1
|
Svigelj R, de Marco A. Biological and technical factors affecting the point-of-care diagnostics in not-oncological chronic diseases. Biosens Bioelectron 2024; 264:116669. [PMID: 39146770 DOI: 10.1016/j.bios.2024.116669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Inexpensive point-of-care (POC) analytical solutions have the potential to allow the implementation of large-scale screening campaigns aimed at identifying the initial stages of pathologies in the population, reducing morbidity, mortality and, indirectly, also the costs for the healthcare system. At global level, the most common preventive screening schemes address some cancer pathologies or are used to monitor the spread of some infective diseases. However, systematic testing might become decisive to improve the care response even in the case of chronic pathologies and, in this review, we analyzed the state-of-the-art of the POC diagnostics for Chronic Kidney Disease, Chronic Obstructive Pulmonary Disease and Multiple Sclerosis. The different technological options used to manufacture the biosensors and evaluate the produced data have been described and this information has been integrated with the present knowledge relatively to the biomarkers that have been proposed to monitor such diseases, namely their availability and reliability. Finally, the nature of the macromolecules used to capture the biomarkers has been discussed in relation to the biomarker nature.
Collapse
Affiliation(s)
- Rossella Svigelj
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, Via Cotonificio 108, 33100, Udine, Italy
| | - Ario de Marco
- Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000, Nova Gorica, Slovenia.
| |
Collapse
|
2
|
Singh S, Raucci A, Cimmino W, Cinti S. Paper-Based Analytical Devices for Cancer Liquid Biopsy. Anal Chem 2024; 96:3698-3706. [PMID: 38377543 DOI: 10.1021/acs.analchem.3c04478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Liquid biopsies have caused a significant revolution in cancer diagnosis, and the use of point of care (PoC) platforms has the potential to bring liquid biopsy-based cancer detection closer to patients. These platforms provide rapid and on-site analysis by reducing the time between sample collection and results output. The aim of this tutorial content is to provide readers an in-depth understanding regarding the choice of the ideal sensing platform suitable for specific cancer-related biomarkers.
Collapse
Affiliation(s)
- Sima Singh
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Ada Raucci
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Wanda Cimmino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
- BAT Center- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055 Naples, Italy
- Bioelectronics Task Force at University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| |
Collapse
|
3
|
Sayyad PW, Park SJ, Ha TJ. Bioinspired nanoplatforms for human-machine interfaces: Recent progress in materials and device applications. Biotechnol Adv 2024; 70:108297. [PMID: 38061687 DOI: 10.1016/j.biotechadv.2023.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The panoramic characteristics of human-machine interfaces (HMIs) have prompted the needs to update the biotechnology community with the recent trends, developments, and future research direction toward next-generation bioelectronics. Bioinspired materials are promising for integrating various bioelectronic devices to realize HMIs. With the advancement of scientific biotechnology, state-of-the-art bioelectronic applications have been extensively investigated to improve the quality of life by developing and integrating bioinspired nanoplatforms in HMIs. This review highlights recent trends and developments in the field of biotechnology based on bioinspired nanoplatforms by demonstrating recently explored materials and cutting-edge device applications. Section 1 introduces the recent trends and developments of bioinspired nanomaterials for HMIs. Section 2 reviews various flexible, wearable, biocompatible, and biodegradable nanoplatforms for bioinspired applications. Section 3 furnishes recently explored substrates as carriers for advanced nanomaterials in developing HMIs. Section 4 addresses recently invented biomimetic neuroelectronic, nanointerfaces, biointerfaces, and nano/microfluidic wearable bioelectronic devices for various HMI applications, such as healthcare, biopotential monitoring, and body fluid monitoring. Section 5 outlines designing and engineering of bioinspired sensors for HMIs. Finally, the challenges and opportunities for next-generation bioinspired nanoplatforms in extending the potential on HMIs are discussed for a near-future scenario. We believe this review can stimulate the integration of bioinspired nanoplatforms into the HMIs in addition to wearable electronic skin and health-monitoring devices while addressing prevailing and future healthcare and material-related problems in biotechnologies.
