1
|
Yao C, Wu Q, Zhao Y, Li H, He J, Liu L, Huang Y, Cheng F. Engineered Au@MOFs silk fibroin-based hydrogel phototherapy platform for enhanced wound healing performance. Int J Biol Macromol 2025; 297:139872. [PMID: 39818403 DOI: 10.1016/j.ijbiomac.2025.139872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/05/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Wound bacterial infections not only impede the healing process but can also give rise to a range of serious complications, thereby posing a substantial risk to human health. Developing effective wound dressings incorporating phototherapy functionalities, specifically photothermal therapy (PTT) and photodynamic therapy (PDT), remains a critical area of research in modern wound care. Existing PTT-PDT systems often suffer from challenges such as nanoparticle aggregation and inefficient reactive oxygen species (ROS) generation, which are essential for therapeutic efficacy. This study presents a pioneering approach by combining zeolitic imidazolate framework derivatives (ZIFs) and Au NPs in a silk fibroin (SF) hydrogel for the first time. This combination not only prevents particle aggregation but also significantly enhances photothermal conversion efficiency and ROS generation capacity. The digital light processing (DLP) printability of our hydrogel allows for customized wound dressings tailored to individual patient needs, improving therapeutic efficacy. The hydrogel's effectiveness was evaluated through rigorous in vivo experiments, demonstrating enhanced antibacterial properties and accelerated wound healing. The biocompatibility of our hydrogel ensures its suitability for clinical applications, minimizing adverse reactions while promoting healing. A wound healing rate of 99.06 % represents a substantial improvement over the control groups, indicating markedly enhanced therapeutic efficacy. These findings underscore its multifunctionality in addressing infected wounds, presenting a promising strategy for facilitating the rapid healing of acute complex wounds in clinical applications.
Collapse
Affiliation(s)
- Chaofan Yao
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China
| | - Qian Wu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yu Zhao
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China
| | - Hongbin Li
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jinmei He
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Li Liu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Yudong Huang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Feng Cheng
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
2
|
Sierra-Sánchez Á, Sanabria-de la Torre R, Ubago-Rodríguez A, Quiñones-Vico MI, Montero-Vílchez T, Sánchez-Díaz M, Arias-Santiago S. Blood Plasma, Fibrinogen or Fibrin Biomaterial for the Manufacturing of Skin Tissue-Engineered Products and Other Dermatological Treatments: A Systematic Review. J Funct Biomater 2025; 16:79. [PMID: 40137358 PMCID: PMC11942893 DOI: 10.3390/jfb16030079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/09/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
The use of blood plasma, fibrinogen or fibrin, a natural biomaterial, has been widely studied for the development of different skin tissue-engineered products and other dermatological treatments. This systematic review reports the preclinical and clinical studies which use it alone or combined with other biomaterials and/or cells for the treatment of several dermatological conditions. Following the PRISMA 2020 Guidelines, 147 preclinical studies have revealed that the use of this biomaterial as a wound dressing or as a monolayer (one cell type) skin substitute are the preferred strategies, mainly for the treatment of excisional or surgical wounds. Moreover, blood plasma is mainly used alone although its combination with other biomaterials such as agarose, polyethylene glycol or collagen has also been reported to increase its wound healing potential. However, most of the 17 clinical reviewed evaluated its use for the treatment of severely burned patients as a wound dressing or bilayer (two cell types) skin substitute. Although the number of preclinical studies evaluating the use of blood plasma as a dermatological treatment has increased during the last fifteen years, this has not been correlated with a wide variety of clinical studies. Its safety and wound healing potential have been proved; however, the lack of a standard model and the presence of several approaches have meant that its translation to a clinical environment is still limited. A higher number of clinical studies should be carried out in the coming years to set a standard wound healing strategy for each dermatological disease.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, 18014 Granada, Spain; (Á.S.-S.); (S.A.-S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, 18012 Granada, Spain
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NA 27101, USA
| | - Raquel Sanabria-de la Torre
- Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, 18014 Granada, Spain; (Á.S.-S.); (S.A.-S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology IIi and Immunology, University of Granada, 18071 Granada, Spain
| | - Ana Ubago-Rodríguez
- Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, 18014 Granada, Spain; (Á.S.-S.); (S.A.-S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - María I. Quiñones-Vico
- Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, 18014 Granada, Spain; (Á.S.-S.); (S.A.-S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, University of Granada, 18016 Granada, Spain
| | - Trinidad Montero-Vílchez
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, 18012 Granada, Spain
| | - Manuel Sánchez-Díaz
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, 18012 Granada, Spain
| | - Salvador Arias-Santiago
- Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, 18014 Granada, Spain; (Á.S.-S.); (S.A.-S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, 18012 Granada, Spain
- Department of Dermatology, University of Granada, 18016 Granada, Spain
| |
Collapse
|
3
|
Kamaraj M, Rezayof O, Barer A, Kim H, Moghimi N, Joshi A, Dokmeci MR, Khademhosseini A, Alambeigi F, John JV. Development of silk microfiber-reinforced bioink for muscle tissue engineering and in situ printing by a handheld 3D printer. BIOMATERIALS ADVANCES 2025; 166:214057. [PMID: 39366204 PMCID: PMC11560616 DOI: 10.1016/j.bioadv.2024.214057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Volumetric muscle loss (VML) presents a significant challenge in tissue engineering due to the irreparable nature of extensive muscle injuries. In this study, we propose a novel approach for VML treatment using a bioink composed of silk microfiber-reinforced silk fibroin (SF) hydrogel. The engineered scaffolds are predesigned to provide structural support and fiber alignment to promote tissue regeneration in situ. We also validated our custom-made handheld 3D printer performance and showcased its potential applications for in situ printing using robotics. The fiber contents of SF and gelatin ink were varied from 1 to 5 %. Silk fibroin microfibers reinforced ink offered increased viscosity of the gel, which enhanced the shape fidelity and mechanical strength of the bulk scaffold. The fiber-reinforced bioink also demonstrated better cell-biomaterial interaction upon printing. The handheld 3D printer enabled the precise and on-demand fabrication of scaffolds directly at the defect site, for personalized and minimally invasive treatment. This innovative approach holds promise for addressing the challenges associated with VML treatment and advancing the field of regenerative medicine.
Collapse
Affiliation(s)
| | - Omid Rezayof
- Walker Department of Mechanical Engineering and Texas Robotics, The University of Texas at Austin, TX, USA
| | - Alison Barer
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | - Hansoul Kim
- Walker Department of Mechanical Engineering and Texas Robotics, The University of Texas at Austin, TX, USA
| | - Nafiseh Moghimi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | - Akshat Joshi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | | | - Farshid Alambeigi
- Walker Department of Mechanical Engineering and Texas Robotics, The University of Texas at Austin, TX, USA
| | - Johnson V John
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Vasudevan D, Sangeetha D. Blends of Silk Waste Protein and Polysaccharides for Enhanced Wound Healing and Tissue Regeneration: Mechanisms, Applications, and Future Perspectives. ACS OMEGA 2024; 9:44101-44119. [PMID: 39524672 PMCID: PMC11541511 DOI: 10.1021/acsomega.4c06518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
Wound healing is a highly sophisticated process, and therefore, a pioneering approach for designing excellent wound dressings with desirable characteristics vital for maintaining the external wound environment by assessing the inherent conditions of a patient for effective wound healing. Silk fibroin (SF), a versatile biocompatible material, has garnered significant attention for its potential in the field of wound healing and tissue regeneration. When SF is blended with polysaccharides, their synergistic properties can result in a material with enhanced bioactivity and tunable mechanical properties that facilitate the controlled release of therapeutic agents. This review explores how SF interacts with certain polysaccharides such as cellulose, chitosan, alginate, and hyaluronic acid (HA) and also delves into the underlying mechanisms through which these SF-polysaccharide blends induce processes such as cell adhesion, proliferation, and differentiation for enhanced wound healing and tissue regeneration. This review also emphasizes the potential of the aforementioned blends in diverse wound healing applications in conjunction with other treatment approaches, further addressing the current challenges in this domain and future directions for optimizing SF-polysaccharide blends for clinical research.
