pro-angiogenic genes, vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF2), and epidermal growth factor (EGFR), and the gel caused complete wound closure in cells. In summary, the Y2O3 nanoparticle-loaded lauric acid-peptide conjugate gel is able to elicit the desired tissue regeneration responses and, therefore, has a strong potential as a matrix for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Vatan Chawla
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Sakshi Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
26
|
Stepulane A, Ahlgren K, Rodriguez-Palomo A, Rajasekharan AK, Andersson M. Lyotropic liquid crystal elastomers for drug delivery. Colloids Surf B Biointerfaces 2023; 226:113304. [PMID: 37062225 DOI: 10.1016/j.colsurfb.2023.113304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 04/18/2023]
Abstract
Silicone elastomers like polydimethylsiloxane (PDMS) possess a combination of attractive material and biological properties motivating their widespread use in biomedical applications. Development of elastomers with capacity to deliver active therapeutic substances in the form of drugs is of particular interest to produce medical devices with added functionality. In this work, silicone-based lyotropic liquid crystal elastomers with drug-eluting functionality were developed using PDMS and triblock copolymer (diacrylated Pluronic F127, DA-F127). Various ternary PDMS-DA-F127-H2O compositions were explored and evaluated. Three compositions were found to have specific properties of interest and were further investigated for their nanostructure, mechanical properties, water retention capacity, and morphology. The ability of the elastomers to encapsulate and release polar and nonpolar substances was demonstrated using vancomycin and ibuprofen as model drugs. It was shown that the materials could deliver both types of drugs with a sustained release profile for up to 6 and 5 days for vancomycin and ibuprofen, respectively. This works demonstrates a lyotropic liquid crystal, silicone-based elastomer with tailorable mechanical properties, water retention capacity and ability to host and release polar and nonpolar active substances.
Collapse
Affiliation(s)
- Annija Stepulane
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden; Amferia AB, Astra Zeneca BioVentureHub c/o Astra Zeneca, Pepparedsleden 1, Mölndal SE-431 83, Sweden
| | - Kajsa Ahlgren
- Department of Physics, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | | | - Anand Kumar Rajasekharan
- Amferia AB, Astra Zeneca BioVentureHub c/o Astra Zeneca, Pepparedsleden 1, Mölndal SE-431 83, Sweden
| | - Martin Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden; Amferia AB, Astra Zeneca BioVentureHub c/o Astra Zeneca, Pepparedsleden 1, Mölndal SE-431 83, Sweden.
| |
Collapse
|
27
|
Jeong SH, Cheong S, Kim TY, Choi H, Hahn SK. Supramolecular Hydrogels for Precisely Controlled Antimicrobial Peptide Delivery for Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16471-16481. [PMID: 36943445 DOI: 10.1021/acsami.3c00191] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Diabetic wound patients are often exposed to bacterial infections with delayed healing process due to hyperglycemia in the damaged skin tissue. Antimicrobial peptides (AMPs) have been investigated for the treatment of infection-induced diabetic wounds, but their low stability and toxicity have limited their further applications to diabetic chronic wound healing. Here, we developed a precisely controlled AMP-releasing injectable hydrogel platform, which could respond to infection-related materials of matrix metalloproteinases (MMPs) and reactive oxygen species (ROS). The injectable supramolecular hydrogel was prepared by the simple mixing of hyaluronic acid modified with cyclodextrin (HA-CD) and adamantane (Ad-HA). Ad-HA was conjugated with AMP via the cyclic peptide linker composed of MMP and ROS cleavable sequence (Ad-HA-AMP). Remarkably, only when the AMP-tethered hydrogel was exposed to both MMP and ROS simultaneously, AMP was released from the hydrogel, enabling the controlled release of AMP without causing cytotoxicity. In addition, we confirmed the enhanced serum stability of the Ad-HA-AMP conjugate. The antimicrobial activity of Ad-HA-AMP was maintained much longer than that of the native AMP. Finally, we could demonstrate the greatly improved wound-healing effect of AMP-tethered hydrogels with enhanced safety for the treatment of infection-induced diabetic chronic wounds. Taken together, we successfully demonstrated the feasibility of sHG-AMP for diabetic chronic wound healing.