Collapse
Affiliation(s)
- Pasha W Sayyad
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Sang-Joon Park
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Tae-Jun Ha
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea.
| |
Collapse
|
4
|
Hazra RS, Kale N, Boyle C, Molina KB, D'Souza A, Aland G, Jiang L, Chaturvedi P, Ghosh S, Mallik S, Khandare J, Quadir M. Magnetically-activated, nanostructured cellulose for efficient capture of circulating tumor cells from the blood sample of head and neck cancer patients. Carbohydr Polym 2024; 323:121418. [PMID: 37940250 DOI: 10.1016/j.carbpol.2023.121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 11/10/2023]
Abstract
In this report, the relative efficiency of cellulose nanocrystals (CNCs) and nanofibers (CNFs) to capture circulating tumor cells (CTCs) from the blood sample of head and neck cancer (HNC) patients was evaluated. Detection and enumeration of CTCs are critical for monitoring cancer progression. Both types of nanostructured cellulose were chemically modified with Epithelial Cell Adhesion Molecule (EpCAM) antibody and iron oxide nanoparticles. The EpCAM antibody facilitated the engagement of CTCs, promoting entrapment within the cellulose cage structure. Iron oxide nanoparticles, on the other hand, rendered the cages activatable via the use of a magnet for the capture and separation of entrapped CTCs. The efficiency of the network structures is shown in head and neck cancer (HNC) patients' blood samples. It was observed that the degree of chemical functionalization of hydroxyl groups located within the CNCs or CNFs with anti-EpCAM determined the efficiency of the system's interaction with CTCs. Further, our result indicated that inflexible scaffolds of nanocrystals interacted more efficiently with CTCs than that of the fibrous CNF scaffolds. Network structures derived from CNCs demonstrated comparable CTC capturing efficiency to commercial standard, OncoDiscover®. The output of the work will provide the chemical design principles of cellulosic materials intended for constructing affordable platforms for monitoring cancer progression in 'real time'.
Collapse
Affiliation(s)
- Raj Shankar Hazra
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58108, USA; Department of Coatings and Polymeric Materials, North Dakota State University, Fargo 58108, ND, USA
| | - Narendra Kale
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo 58108, ND, USA; Department of Pharmaceutical Sciences, North Dakota State University, Fargo 58108, ND, USA
| | - Camden Boyle
- Department of Engineering and Technology, Southeast Missouri State University, One University Plaza, MS6825, Cape Girardeau, MO 63701, USA
| | - Kayla B Molina
- Department of Biomedical Engineering, The University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Alain D'Souza
- Actorius Innovations and Research, Pune, India; Actorius Innovations and Research, Simi Valley, CA 93063, USA
| | - Gourishankar Aland
- Actorius Innovations and Research, Pune, India; Actorius Innovations and Research, Simi Valley, CA 93063, USA
| | - Long Jiang
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58108, USA
| | - Pankaj Chaturvedi
- Department of Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Santaneel Ghosh
- Department of Engineering and Technology, Southeast Missouri State University, One University Plaza, MS6825, Cape Girardeau, MO 63701, USA
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo 58108, ND, USA
| | - Jayant Khandare
- Actorius Innovations and Research, Pune, India; School of Pharmacy, Dr. Vishwananth Karad MIT World Peace University, Pune 411038, India; School of Consciousness, Dr. Vishwananth Karad MIT World Peace University, Pune 411038, India; Actorius Innovations and Research, Simi Valley, CA 93063, USA.
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo 58108, ND, USA.
| |
Collapse
|
5
|
Yang M, Sun N, Lai X, Zhao X, Zhou W. Advances in Non-Electrochemical Sensing of Human Sweat Biomarkers: From Sweat Sampling to Signal Reading. BIOSENSORS 2023; 14:17. [PMID: 38248394 PMCID: PMC10813192 DOI: 10.3390/bios14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024]
Abstract
Sweat, commonly referred to as the ultrafiltrate of blood plasma, is an essential physiological fluid in the human body. It contains a wide range of metabolites, electrolytes, and other biologically significant markers that are closely linked to human health. Compared to other bodily fluids, such as blood, sweat offers distinct advantages in terms of ease of collection and non-invasive detection. In recent years, considerable attention has been focused on wearable sweat sensors due to their potential for continuous monitoring of biomarkers. Electrochemical methods have been extensively used for in situ sweat biomarker analysis, as thoroughly reviewed by various researchers. This comprehensive review aims to provide an overview of recent advances in non-electrochemical methods for analyzing sweat, including colorimetric methods, fluorescence techniques, surface-enhanced Raman spectroscopy, and more. The review covers multiple aspects of non-electrochemical sweat analysis, encompassing sweat sampling methodologies, detection techniques, signal processing, and diverse applications. Furthermore, it highlights the current bottlenecks and challenges faced by non-electrochemical sensors, such as limitations and interference issues. Finally, the review concludes by offering insights into the prospects for non-electrochemical sensing technologies. By providing a valuable reference and inspiring researchers engaged in the field of sweat sensor development, this paper aspires to foster the creation of innovative and practical advancements in this domain.