Collapse
Affiliation(s)
- Devipriya Vasudevan
- Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - D. Sangeetha
- Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
5
|
Sierra-Sánchez Á, Cabañas-Penagos J, Igual-Roger S, Martínez-Heredia L, Espinosa-Ibáñez O, Sanabria-de la Torre R, Quiñones-Vico MI, Ubago-Rodríguez A, Lizana-Moreno A, Fernández-González A, Guerrero-Calvo J, Fernández-Porcel N, Ramírez-Muñoz A, Arias-Santiago S. Biological properties and characterization of several variations of a clinical human plasma-based skin substitute model and its manufacturing process. Regen Biomater 2024; 11:rbae115. [PMID: 39469583 PMCID: PMC11513639 DOI: 10.1093/rb/rbae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
Human plasma is a natural biomaterial that due to their protein composition is widely used for the development of clinical products, especially in the field of dermatology. In this context, this biomaterial has been used as a scaffold alone or combined with others for the development of cellular human plasma-based skin substitutes (HPSSs). Herein, the biological properties (cell viability, cell metabolic activity, protein secretion profile and histology) of several variations of a clinical HPSS model, regarding the biomaterial composition (alone or combined with six secondary biomaterials - serine, fibronectin, collagen, two types of laminins and hyaluronic acid), the cellular structure (trilayer, bilayer, monolayer and control without cells) and their skin tissue of origin (abdominal or foreskin cells) and the manufacturing process [effect of partial dehydration process in cell viability and comparison between submerged (SUB) and air/liquid interface (ALI) methodologies] have been evaluated and compared. Results reveal that the use of human plasma as a main biomaterial determines the in vitro properties, rather than the secondary biomaterials added. Moreover, the characteristics are similar regardless of the skin cells used (from abdomen or foreskin). However, the manufacture of more complex cellular substitutes (trilayer and bilayer) has been demonstrated to be better in terms of cell viability, metabolic activity and wound healing protein secretion (bFGF, EGF, VEGF-A, CCL5) than monolayer HPSSs, especially when ALI culture methodology is applied. Moreover, the application of the dehydration, although required to achieve an appropriate clinical structure, reduce cell viability in all cases. These data indicate that this HPSS model is robust and reliable and that the several subtypes here analysed could be promising clinical approaches depending on the target dermatological disease.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada, 18012, Spain
| | - Jorge Cabañas-Penagos
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| | - Sandra Igual-Roger
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| | - Luis Martínez-Heredia
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Olga Espinosa-Ibáñez
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Raquel Sanabria-de la Torre
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, 18071, Spain
| | - María I Quiñones-Vico
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Dermatology, University of Granada, Granada, 18016, Spain
| | - Ana Ubago-Rodríguez
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Antonio Lizana-Moreno
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Ana Fernández-González
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Jorge Guerrero-Calvo
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Natividad Fernández-Porcel
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Arena Ramírez-Muñoz
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Salvador Arias-Santiago
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada, 18012, Spain
- Department of Dermatology, University of Granada, Granada, 18016, Spain
| |
Collapse
|
6
|
Ma Y, Dong J, Li M, Du X, Yan Z, Tian W. An antimicrobial microneedle patch promotes functional healing of infected wounds through controlled release of adipose tissue-derived apoptotic vesicles. J Nanobiotechnology 2024; 22:579. [PMID: 39304913 DOI: 10.1186/s12951-024-02845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024] Open
Abstract
The high incidence and mortality rates associated with acute and chronic wound infections impose a significant burden on global healthcare systems. In terms of the management of wound infection, the reconstruction and regeneration of skin appendages are essential for the recovery of mechanical strength and physiological function in the regenerated skin tissue. Novel therapeutic approaches are a requisite for enhancing the healing of infected wounds and promoting the regeneration of skin appendages. Herein, a novel antimicrobial microneedle patch has been fabricated for the transdermal controlled delivery of adipose tissue-derived apoptotic vesicles (ApoEVs-AT@MNP) for the treatment of infected wounds, which is expected to achieve high-quality scarless healing of the wound skin while inhibiting the bacteria in the infected wound. The microneedle patch (MNP) system possesses adequate mechanical strength to penetrate the skin, allowing the tips to remain inside tissue for continuous active release of biomolecules, and subsequently degrades safely within the host body. In vivo transplantation demonstrates that ApoEVs-AT@MNP not only inhibits bacterial proliferation in infected wounds but also significantly promotes effective and rapid scarless wound healing. Particularly noteworthy is the ability of ApoEVs-AT@MNP to promote the rapid formation of mature, evenly arranged hair follicles in infected wounds, observed as early as 8 days following implantation, which is essential for the restoration of skin function. This rapid development of skin appendages has not been reported this early in previous studies. Therefore, ApoEVs-AT@MNP has emerged as an excellent, painless, non-invasive, and highly promising treatment for infected wounds.