Collapse
Affiliation(s)
- Sang Hoon Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Sunah Cheong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Hyunsik Choi
- PHI Biomed Co., 168 Yeoksam-ro, Gangnam-gu, Seoul 06248, Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
- PHI Biomed Co., 168 Yeoksam-ro, Gangnam-gu, Seoul 06248, Korea
| |
Collapse
|
28
|
Chen H, Qiu X, Xia T, Li Q, Wen Z, Huang B, Li Y. Mesoporous Materials Make Hydrogels More Powerful in Biomedicine. Gels 2023; 9:gels9030207. [PMID: 36975656 PMCID: PMC10048667 DOI: 10.3390/gels9030207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Scientists have been attempting to improve the properties of mesoporous materials and expand their application since the 1990s, and the combination with hydrogels, macromolecular biological materials, is one of the research focuses currently. Uniform mesoporous structure, high specific surface area, good biocompatibility, and biodegradability make the combined use of mesoporous materials more suitable for the sustained release of loaded drugs than single hydrogels. As a joint result, they can achieve tumor targeting, tumor environment stimulation responsiveness, and multiple therapeutic platforms such as photothermal therapy and photodynamic therapy. Due to the photothermal conversion ability, mesoporous materials can significantly improve the antibacterial ability of hydrogels and offer a novel photocatalytic antibacterial mode. In bone repair systems, mesoporous materials remarkably strengthen the mineralization and mechanical properties of hydrogels, aside from being used as drug carriers to load and release various bioactivators to promote osteogenesis. In hemostasis, mesoporous materials greatly elevate the water absorption rate of hydrogels, enhance the mechanical strength of the blood clot, and dramatically shorten the bleeding time. As for wound healing and tissue regeneration, incorporating mesoporous materials can be promising for enhancing vessel formation and cell proliferation of hydrogels. In this paper, we introduce the classification and preparation methods of mesoporous material-loaded composite hydrogels and highlight the applications of composite hydrogels in drug delivery, tumor therapy, antibacterial treatment, osteogenesis, hemostasis, and wound healing. We also summarize the latest research progress and point out future research directions. After searching, no research reporting these contents was found.
Collapse
Affiliation(s)
- Huangqin Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Qiu
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Xia
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Qing Li
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhehan Wen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Bin Huang
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Correspondence: (B.H.); (Y.L.)
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
- Correspondence: (B.H.); (Y.L.)
| |
Collapse
|
29
|
Dai S, Gao Y, Duan L. Recent advances in hydrogel coatings for urinary catheters. J Appl Polym Sci 2023. [DOI: 10.1002/app.53701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Simin Dai
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science Changchun University of Technology Changchun People's Republic of China
| | - Yang Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun People's Republic of China
| | - Lijie Duan
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science Changchun University of Technology Changchun People's Republic of China
| |
Collapse
|
30
|
Aloke C, Achilonu I. Coping with the ESKAPE pathogens: Evolving strategies, challenges and future prospects. Microb Pathog 2023; 175:105963. [PMID: 36584930 DOI: 10.1016/j.micpath.2022.105963] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Globally, the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are the major cause of nosocomial infections. These pathogens are multidrug resistant, and their negative impacts have brought serious health challenges and economic burden on many countries worldwide. Thus, this narrative review exploits different emerging alternative therapeutic strategies including combination antibiotics, antimicrobial peptides ((AMPs), bacteriophage and photodynamic therapies used in the treatment of the ESKAPE pathogens, their merits, limitations, and future prospects. Our findings indicate that ESKAPE pathogens exhibit resistance to drug using different mechanisms including drug inactivation by irreversible enzyme cleavage, drug-binding site alteration, diminution in permeability of drug or drug efflux increment to reduce accumulation of drug as well as biofilms production. However, the scientific community has shown significant interest in using these novel strategies with numerous benefits although they have some limitations including but not limited to instability and toxicity of the therapeutic agents, or the host developing immune response against the therapeutic agents. Thus, comprehension of resistance mechanisms of these pathogens is necessary to further develop or modify these approaches in order to overcome these health challenges including the barriers of bacterial resistance.
Collapse
Affiliation(s)
- Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa; Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Nigeria.
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| |
Collapse
|
31
|
Thirupathi K, Raorane CJ, Ramkumar V, Ulagesan S, Santhamoorthy M, Raj V, Krishnakumar GS, Phan TTV, Kim SC. Update on Chitosan-Based Hydrogels: Preparation, Characterization, and Its Antimicrobial and Antibiofilm Applications. Gels 2022; 9:35. [PMID: 36661802 PMCID: PMC9858335 DOI: 10.3390/gels9010035] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Chitosan is a prominent biopolymer in research for of its physicochemical properties and uses. Each year, the number of publications based on chitosan and its derivatives increases. Because of its comprehensive biological properties, including antibacterial, antioxidant, and tissue regeneration activities, chitosan and its derivatives can be used to prevent and treat soft tissue diseases. Furthermore, chitosan can be employed as a nanocarrier for therapeutic drug delivery. In this review, we will first discuss chitosan and chitosan-based hydrogel polymers. The structure, functionality, and physicochemical characteristics of chitosan-based hydrogels are addressed. Second, a variety of characterization approaches were used to analyze and validate the physicochemical characteristics of chitosan-based hydrogel materials. Finally, we discuss the antibacterial, antibiofilm, and antifungal uses of supramolecular chitosan-based hydrogels. This review study can be used as a base for future research into the production of various types of chitosan-based hydrogels in the antibacterial and antifungal fields.