Collapse
Affiliation(s)
- Mingpeng Yang
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Nan Sun
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
| | - Xiaochen Lai
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xingqiang Zhao
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Wangping Zhou
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| |
Collapse
|
6
|
Arshad R, Razlansari M, Maryam Hosseinikhah S, Tiwari Pandey A, Ajalli N, Ezra Manicum AL, Thorat N, Rahdar A, Zhu Y, Tabish TA. Antimicrobial and anti-biofilm activities of bio-inspired nanomaterials for wound healing applications. Drug Discov Today 2023; 28:103673. [PMID: 37331691 DOI: 10.1016/j.drudis.2023.103673] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Chronic wounds are ubiquitously inhabited by bacteria, and they remain a challenge as they cause significant discomfort and because their treatment consumes huge clinical resources. To reduce the burden that chronic wounds place upon both patients and health services, a wide variety of approaches have been devised and investigated. Bioinspired nanomaterials have shown great success in wound healing when compared to existing approaches, showing better ability to mimic natural extracellular matrix (ECM) components and thus to promote cell adhesion, proliferation, and differentiation. Wound dressings that are based on bioinspired nanomaterials can be engineered to promote anti-inflammatory mechanisms and to inhibit the formation of microbial biofilms. We consider the extensive potential of bioinspired nanomaterials in wound healing, revealing a scope beyond that covered previously.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Mahtab Razlansari
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Amanda-Lee Ezra Manicum
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria 0001, South Africa.
| | - Nanasaheb Thorat
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran.
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Tanveer A Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
7
|
Hazra RS, Roy J, Jiang L, Webster DC, Rahman MM, Quadir M. Biobased, Macro-, and Nanoscale Fungicide Delivery Approaches for Plant Fungi Control. ACS APPLIED BIO MATERIALS 2023. [PMID: 37405899 DOI: 10.1021/acsabm.3c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
In this report, two polymeric matrix systems at macro and nanoscales were prepared for efficacious fungicide delivery. The macroscale delivery systems used millimeter-scale, spherical beads composed of cellulose nanocrystals and poly(lactic acid). The nanoscale delivery system involved micelle-type nanoparticles, composed of methoxylated sucrose soyate polyols. Sclerotinia sclerotiorum (Lib.), a destructive fungus affecting high-value industrial crops, was used as a model pathogen against which the efficacy of these polymeric formulations was demonstrated. Commercial fungicides are applied on plants frequently to overcome the transmission of fungal infection. However, fungicides alone do not persist on the plants for a prolonged period due to environmental factors such as rain and airflow. There is a need to apply fungicides multiple times. As such, standard application practices generate a significant environmental footprint due to fungicide accumulation in soil and runoff in surface water. Thus, approaches are needed that can either increase the efficacy of commercially active fungicides or prolong their residence time on plants for sustained antifungal coverage. Using azoxystrobin (AZ) as a model fungicide and canola as a model crop host, we hypothesized that the AZ-loaded macroscale beads, when placed in contact with plants, will act as a depot to release the fungicide at a controlled rate to protect plants against fungal infection. The nanoparticle-based fungicide delivery approach, on the other hand, can be realized via spray or foliar applications. The release rate of AZ from macro- and nanoscale systems was evaluated and analyzed using different kinetic models to understand the mechanism of AZ delivery. We observed that, for macroscopic beads, porosity, tortuosity, and surface roughness governed the efficiency of AZ delivery, and for nanoparticles, contact angle and surface adhesion energy were directing the efficacy of the encapsulated fungicide. The technology reported here can also be translated to a wide variety of industrial crops for fungal protection. The strength of this study is the possibility of using completely plant-derived, biodegradable/compostable additive materials for controlled agrochemical delivery formulations, which will contribute to reducing the frequency of fungicide applications and the potential accumulation of formulation components in soil and water.
