1
|
Damian-Buda AI, Unalan I, Boccaccini AR. Combining Mesoporous Bioactive Glass Nanoparticles (MBGNs) with Essential Oils to Tackle Bacterial Infection and Oxidative Stress for Bone Regeneration Applications. ACS Biomater Sci Eng 2024. [PMID: 39418395 DOI: 10.1021/acsbiomaterials.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Bacterial infectious diseases remain one of the significant challenges in the field of bone regeneration applications. Despite the development of new antibiotics, their improper administration has led to the development of multiresistant bacterial strains. In this study, we proposed a novel approach to tackle this problem by loading clove oil (CLV), a natural antibacterial compound, into amino-functionalized mesoporous bioactive glass nanoparticles (MBGNs). The scanning electron microscopy images (SEM) revealed that amino-functionalization and CLV loading did not affect the shape and size of the MBGNs. The successful grafting of the amino groups on the MBGNs' surface and the presence of CLV in the material were confirmed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and zeta potential measurements. The increased CLV concentration led to a higher loading capacity, encapsulation efficiency, and antioxidant activity. The in vitro CLV release profile exhibited an initial burst release, followed by a controlled release over 14 days. The loading of CLV into MBGNs led to a stronger antibacterial effect against E. coli and S. aureus, while MG-63 osteoblast-like cell viability was enhanced with no morphological changes compared to the control group. In conclusion, the CLV-MBGNs nanocarriers showed promising properties in vitro as novel drug delivery systems, exploiting essential oils for treating bone infections and oxidative stress.
Collapse
Affiliation(s)
- Andrada-Ioana Damian-Buda
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, Erlangen 91058, Germany
| |
Collapse
|
2
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
3
|
Ma R, Shi X, Wang X, Si C, Gong Y, Jian W, Zhou C, Yang H, Xu L, Zhang H. Development of a tobramycin-loaded calcium alginate microsphere/chitosan composite sponge with antibacterial effects as a wound dressing. Biomed Mater 2024; 19:045030. [PMID: 38815605 DOI: 10.1088/1748-605x/ad525e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Traditional dressings exhibit several disadvantages, as they frequently lead to bacterial infections, cause severe tissue adhesion and perform a relatively single function. Therefore, in this study, a composite sponge dressing with antibacterial properties and excellent physicochemical properties was developed. Six groups of tobramycin-loaded calcium alginate microspheres were prepared by changing the amount of tobramycin added, and the optimal group was selected. Then, seven groups of tobramycin-loaded calcium alginate microsphere/chitosan composite sponges were fabricated via a solvent blending process and a freeze-drying method. The surface morphology, physicochemical properties,in vitrodegradation properties,in vitrodrug release properties, antibacterial properties and cytotoxicity of the composite sponges were examined. Group 3.0 contained the best microspheres with the largest drug loading capacity, good swelling performance and cumulative drug release rate, obvious and sustained antibacterial activity, and good cytocompatibility. The tobramycin-loaded calcium alginate microsphere/chitosan composite sponges exhibited three-dimensional porous structures, and their porosity, swelling rate, water absorption and water retention rates and water vapor transmission rate met the standards needed for an ideal dressing. The comprehensive performance of the sponge was best when 20 mg of drug-loaded microspheres was added (i.e. group 20). The cumulative drug release rate of the sponge was 29.67 ± 4.14% at 7 d, the diameters of the inhibition zones against the three bacteria were greater than 15 mm, and L929 cell proliferation was promoted. These results demonstrated that the tobramycin-loaded calcium alginate microsphere/chitosan composite sponge with 20 mg of tobramycin-loaded microspheres shows promise as a dressing for infected wounds.