Collapse
Affiliation(s)
- Kokila Thirupathi
- Department of Physics, Sri Moogambigai College of Arts and Science for Women, Palacode 636808, India
| | | | - Vanaraj Ramkumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea
| | | | - Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Gopal Shankar Krishnakumar
- Department of Biotechnology, Applied Biomaterials Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
32
|
Mba IE, Nweze EI. Antimicrobial Peptides Therapy: An Emerging Alternative for Treating Drug-Resistant Bacteria. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:445-463. [PMID: 36568838 PMCID: PMC9765339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microbial resistance to antibiotics is an ancient and dynamic issue that has brought a situation reminiscent of the pre-antibiotic era to the limelight. Currently, antibiotic resistance and the associated infections are widespread and pose significant global health and economic burden. Thus, the misuse of antibiotics, which has increased resistance, has necessitated the search for alternative therapeutic agents for combating resistant pathogens. Antimicrobial peptides (AMPs) hold promise as a viable therapeutic approach against drug-resistant pathogens. AMPs are oligopeptides with low molecular weight. They have broad-spectrum antimicrobial activities against pathogenic microorganisms. AMPs are nonspecific and target components of microbes that facilitate immune response by acting as the first-line defense mechanisms against invading pathogenic microbes. The diversity and potency of AMPs make them good candidates for alternative use. They could be used alone or in combination with several other biomaterials for improved therapeutic activity. They can also be employed in vaccine production targeting drug-resistant pathogens. This review covers the opportunities and advances in AMP discovery and development targeting antimicrobial resistance (AMR) bacteria. Briefly, it presents an overview of the global burden of the antimicrobial resistance crisis, portraying the global magnitude, challenges, and consequences. After that, it critically and comprehensively evaluates the potential roles of AMPs in addressing the AMR crisis, highlighting the major potentials and prospects.
Collapse
Affiliation(s)
| | - Emeka Innocent Nweze
- To whom all correspondence should be addressed:
Prof. Emeka Nweze, MSc, PhD, MPH, Department of Microbiology, University of
Nigeria, Nsukka, Nigeria; ; ORCID:
https://www.orcid.org/0000-0003-4432-0885
| |
Collapse
|
33
|
Stepulane A, Rajasekharan AK, Andersson M. Multifunctional Surface Modification of PDMS for Antibacterial Contact Killing and Drug-Delivery of Polar, Nonpolar, and Amphiphilic Drugs. ACS APPLIED BIO MATERIALS 2022; 5:5289-5301. [PMID: 36322397 PMCID: PMC9682518 DOI: 10.1021/acsabm.2c00705] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Medical device-associated infections pose major clinical challenges that emphasize the need for improved anti-infective biomaterials. Polydimethylsiloxane (PDMS), a frequently used elastomeric biomaterial in medical devices, is inherently prone to bacterial attachment and associated infection formation. Here, PDMS surface modification strategy is presented consisting of a cross-linked lyotropic liquid crystal hydrogel microparticle coating with antibacterial functionality. The microparticle coating composed of cross-linked triblock copolymers (diacrylated Pluronic F127) was deposited on PDMS by physical immobilization via interpenetrating polymer network formation. The formed coating served as a substrate for covalent immobilization of a potent antimicrobial peptide (AMP), RRPRPRPRPWWWW-NH2, yielding high contact-killing antibacterial effect against Staphylococcus epidermidis and Staphylococcus aureus. Additionally, the coating was assessed for its ability to selectively host polar, amphiphilic, and nonpolar drugs, resulting in sustained release profiles. The results of this study put forward a versatile PDMS modification strategy for both contact-killing antibacterial surface properties and drug-delivery capabilities, offering a solution for medical device-associated infection prevention.
Collapse
Affiliation(s)
- Annija Stepulane
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, GothenburgSE-412 96, Sweden
- Amferia
AB, Astra Zeneca BioVentureHub c/o Astra Zeneca, Pepparedsleden 1, MölndalSE-431 83, Sweden
| | - Anand Kumar Rajasekharan
- Amferia
AB, Astra Zeneca BioVentureHub c/o Astra Zeneca, Pepparedsleden 1, MölndalSE-431 83, Sweden
| | - Martin Andersson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, GothenburgSE-412 96, Sweden
- Amferia
AB, Astra Zeneca BioVentureHub c/o Astra Zeneca, Pepparedsleden 1, MölndalSE-431 83, Sweden
| |
Collapse
|
34
|
Cross-Linked Lyotropic Liquid Crystal Particles Functionalized with Antimicrobial Peptides. Int J Pharm 2022; 627:122215. [PMID: 36152992 DOI: 10.1016/j.ijpharm.2022.122215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 01/23/2023]
Abstract
Antimicrobial peptides (AMPs) are promising alternatives to traditional antibiotics for addressing bacterial infections - including life-threatening antibiotic resistant infections. AMPs have a broad spectrum of antimicrobial activity and show a low probability to induce resistance. However, the poor serum stability of AMPs has limited their usage in clinical treatment. To enable improved serum stability while maintaining high antibacterial effect of AMPs, this study describes a material wherein AMPs are covalently bonded to micro-sized particles of cross-linked lyotropic liquid crystals, formed by the self-assembly of the block copolymer Pluronic F-127. The liquid crystal particles were shown to have antibacterial effect corresponding to a 4 log reduction against Staphylococcus aureus. The particles were structurally and chemically analyzed by small angle X-ray scattering, Fourier transform infra-red spectroscopy and Raman spectroscopy, confirming that the liquid crystal structure was maintained within the particles with the AMPs covalently bonded. The bonding to the particles gave the AMPs improved stability in serum, as they retained almost all of the antibacterial potency for 2 days compared to free AMPs, which lost all of its antibacterial potency within a day. Furthermore, insight regarding mode of action was obtained by cryogenic transmission electron microscopy, which showed the antimicrobial particles interacting with the surface of bacteria.