Collapse
Affiliation(s)
- Yue Ma
- Department of Stomatology, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China.
| | - Jia Dong
- Department of Stomatology, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China
| | - Maojiao Li
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinya Du
- Department of Stomatology, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China
| | - Zhengbin Yan
- Department of Stomatology, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China.
| | - Weidong Tian
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Dam P, Shaw S, Mondal R, Chakraborty J, Bhattacharjee T, Sen IK, Manna S, Sadat A, Suin S, Sarkar H, Ertas YN, Mandal AK. Multifunctional silver nanoparticle embedded eri silk cocoon scaffolds against burn wounds-associated infection. RSC Adv 2024; 14:26723-26737. [PMID: 39184008 PMCID: PMC11342674 DOI: 10.1039/d4ra05029k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Antimicrobial wound dressings offer enhanced efficacy compared to conventional dressing platforms by limiting bacterial infections, expediting the healing process, and creating a barrier against additional wound contamination. The use of silk derived from silkworm cocoons in wound healing applications is attributed to its exceptional characteristics. Compared to mulberry silk, sericin from non-mulberry cocoons has higher water exchange mobility and moisture retention. Eri, a non-mulberry silkworm, is an unexplored source of silk with an eco-friendly nature of production where the natural life cycle of silkworms is not disrupted, and no moths are sacrificed. This work reports on an eri silk cocoon-based scaffold decorated with silver nanoparticles as a wound dressing material effective against burn-wound-associated multiple-drug-resistant bacteria. The UV-vis spectroscopy showed maximum absorbance at 448 nm due to the surface plasmon resonance of silver nanoparticles. FT-IR spectra exhibited the functional groups in the eri silk proteins accountable for the reduction of Ag+ to Ag0 in the scaffold. SEM-EDX analysis revealed the presence of elemental silver, and XRD analysis confirmed their particle size of 5.66-8.82 nm. The wound dressing platform showed excellent thermal stability and hydrophobicity, fulfilling the criteria of a standard waterproof dressing material, and anticipating the prevention of bacterial biofilm formation in chronic wounds. The scaffold was found to be effective against both Staphylococcus aureus (MTCC 87) and Pseudomonas aeruginosa (MTCC 1688) multiple-drug-resistant pathogens. Electron microscopy revealed the bacterial cell damage, suggesting its bactericidal property. The results further revealed that the scaffold was both hemocompatible and cytocompatible, suggesting its potential application in chronic wounds such as burns. As an outcome, this study presents a straightforward, cost-effective, and sustainable way of developing a multifunctional wound dressing platform, suggesting its significant therapeutic potential in clinical and biomedical sectors and facile commercialization.