Collapse
Affiliation(s)
- Ruixia Ma
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, People's Republic of China
- Department of Stomatology, The Third People's Hospital of Yinchuan, Yinchuan 750004, People's Republic of China
| | - Xingyan Shi
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, People's Republic of China
- Ningxia Province Key Laboratory of Oral Diseases Research, Ningxia Medical University, Yinchuan 750004, People's Republic of China
| | - Xiaoyan Wang
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, People's Republic of China
- Ningxia Province Key Laboratory of Oral Diseases Research, Ningxia Medical University, Yinchuan 750004, People's Republic of China
| | - Chenchen Si
- General Hospital of Ningxia Medical University, Yinchuan 750004, People's Republic of China
| | - Yuwei Gong
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, People's Republic of China
- Ningxia Province Key Laboratory of Oral Diseases Research, Ningxia Medical University, Yinchuan 750004, People's Republic of China
| | - Wei Jian
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, People's Republic of China
- Ningxia Province Key Laboratory of Oral Diseases Research, Ningxia Medical University, Yinchuan 750004, People's Republic of China
| | - Chen Zhou
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, People's Republic of China
- Ningxia Province Key Laboratory of Oral Diseases Research, Ningxia Medical University, Yinchuan 750004, People's Republic of China
| | - Hui Yang
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, People's Republic of China
- Ningxia Province Key Laboratory of Oral Diseases Research, Ningxia Medical University, Yinchuan 750004, People's Republic of China
| | - Lihua Xu
- Department of General Medicine, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Hualin Zhang
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, People's Republic of China
- Ningxia Province Key Laboratory of Oral Diseases Research, Ningxia Medical University, Yinchuan 750004, People's Republic of China
| |
Collapse
|
4
|
Yang J, Duan A, Shen L, Liu Q, Wang F, Liu Y. Preparation and application of curcumin loaded with citric acid crosslinked chitosan-gelatin hydrogels. Int J Biol Macromol 2024; 264:130801. [PMID: 38548500 DOI: 10.1016/j.ijbiomac.2024.130801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
While oral administration offers safety benefits, its therapeutic efficacy is hindered by various physiological factors within the body. In this study, a novel approach was explored using a matrix consisting of 2 % chitosan and 2 % gelatin, with citric acid (CA) serving as a green cross-linking agent (ranging from 0.4 % to 1.0 %), and curcumin (Cur) as the model drug to formulate hydrogel carriers. The results showed that a 0.4 % CA concentration, the hydrogel (CGA0.4) reached swelling equilibrium in deionized water within 40 min, exhibiting a maximum swelling index was 539 g/g. The addition of Cur to the CGA hydrogel (CGACur) notably enhanced release efficiency, particularly in simulated intestinal fluid, where Cur release rates exceeded 40 % within 100 min compared to below 8 % in other solutions. Among these hydrogels, CGA0.4Cur exhibited the fastest degradation rate in the combined solution, reaching >90 % degradation after 7 days. Additionally, Cur and CA demonstrated positive effects on the tensile strength, antioxidant activity and antibacterial activity of hydrogels. Compare to the bioaccessibility of CGC (27 %), those of CGACur had increased to over 34 %. These findings offer provide theoretical support for CA-crosslinked chitosan/gelatin gels in delivering hydrophobic bioactive molecules and their application in intestinal drug delivery system.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China; Dezhou Industrial Technology Research Institute of North University of China, Dezhou, Shandong, 253034, China.
| | - Anbang Duan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Liping Shen
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Qingye Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Fei Wang
- The hospitial of North University of China,Taiyuan, Shanxi 030051, China
| | - Yongping Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| |
Collapse
|
5
|
Suflet DM, Constantin M, Pelin IM, Popescu I, Rimbu CM, Horhogea CE, Fundueanu G. Chitosan-Oxidized Pullulan Hydrogels Loaded with Essential Clove Oil: Synthesis, Characterization, Antioxidant and Antimicrobial Properties. Gels 2024; 10:227. [PMID: 38667646 PMCID: PMC11049474 DOI: 10.3390/gels10040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Emulsion hydrogels are promising materials for encapsulating and stabilizing high amounts of hydrophobic essential oils in hydrophilic matrices. In this work, clove oil-loaded hydrogels (CS/OP-C) are synthesized by combining covalent and physical cross-linking approaches. First, clove oil (CO) was emulsified and stabilized in a chitosan (CS) solution, which was further hardened by Schiff base covalent cross-linking with oxidized pullulan (OP). Second, the hydrogels were subjected to freeze-thaw cycles and, as a result, the clove oil was stabilized in physically cross-linked polymeric walls. Moreover, due to cryogelation, the obtained hydrogels exhibited sponge-like porous interconnected morphology (160-250 µm). By varying the clove oil content in the starting emulsion and the degree of cross-linking, the hydrogels displayed a high water retention capacity (swelling ratios between 1300 and 2000%), excellent elastic properties with fast shape recovery (20 s) after 70% compression, and controlled in vitro clove oil release in simulated skin conditions for 360 h. Furthermore, the prepared clove oil-loaded hydrogels had a strong scavenging activity of 83% and antibacterial and antifungal properties, showing a bacteriostatic effect after 48 and 72 h against S. aureus and E. coli. Our results recommend the new clove oil-embedded emulsion hydrogels as promising future materials for application as wound dressings.