Collapse
|
35
|
Liu J, Jiang W, Xu Q, Zheng Y. Progress in Antibacterial Hydrogel Dressing. Gels 2022; 8:503. [PMID: 36005104 PMCID: PMC9407327 DOI: 10.3390/gels8080503] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 01/10/2023] Open
Abstract
Antibacterial hydrogel has excellent antibacterial property and good biocompatibility, water absorption and water retention, swelling, high oxygen permeability, etc.; therefore, it widely applied in biomedicine, intelligent textiles, cosmetics, and other fields, especially for medical dressing. As a wound dressing, the antibacterial hydrogel has the characteristics of absorbing wound liquid, controlling drug release, being non-toxic, being without side effects, and not causing secondary injury to the wound. Its preparation method is simple, and can crosslink via covalent or non-covalent bond, such as γ-radiation croFsslinking, free radical polymerization, graft copolymerization, etc. The raw materials are easy to obtain; usually these include chondroitin sulfate, sodium alginate, polyvinyl alcohol, etc., with different raw materials being used for different antibacterial modes. According to the hydrogel matrix and antibacterial mode, the preparation method, performance, antibacterial mechanism, and classification of antibacterial hydrogels are summarized in this paper, and the future development direction of the antibacterial hydrogel as wound dressing is proposed.
Collapse
Affiliation(s)
- Jie Liu
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar 161006, China
| | - Wenqi Jiang
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
| | - Qianyue Xu
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
| | - Yongjie Zheng
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar 161006, China
| |
Collapse
|
36
|
Zdiri K, Cayla A, Elamri A, Erard A, Salaun F. Alginate-Based Bio-Composites and Their Potential Applications. J Funct Biomater 2022; 13:jfb13030117. [PMID: 35997455 PMCID: PMC9397003 DOI: 10.3390/jfb13030117] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Over the last two decades, bio-polymer fibers have attracted attention for their uses in gene therapy, tissue engineering, wound-healing, and controlled drug delivery. The most commonly used bio-polymers are bio-sourced synthetic polymers such as poly (glycolic acid), poly (lactic acid), poly (e-caprolactone), copolymers of polyglycolide and poly (3-hydroxybutyrate), and natural polymers such as chitosan, soy protein, and alginate. Among all of the bio-polymer fibers, alginate is endowed with its ease of sol–gel transformation, remarkable ion exchange properties, and acid stability. Blending alginate fibers with a wide range of other materials has certainly opened many new opportunities for applications. This paper presents an overview on the modification of alginate fibers with nano-particles, adhesive peptides, and natural or synthetic polymers, in order to enhance their properties. The application of alginate fibers in several areas such as cosmetics, sensors, drug delivery, tissue engineering, and water treatment are investigated. The first section is a brief theoretical background regarding the definition, the source, and the structure of alginate. The second part deals with the physico-chemical, structural, and biological properties of alginate bio-polymers. The third part presents the spinning techniques and the effects of the process and solution parameters on the thermo-mechanical and physico-chemical properties of alginate fibers. Then, the fourth part presents the additives used as fillers in order to improve the properties of alginate fibers. Finally, the last section covers the practical applications of alginate composite fibers.