Collapse
Affiliation(s)
- Raj Shankar Hazra
- Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Mechanical Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Jayanta Roy
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Long Jiang
- Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Mechanical Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dean C Webster
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Md Mukhlesur Rahman
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mohiuddin Quadir
- Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
8
|
Pereira AT, Rodrigues CRS, Silva AC, Vidal R, Ventura JO, Gonçalves IC, Pereira AM. Tailoring the Electron Trapping Effect of a Biocompatible Triboelectric Hydrogel by Graphene Oxide Incorporation towards Self-Powered Medical Electronics. ACS Biomater Sci Eng 2023. [PMID: 37256830 DOI: 10.1021/acsbiomaterials.2c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Triboelectric nanogenerators (TENGs) are associated with several drawbacks that limit their application in the biomedical field, including toxicity, thrombogenicity, and poor performance in the presence of fluids. By proposing the use of a hemo/biocompatible hydrogel, poly(2-hydroxyethyl methacrylate) (pHEMA), this study bypasses these barriers. In contact-separation mode, using polytetrafluoroethylene (PTFE) as a reference, pHEMA generates an output of 100.0 V, under an open circuit, 4.7 μA, and 0.68 W/m2 for an internal resistance of 10 MΩ. Our findings unveil that graphene oxide (GO) can be used to tune pHEMA's triboelectric properties in a concentration-dependent manner. At the lowest measured concentration (0.2% GO), the generated outputs increase to 194.5 V, 5.3 μA, and 1.28 W/m2 due to the observed increase in pHEMA's surface roughness, which expands the contact area. Triboelectric performance starts to decrease as GO concentration increases, plateauing at 11% volumetric, where the output is 51 V, 1.76 μA, and 0.17 W/m2 less than pHEMA's. Increases in internal resistance, from 14 ΩM to greater than 470 ΩM, ζ-potential, from -7.3 to -0.4 mV, and open-circuit characteristic charge decay periods, from 90 to 120 ms, are all observed in conjunction with this phenomenon, which points to GO function as an electron trapping site in pHEMA's matrix. All of the composites can charge a 10 μF capacitor in 200 s, producing a voltage between 0.25 and 3.5 V and allowing the operation of at least 20 LEDs. The triboelectric output was largely steady throughout the 3.33 h durability test. Voltage decreases by 38% due to contact-separation frequency, whereas current increases by 77%. In terms of pressure, it appears to have little effect on voltage but boosts current output by 42%. Finally, pHEMA and pHEMA/GO extracts were cytocompatible toward fibroblasts. According to these results, pHEMA has a significant potential to function as a biomaterial to create bio/hemocompatible TENGs and GO to precisely control its triboelectric outputs.
Collapse
Affiliation(s)
- Andreia T Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Cátia R S Rodrigues
- IFIMUP - Instituto de Fisica de Materiais Avançados, Nanotecnologias e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Ana C Silva
- IFIMUP - Instituto de Fisica de Materiais Avançados, Nanotecnologias e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Ricardo Vidal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - João O Ventura
- IFIMUP - Instituto de Fisica de Materiais Avançados, Nanotecnologias e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Inês C Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - André M Pereira
- IFIMUP - Instituto de Fisica de Materiais Avançados, Nanotecnologias e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
9
|
Bardhan NM, Radisic M, Nurunnabi M. Bioinspired Materials for Wearable Diagnostics and Biosensors. ACS Biomater Sci Eng 2023; 9:2015-2019. [PMID: 37153960 DOI: 10.1021/acsbiomaterials.3c00348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
10
|
Lopresti F, Patella B, Divita V, Zanca C, Botta L, Radacsi N, O’Riordan A, Aiello G, Kersaudy-Kerhoas M, Inguanta R, La Carrubba V. Green and Integrated Wearable Electrochemical Sensor for Chloride Detection in Sweat. SENSORS (BASEL, SWITZERLAND) 2022; 22:8223. [PMID: 36365929 PMCID: PMC9654961 DOI: 10.3390/s22218223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Wearable sensors for sweat biomarkers can provide facile analyte capability and monitoring for several diseases. In this work, a green wearable sensor for sweat absorption and chloride sensing is presented. In order to produce a sustainable device, polylactic acid (PLA) was used for both the substrate and the sweat absorption pad fabrication. The sensor material for chloride detection consisted of silver-based reference, working, and counter electrodes obtained from upcycled compact discs. The PLA substrates were prepared by thermal bonding of PLA sheets obtained via a flat die extruder, prototyped in single functional layers via CO2 laser cutting, and bonded via hot-press. The effect of cold plasma treatment on the transparency and bonding strength of PLA sheets was investigated. The PLA membrane, to act as a sweat absorption pad, was directly deposited onto the membrane holder layer by means of an electrolyte-assisted electrospinning technique. The membrane adhesion capacity was investigated by indentation tests in both dry and wet modes. The integrated device made of PLA and silver-based electrodes was used to quantify chloride ions. The calibration tests revealed that the proposed sensor platform could quantify chloride ions in a sensitive and reproducible way. The chloride ions were also quantified in a real sweat sample collected from a healthy volunteer. Therefore, we demonstrated the feasibility of a green and integrated sweat sensor that can be applied directly on human skin to quantify chloride ions.