Collapse
Affiliation(s)
- Paulami Dam
- Department of Sericulture, Raiganj University North Dinajpur 733134 West Bengal India
| | - Shubhajit Shaw
- Department of Sericulture, Raiganj University North Dinajpur 733134 West Bengal India
| | - Rittick Mondal
- Department of Sericulture, Raiganj University North Dinajpur 733134 West Bengal India
| | - Joydeep Chakraborty
- Department of Microbiology, Cell Biology and Bacteriology Laboratory, Raiganj University North Dinajpur 733134 India
| | - Trinankur Bhattacharjee
- Department of Conservation Biology, Durgapur Government College Jawahar Lal Nehru Road, Amarabati Colony Durgapur West Bengal 713214 India
| | - Ipsita Kumar Sen
- Department of Chemistry, Government General Degree College Salboni, Paschim Medinipur 721516 West Bengal India
| | - Sanjeet Manna
- Central Instrumentation Facility, Odisha University of Agriculture and Technology Bhubaneswar 751003 Odisha India
| | - Abdul Sadat
- Department of Sericulture, Raiganj University North Dinajpur 733134 West Bengal India
| | - Supratim Suin
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College Rahara Kolkata 700118 India
| | - Hironmoy Sarkar
- Department of Microbiology, Cell Biology and Bacteriology Laboratory, Raiganj University North Dinajpur 733134 India
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University Kayseri 38039 Turkey
- Department of Biomedical Engineering, Erciyes University Kayseri 38039 Turkey
- Department of Technical Sciences, Western Caspian University Baku AZ1001 Azerbaijan
| | - Amit Kumar Mandal
- Department of Sericulture, Raiganj University North Dinajpur 733134 West Bengal India
| |
Collapse
|
8
|
Zhou M, Lin X, Wang L, Yang C, Yu Y, Zhang Q. Preparation and Application of Hemostatic Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309485. [PMID: 38102098 DOI: 10.1002/smll.202309485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Hemorrhage remains a critical challenge in various medical settings, necessitating the development of advanced hemostatic materials. Hemostatic hydrogels have emerged as promising solutions to address uncontrolled bleeding due to their unique properties, including biocompatibility, tunable physical characteristics, and exceptional hemostatic capabilities. In this review, a comprehensive overview of the preparation and biomedical applications of hemostatic hydrogels is provided. Particularly, hemostatic hydrogels with various materials and forms are introduced. Additionally, the applications of hemostatic hydrogels in trauma management, surgical procedures, wound care, etc. are summarized. Finally, the limitations and future prospects of hemostatic hydrogels are discussed and evaluated. This review aims to highlight the biomedical applications of hydrogels in hemorrhage management and offer insights into the development of clinically relevant hemostatic materials.
Collapse
Affiliation(s)
- Minyu Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiang Lin
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Li Wang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Chaoyu Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Qingfei Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
9
|
Arabpour Z, Abedi F, Salehi M, Baharnoori SM, Soleimani M, Djalilian AR. Hydrogel-Based Skin Regeneration. Int J Mol Sci 2024; 25:1982. [PMID: 38396661 PMCID: PMC10888449 DOI: 10.3390/ijms25041982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The skin is subject to damage from the surrounding environment. The repair of skin wounds can be very challenging due to several factors such as severe injuries, concomitant infections, or comorbidities such as diabetes. Different drugs and wound dressings have been used to treat skin wounds. Tissue engineering, a novel therapeutic approach, revolutionized the treatment and regeneration of challenging tissue damage. This field includes the use of synthetic and natural biomaterials that support the growth of tissues or organs outside the body. Accordingly, the demand for polymer-based therapeutic strategies for skin tissue defects is significantly increasing. Among the various 3D scaffolds used in tissue engineering, hydrogel scaffolds have gained special significance due to their unique properties such as natural mimicry of the extracellular matrix (ECM), moisture retention, porosity, biocompatibility, biodegradability, and biocompatibility properties. First, this article delineates the process of wound healing and conventional methods of treating wounds. It then presents an examination of the structure and manufacturing methods of hydrogels, followed by an analysis of their crucial characteristics in healing skin wounds and the most recent advancements in using hydrogel dressings for this purpose. Finally, it discusses the potential future advancements in hydrogel materials within the realm of wound healing.