Collapse
Affiliation(s)
- Khmais Zdiri
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
- Laboratoire de Physique et Mécanique Textiles, École Nationale Supérieure d’Ingénieurs Sud-Alsace, Université de Haute Alsace, EA 4365, 68100 Mulhouse, France
- Correspondence:
| | - Aurélie Cayla
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
| | - Adel Elamri
- Unité de Recherche Matériaux et Procédés Textiles, École Nationale d’Ingénieurs de Monastir, Université de Monastir, UR17ES33, Monastir 5019, Tunisia
| | - Annaëlle Erard
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
| | - Fabien Salaun
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
| |
Collapse
|
37
|
Rani Raju N, Silina E, Stupin V, Manturova N, Chidambaram SB, Achar RR. Multifunctional and Smart Wound Dressings—A Review on Recent Research Advancements in Skin Regenerative Medicine. Pharmaceutics 2022; 14:pharmaceutics14081574. [PMID: 36015200 PMCID: PMC9414988 DOI: 10.3390/pharmaceutics14081574] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
The healing of wounds is a dynamic function that necessitates coordination among multiple cell types and an optimal extracellular milieu. Much of the research focused on finding new techniques to improve and manage dermal injuries, chronic injuries, burn injuries, and sepsis, which are frequent medical concerns. A new research strategy involves developing multifunctional dressings to aid innate healing and combat numerous issues that trouble incompletely healed injuries, such as extreme inflammation, ischemic damage, scarring, and wound infection. Natural origin-based compounds offer distinct characteristics, such as excellent biocompatibility, cost-effectiveness, and low toxicity. Researchers have developed biopolymer-based wound dressings with drugs, biomacromolecules, and cells that are cytocompatible, hemostatic, initiate skin rejuvenation and rapid healing, and possess anti-inflammatory and antimicrobial activity. The main goal would be to mimic characteristics of fetal tissue regeneration in the adult healing phase, including complete hair and glandular restoration without delay or scarring. Emerging treatments based on biomaterials, nanoparticles, and biomimetic proteases have the keys to improving wound care and will be a vital addition to the therapeutic toolkit for slow-healing wounds. This study focuses on recent discoveries of several dressings that have undergone extensive pre-clinical development or are now undergoing fundamental research.
Collapse
Affiliation(s)
- Nithya Rani Raju
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Ekaterina Silina
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Street 8, 119991 Moscow, Russia;
| | - Victor Stupin
- Department of Hospital Surgery No 1, N.I. Pirogov Russian National Research Medical University (RNRMU), Ostrovityanova Street 1, 117997 Moscow, Russia;
| | - Natalia Manturova
- Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technologies, N.I. Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997 Moscow, Russia;
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
- Centre for Experimental Pharmacology and Toxicology (CPT), Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
- Correspondence: ; Tel.: +91-9535413026
| |
Collapse
|
38
|
Bellotti D, Remelli M. Lights and Shadows on the Therapeutic Use of Antimicrobial Peptides. Molecules 2022; 27:molecules27144584. [PMID: 35889455 PMCID: PMC9317528 DOI: 10.3390/molecules27144584] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
The emergence of antimicrobial-resistant infections is still a major concern for public health worldwide. The number of pathogenic microorganisms capable of resisting common therapeutic treatments are constantly increasing, highlighting the need of innovative and more effective drugs. This phenomenon is strictly connected to the rapid metabolism of microorganisms: due to the huge number of mutations that can occur in a relatively short time, a colony can “adapt” to the pharmacological treatment with the evolution of new resistant species. However, the shortage of available antimicrobial drugs in clinical use is also caused by the high costs involved in developing and marketing new drugs without an adequate guarantee of an economic return; therefore, the pharmaceutical companies have reduced their investments in this area. The use of antimicrobial peptides (AMPs) represents a promising strategy for the design of new therapeutic agents. AMPs act as immune defense mediators of the host organism and show a poor ability to induce antimicrobial resistance, coupled with other advantages such as a broad spectrum of activity, not excessive synthetic costs and low toxicity of both the peptide itself and its own metabolites. It is also important to underline that many antimicrobial peptides, due to their inclination to attack cell membranes, have additional biological activities, such as, for example, as anti-cancer drugs. Unfortunately, they usually undergo rapid degradation by proteolytic enzymes and are characterized by poor bioavailability, preventing their extensive clinical use and landing on the pharmaceutical market. This review is focused on the strength and weak points of antimicrobial peptides as therapeutic agents. We give an overview on the AMPs already employed in clinical practice, which are examples of successful strategies aimed at overcoming the main drawbacks of peptide-based drugs. The review deepens the most promising strategies to design modified antimicrobial peptides with higher proteolytic stability with the purpose of giving a comprehensive summary of the commonly employed approaches to evaluate and optimize the peptide potentialities.
Collapse
Affiliation(s)
- Denise Bellotti
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland
| | - Maurizio Remelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
39
|
Del Genio V, Bellavita R, Falanga A, Hervé-Aubert K, Chourpa I, Galdiero S. Peptides to Overcome the Limitations of Current Anticancer and Antimicrobial Nanotherapies. Pharmaceutics 2022; 14:1235. [PMID: 35745807 PMCID: PMC9230615 DOI: 10.3390/pharmaceutics14061235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Biomedical research devotes a huge effort to the development of efficient non-viral nanovectors (NV) to improve the effectiveness of standard therapies. NVs should be stable, sustainable and biocompatible and enable controlled and targeted delivery of drugs. With the aim to foster the advancements of such devices, this review reports some recent results applicable to treat two types of pathologies, cancer and microbial infections, aiming to provide guidance in the overall design of personalized nanomedicines and highlight the key role played by peptides in this field. Additionally, future challenges and potential perspectives are illustrated, in the hope of accelerating the translational advances of nanomedicine.