Collapse
Affiliation(s)
- Francesco Lopresti
- Department of Engineering, University of Palermo, RU INSTM of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Bernardo Patella
- Department of Engineering, University of Palermo, RU INSTM of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Vito Divita
- Department of Engineering, University of Palermo, RU INSTM of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Claudio Zanca
- Department of Engineering, University of Palermo, RU INSTM of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Luigi Botta
- Department of Engineering, University of Palermo, RU INSTM of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King’s Buildings, Robert Stevenson Road, Edinburgh EH9 3FB, UK
| | - Alan O’Riordan
- Nanotechnology Group, Tyndall National Institute, University College Cork, T12R5CP Cork, Ireland
| | - Giuseppe Aiello
- Department of Engineering, University of Palermo, RU INSTM of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Maïwenn Kersaudy-Kerhoas
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Rosalinda Inguanta
- Department of Engineering, University of Palermo, RU INSTM of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Vincenzo La Carrubba
- Department of Engineering, University of Palermo, RU INSTM of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
11
|
Rakib Hasan Khan M, Shankar Hazra R, Nair G, Mohammad J, Jiang L, Reindl K, Khalid Jawed M, Ganai S, Quadir M. Cellulose nanofibers as Scaffold-forming materials for thin film drug delivery systems. Int J Pharm 2022; 627:122189. [PMID: 36100147 DOI: 10.1016/j.ijpharm.2022.122189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 10/31/2022]
Abstract
We explored the potential of cellulose nanofiber (CNF) for designing prolonged-release, thin-film drug delivery systems (TF-DDS). These delivery systems can be used as locally deployable drug-releasing scaffolds for achieving spatial and temporal control over therapeutic concentration in target tissues. Using doxorubicin (DOX) as a model anticancer drug, CNF-based TF-DDS were prepared using different film-formation processes, such as solvent casting and lyophilization. Formulations were prepared with or without the incorporation of additional macromolecular additives, such as gelatin, to include further biomechanical functionality. We studied the films for their mechanical properties, thermal stability, wettability, porosity and in vitro drug release properties. Our experimental results showed that CNF-based films, when prepared via solvent casting method, showed optimized performance in terms of DOX loading, and prolonged-release than those prepared via lyophilization-based fabrication processes. Scanning electron microscopy (SEM) analysis of the CNF-based films showed uniform distribution of fiber entanglement, which provided the scaffolds with sufficient porosity and tortuosity contributing to the sustained release of the drug from the delivery system. We also observed that surface layering of gelatin on CNF films via dip-coating significantly increased the mechanical strength and reduced the wettability of the films, and as such, affected drug release kinetics. The performance of the TF-DDS was evaluated in-vitro against two pancreatic cancer cell lines, i.e. MIA PaCa-2 and PANC-1. We observed that, along with the enhancement of mean dissolution time (MDT) of DOX, CNF-based TF-DDS were able to suppress the proliferation of pancreatic cancer cells in a time-dependent fashion, indicating that the drug liberated from the films were therapeutically active against cancer cells. Additionally, TF-DDS were also tested ex-vivo on patient-derived xenograft (PDX) model of pancreatic ductal adenocarcinoma (PDAC). We observed that DOX released from the TF-DDS was able to reduce Ki-67 positive, pancreatic cancer cells in these models.
Collapse
Affiliation(s)
- Md Rakib Hasan Khan
- Biomedical Engineering Program, North Dakota State University, Fargo, ND 58105, USA
| | - Raj Shankar Hazra
- Materials and Nanotechnology Program, North Dakota State University, Fargo, ND 58105, USA
| | - Gauthami Nair
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Jiyan Mohammad
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Long Jiang
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58105, USA
| | - Katie Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Mohammad Khalid Jawed
- Department of Mechanical & Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
| | - Sabha Ganai
- Division of Surgical Oncology, Sanford Research, Fargo, ND 58122, USA
| | - Mohiuddin Quadir
- Biomedical Engineering Program, North Dakota State University, Fargo, ND 58105, USA; Materials and Nanotechnology Program, North Dakota State University, Fargo, ND 58105, USA; Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA.
| |
Collapse
|