Collapse
Affiliation(s)
- Zohreh Arabpour
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Farshad Abedi
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud 3614773955, Iran;
| | - Seyed Mahbod Baharnoori
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| |
Collapse
|
10
|
Wang H, Sun D, Lin W, Fang C, Cheng K, Pan Z, Wang D, Song Z, Long X. One-step fabrication of cell sheet-laden hydrogel for accelerated wound healing. Bioact Mater 2023; 28:420-431. [PMID: 37519924 PMCID: PMC10382966 DOI: 10.1016/j.bioactmat.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/12/2023] [Accepted: 06/07/2023] [Indexed: 08/01/2023] Open
Abstract
Full-thickness skin wounds are have continued to be reconstructive challenges in dermal and skin appendage regeneration, and skin substitutes are promising tools for addressing these reconstructive procedures. Herein, the one-step fabrication of a cell sheet integrated with a biomimetic hydrogel as a tissue engineered skin for skin wound healing generated in one step is introduced. Briefly, cell sheets with rich extracellular matrix, high cell density, and good cell connections were integrated with biomimetic hydrogel to fabricate gel + human skin fibroblasts (HSFs) sheets and gel + human umbilical vein endothelial cells (HUVECs) sheets in one step for assembly as a cell sheet-laden hydrogel (CSH). The designed biomimetic hydrogel formed with UV crosslinking and ionic crosslinking exhibited unique properties due to the photo-generated aldehyde groups, which were suitable for integrating into the cell sheet, and ionic crosslinking reduced the adhesive force toward the substrate. These properties allowed the gel + cell sheet film to be easily released from the substrate. The cells in the harvested cell sheet maintained excellent viability, proliferation, and definite migration abilities inside the hydrogel. Moreover, the CSH was implanted into a full-thickness skin defects to construct a required dermal matrix and cell microenvironment. The wound closure rate reached 60.00 ± 6.26% on the 2nd day, accelerating mature granulation and dermis formation with skin appendages after 14 days. This project can provide distinct guidance and strategies for the complete repair and regeneration of full-thickness skin defects, and provides a material with great potential for tissue regeneration in clinical applications.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Colorectal Surgery, Key Laboratory of Biological Treatment of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Deshun Sun
- Southern University of Science and Technology Hospital, Intelligent Medical Innovation Center, Shenzhen, 518035, China
| | - Weiming Lin
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
| | - Chao Fang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
| | - Zhengzhou Pan
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhejiang University School of Medicine, Shenzhen, 518035, China
| | - Daping Wang
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Zhangfa Song
- Department of Colorectal Surgery, Key Laboratory of Biological Treatment of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Xiaojun Long
- Department of Colorectal Surgery, Key Laboratory of Biological Treatment of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| |
Collapse
|
11
|
Photopolymerized silk fibroin gel for advanced burn wound care. Int J Biol Macromol 2023; 233:123569. [PMID: 36758758 DOI: 10.1016/j.ijbiomac.2023.123569] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
The future of burn wound treatment lies in developing bioactive dressings for faster and more effective healing and regeneration. Silk fibroin (SF) hydrogels have proven regenerative abilities and are being explored as a burn wound dressing. However, unfavorable gelation conditions limit the processability and clinical application. Herein a white light-responsive photopolymerization technique was adapted for gelation via photooxidation of tyrosine. To render the gel suitable for application to irregular and non-planar burn surfaces, SF gel-incorporated dressing (SFD) was fabricated. The mild gelation conditions using white light afforded the loading of drugs for local delivery. The moisture balance ability of the dressing was confirmed by the favorable measures of swelling capacity (106 ± 1 %) and moisture retention (≈10 h). The in vitro cytocompatibility of the gel was confirmed using HaCaT cells. Finally, in vivo performance of the SFD was tested on a second-degree burn in a rodent model. The gross analysis and histological assessment revealed scarless healing in SFD-treated groups. Overall, the SFD developed in this work is shown to be a promising candidate for advanced burn wound care.
Collapse
|