Collapse
Affiliation(s)
- Valentina Del Genio
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Rosa Bellavita
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples “Federico II”, Via Università 100, 80055 Naples, Italy;
| | - Katel Hervé-Aubert
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Igor Chourpa
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
| |
Collapse
|
40
|
Zhu C, Zhao Y, Zhao X, Liu S, Xia X, Zhang S, Wang Y, Zhang H, Xu Y, Chen S, Jiang J, Wu Y, Wu X, Zhang G, Bai Y, Hu J, Fotina H, Wang L, Zhang X. The Antimicrobial Peptide MPX Can Kill Staphylococcus aureus, Reduce Biofilm Formation, and Effectively Treat Bacterial Skin Infections in Mice. Front Vet Sci 2022; 9:819921. [PMID: 35425831 PMCID: PMC9002018 DOI: 10.3389/fvets.2022.819921] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is a common pathogen that can cause pneumonia and a variety of skin diseases. Skin injuries have a high risk of colonization by S. aureus, which increases morbidity and mortality. Due to the emergence of multidrug-resistant strains, antimicrobial peptides are considered to be among the best alternatives to antibiotics due to their unique mechanism of action and other characteristics. MPX is an antibacterial peptide extracted from wasp venom that has antibacterial activity against a variety of bacteria. This study revealed that MPX has good bactericidal activity against S. aureus and that its minimum inhibitory concentration (MIC) is 0.08 μM. MPX (4×MIC) can kill 99.9% of bacteria within 1 h, and MPX has good stability. The research on the bactericidal mechanism found that MPX could destroy the membrane integrity, increase the membrane permeability, change the membrane electromotive force, and cause cellular content leakage, resulting in bactericidal activity. Results from a mouse scratch model experiment results show that MPX can inhibit colonization by S. aureus, which reduces the wound size, decreases inflammation, and promotes wound healing. This study reports the activity of MPX against S. aureus and its mechanism and reveals the ability of MPX to treat S. aureus infection in mice, laying the foundation for the development of new drugs for bacterial infections.
Collapse
Affiliation(s)
- Chunling Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yaya Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xueqin Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Shanqin Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Shouping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yimin Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Huihui Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanzhao Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Shijun Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yundi Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Xilong Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yueyu Bai
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hanna Fotina
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Biomedical Engineering, Hainan University, Haikou, China
- *Correspondence: Lei Wang
| | - Xueming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
- Xueming Zhang
| |
Collapse
|
41
|
Carpa R, Remizovschi A, Culda CA, Butiuc-Keul AL. Inherent and Composite Hydrogels as Promising Materials to Limit Antimicrobial Resistance. Gels 2022; 8:70. [PMID: 35200452 PMCID: PMC8870943 DOI: 10.3390/gels8020070] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 01/25/2023] Open
Abstract
Antibiotic resistance has increased significantly in the recent years, and has become a global problem for human health and the environment. As a result, several technologies for the controlling of health-care associated infections have been developed over the years. Thus, the most recent findings in hydrogel fabrication, particularly antimicrobial hydrogels, could offer valuable solutions for these biomedical challenges. In this review, we discuss the most promising strategies in the development of antimicrobial hydrogels and the application of hydrogels in the treatment of microbial infections. The latest advances in the development of inherently and composite antimicrobial hydrogels will be discussed, as well as hydrogels as carriers of antimicrobials, with a focus on antibiotics, metal nanoparticles, antimicrobial peptides, and biological extracts. The emergence of CRISR-Cas9 technology for removing the antimicrobial resistance has led the necessity of new and performant carriers for delivery of the CRISPR-Cas9 system. Different delivery systems, such as composite hydrogels and many types of nanoparticles, attracted a great deal of attention and will be also discussed in this review.
Collapse
Affiliation(s)
- Rahela Carpa
- Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (A.L.B.-K.)
- Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Alexei Remizovschi
- Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (A.L.B.-K.)
- Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Carla Andreea Culda
- Parasitology and Parasitic Diseases Department, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur Street, 400372 Cluj-Napoca, Romania;
| | - Anca Livia Butiuc-Keul
- Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (A.L.B.-K.)
- Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| |
Collapse
|
42
|
Wan P, Wang Y, Guo W, Song Z, Zhang S, Wu H, Yan W, Deng M, Xiao C. Low-Molecular-Weight Polylysines with Excellent Antibacterial Properties and Low Hemolysis. ACS Biomater Sci Eng 2022; 8:903-911. [PMID: 35050580 DOI: 10.1021/acsbiomaterials.1c01527] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The steady development of bacterial resistance has become a global public health issue, and new antibacterial agents that are active against drug-resistant bacteria and less susceptible to bacterial resistance are urgently needed. Here, a series of low-molecular-weight cationic polylysines (Cx-PLLn) with different hydrophobic end groups (Cx) and degrees of polymerization (PLLn) was synthesized and used in antibacterial applications. All the obtained Cx-PLLn have antibacterial activity. Among them, C6-PLL13 displays the best antibacterial effect for Gram-positive bacteria, that is, Staphylococcus aureus (S. aureus) and methicillin-resistant Staphylococcus aureus (MRSA), and highest selectivity against Gram-positive bacteria. A mechanistic study revealed that the C6-PLL13 destroys the integrity of the bacterial cell membrane and causes effective bacterial death. Owing to this membrane-disrupting property, C6-PLL13 showed rapid bacterial killing kinetics and was not likely to develop resistance after repeat treatment (up to 13 generations). Moreover, C6-PLL13 demonstrated a significant therapeutic effect on an MRSA infection mouse model, which further proved that this synthetic polymer could be used as an effective weapon against bacterial infections.
Collapse
Affiliation(s)
- Pengqi Wan
- Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Wei Guo
- Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Zhengwei Song
- Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, Hubei 430062, P. R. China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Hong Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P. R. China
| | - Wei Yan
- Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, Hubei 430062, P. R. China
| | - Mingxiao Deng
- Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
43
|
Nicolas M, Beito B, Oliveira M, Tudela Martins M, Gallas B, Salmain M, Boujday S, Humblot V. Strategies for Antimicrobial Peptides Immobilization on Surfaces to Prevent Biofilm Growth on Biomedical Devices. Antibiotics (Basel) 2021; 11:13. [PMID: 35052891 PMCID: PMC8772980 DOI: 10.3390/antibiotics11010013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/04/2023] Open
Abstract
Nosocomial and medical device-induced biofilm infections affect millions of lives and urgently require innovative preventive approaches. These pathologies have led to the development of numerous antimicrobial strategies, an emergent topic involving both natural and synthetic routes, among which some are currently under testing for clinical approval and use. Antimicrobial peptides (AMPs) are ideal candidates for this fight. Therefore, the strategies involving surface functionalization with AMPs to prevent bacterial attachment/biofilms formation have experienced a tremendous development over the last decade. In this review, we describe the different mechanisms of action by which AMPs prevent bacterial adhesion and/or biofilm formation to better address their potential as anti-infective agents. We additionally analyze AMP immobilization techniques on a variety of materials, with a focus on biomedical applications. Furthermore, we summarize the advances made to date regarding the immobilization strategies of AMPs on various surfaces and their ability to prevent the adhesion of various microorganisms. Progress toward the clinical approval of AMPs in antibiotherapy is also reviewed.
Collapse
Affiliation(s)
- Mathieu Nicolas
- Sorbonne Université, UMR 7197, Laboratoire de Réactivité de Surface, Centre National de la Recherche Scientifique (CNRS), 4 Place Jussieu, F-75005 Paris, France;
- Sorbonne Université, Institute of Nanosciences Paris (INSP), Centre National de la Recherche Scientifique (CNRS), 4 Place Jussieu, F-75005 Paris, France;
| | - Bruno Beito
- Sorbonne Université, Master de Chimie, Profil MatNanoBio, Faculté des Sciences et Ingénierie of Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France; (B.B.); (M.O.); (M.T.M.)
| | - Marta Oliveira
- Sorbonne Université, Master de Chimie, Profil MatNanoBio, Faculté des Sciences et Ingénierie of Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France; (B.B.); (M.O.); (M.T.M.)
| | - Maria Tudela Martins
- Sorbonne Université, Master de Chimie, Profil MatNanoBio, Faculté des Sciences et Ingénierie of Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France; (B.B.); (M.O.); (M.T.M.)
| | - Bruno Gallas
- Sorbonne Université, Institute of Nanosciences Paris (INSP), Centre National de la Recherche Scientifique (CNRS), 4 Place Jussieu, F-75005 Paris, France;
| | - Michèle Salmain
- Sorbonne Université, Institut Parisien de Chimie Moléculaire (IPCM), Centre National de la Recherche Scientifique (CNRS), 4 Place Jussieu, F-75005 Paris, France;
| | - Souhir Boujday
- Sorbonne Université, UMR 7197, Laboratoire de Réactivité de Surface, Centre National de la Recherche Scientifique (CNRS), 4 Place Jussieu, F-75005 Paris, France;
| | - Vincent Humblot
- Sorbonne Université, UMR 7197, Laboratoire de Réactivité de Surface, Centre National de la Recherche Scientifique (CNRS), 4 Place Jussieu, F-75005 Paris, France;
- Franche-Comté Électronique Mécanique Thermique et Optique-Sciences et Technologies (FEMTO-ST) Institute, Centre National de la Recherche Scientifique (CNRS), UMR 6174, Université Bourgogne Franche-Comté, 15B Avenue des Montboucons, F-25030 Besançon, France
| |
Collapse
|
44
|
Gera S, Kankuri E, Kogermann K. Antimicrobial peptides - Unleashing their therapeutic potential using nanotechnology. Pharmacol Ther 2021; 232:107990. [PMID: 34592202 DOI: 10.1016/j.pharmthera.2021.107990] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
Antimicrobial peptides (AMPs) are potent, mostly cationic, and amphiphilic broad-spectrum host defense antimicrobials that are produced by all organisms ranging from prokaryotes to humans. In addition to their antimicrobial actions, they modulate inflammatory and immune responses and promote wound healing. Although they have clear benefits over traditional antibiotic drugs, their wide therapeutic utilization is compromised by concerns of toxicity, stability, and production costs. Recent advances in nanotechnology have attracted increasing interest to unleash the AMPs' immense potential as broad-spectrum antibiotics and anti-biofilm agents, against which the bacteria have less chances to develop resistance. Topical application of AMPs promotes migration of keratinocytes and fibroblasts, and contributes significantly to an accelerated wound healing process. Delivery of AMPs by employing nanotechnological approaches avoids the major disadvantages of AMPs, such as instability and toxicity, and provides a controlled delivery profile together with prolonged activity. In this review, we provide an overview of the key properties of AMPs and discuss the latest developments in topical AMP therapy using nanocarriers. We use chronic hard-to-heal wounds-complicated by infections, inflammation, and stagnated healing-as an example of an unmet medical need for which the AMPs' wide range of therapeutic actions could provide the most potential benefit. The use of innovative materials and sophisticated nanotechnological approaches offering various possibilities are discussed in more depth.
Collapse
Affiliation(s)
- Sonia Gera
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| | - Karin Kogermann
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| |
Collapse
|
45
|
Rima M, Rima M, Fajloun Z, Sabatier JM, Bechinger B, Naas T. Antimicrobial Peptides: A Potent Alternative to Antibiotics. Antibiotics (Basel) 2021; 10:1095. [PMID: 34572678 PMCID: PMC8466391 DOI: 10.3390/antibiotics10091095] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial peptides constitute one of the most promising alternatives to antibiotics since they could be used to treat bacterial infections, especially those caused by multidrug-resistant pathogens. Many antimicrobial peptides, with various activity spectra and mechanisms of actions, have been described. This review focuses on their use against ESKAPE bacteria, especially in biofilm treatments, their synergistic activity, and their application as prophylactic agents. Limitations and challenges restricting therapeutic applications are highlighted, and solutions for each challenge are evaluated to analyze whether antimicrobial peptides could replace antibiotics in the near future.
Collapse
Affiliation(s)
- Mariam Rima
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, 94270 Le Kremlin-Bicetre, France;
| | - Mohamad Rima
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon; (M.R.); (Z.F.)
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon; (M.R.); (Z.F.)
- Department of Biology, Faculty of Sciences III, Lebanese University, Tripoli 1300, Lebanon
| | - Jean-Marc Sabatier
- Institut de Neuro Physiopathologie, UMR7051, Aix-Marseille Université, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Burkhard Bechinger
- Institut de Chimie de Strasbourg, CNRS, UMR7177, University of Strasbourg, 67008 Strasbourg, France;
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Thierry Naas
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, 94270 Le Kremlin-Bicetre, France;
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicetre, France
- French National Reference Centre for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, 94270 Le Kremlin-Bicetre, France
| |
Collapse
|
46
|
Bellu E, Medici S, Coradduzza D, Cruciani S, Amler E, Maioli M. Nanomaterials in Skin Regeneration and Rejuvenation. Int J Mol Sci 2021; 22:7095. [PMID: 34209468 PMCID: PMC8268279 DOI: 10.3390/ijms22137095] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Skin is the external part of the human body; thus, it is exposed to outer stimuli leading to injuries and damage, due to being the tissue mostly affected by wounds and aging that compromise its protective function. The recent extension of the average lifespan raises the interest in products capable of counteracting skin related health conditions. However, the skin barrier is not easy to permeate and could be influenced by different factors. In the last decades an innovative pharmacotherapeutic approach has been possible thanks to the advent of nanomedicine. Nanodevices can represent an appropriate formulation to enhance the passive penetration, modulate drug solubility and increase the thermodynamic activity of drugs. Here, we summarize the recent nanotechnological approaches to maintain and replace skin homeostasis, with particular attention to nanomaterials applications on wound healing, regeneration and rejuvenation of skin tissue. The different nanomaterials as nanofibers, hydrogels, nanosuspensions, and nanoparticles are described and in particular we highlight their main chemical features that are useful in drug delivery and tissue regeneration.
Collapse
Affiliation(s)
- Emanuela Bellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (D.C.); (S.C.)
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Vienna 2, 07100 Sassari, Italy;
| | - Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (D.C.); (S.C.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (D.C.); (S.C.)
| | - Evzen Amler
- UCEEB, Czech Technical University, Trinecka 1024, 27343 Bustehrad, Czech Republic;
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (D.C.); (S.C.)
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Interuniversity Consortium I.N.B.B., Viale delle Medaglie d’Oro, 305, 00136 Roma, Italy
| |
Collapse
|