Collapse
Affiliation(s)
- Dana Mihaela Suflet
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (D.M.S.); (I.M.P.); (I.P.); (G.F.)
| | - Marieta Constantin
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (D.M.S.); (I.M.P.); (I.P.); (G.F.)
| | - Irina Mihaela Pelin
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (D.M.S.); (I.M.P.); (I.P.); (G.F.)
| | - Irina Popescu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (D.M.S.); (I.M.P.); (I.P.); (G.F.)
| | - Cristina M. Rimbu
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, Mihail Sadoveanu Alley 8, 700489 Iasi, Romania; (C.M.R.); (C.E.H.)
| | - Cristina Elena Horhogea
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, Mihail Sadoveanu Alley 8, 700489 Iasi, Romania; (C.M.R.); (C.E.H.)
| | - Gheorghe Fundueanu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (D.M.S.); (I.M.P.); (I.P.); (G.F.)
| |
Collapse
|
6
|
Shetta A, Ali IH, Sharaf NS, Mamdouh W. "Review of strategic methods for encapsulating essential oils into chitosan nanosystems and their applications". Int J Biol Macromol 2024; 259:129212. [PMID: 38185303 DOI: 10.1016/j.ijbiomac.2024.129212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Essential oils (EOs) are hydrophobic, concentrated extracts of botanical origin containing diverse bioactive molecules that have been used for their biomedical properties. On the other hand, the volatility, toxicity, and hydrophobicity limited their use in their pure form. Therefore, nano-encapsulation of EOs in a biodegradable polymeric platform showed a solution. Chitosan (CS) is a biodegradable polymer that has been intensively used for EOs encapsulation. Various approaches such as homogenization, probe sonication, electrospinning, and 3D printing have been utilized to integrate EOs in CS polymer. Different CS-based platforms were investigated for EOs encapsulation such as nanoparticles (NPs), nanofibers, films, nanoemulsions, 3D printed composites, and hydrogels. Biological applications of encapsulating EOs in CS include antioxidant, antimicrobial, and anticancer functions. This review explores the principles for nanoencapsulation strategies, and the available technologies are also reviewed, in addition to an in-depth overview of the current research and application of nano-encapsulated EOs.
Collapse
Affiliation(s)
- Amro Shetta
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Isra H Ali
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt
| | - Nouran S Sharaf
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt.
| |
Collapse
|
7
|
Olevsky LM, Anup A, Jacques M, Keokominh N, Holmgren EP, Hixon KR. Direct Integration of 3D Printing and Cryogel Scaffolds for Bone Tissue Engineering. Bioengineering (Basel) 2023; 10:889. [PMID: 37627774 PMCID: PMC10451777 DOI: 10.3390/bioengineering10080889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Cryogels, known for their biocompatibility and porous structure, lack mechanical strength, while 3D-printed scaffolds have excellent mechanical properties but limited porosity resolution. By combining a 3D-printed plastic gyroid lattice scaffold with a chitosan-gelatin cryogel scaffold, a scaffold can be created that balances the advantages of both fabrication methods. This study compared the pore diameter, swelling potential, mechanical characteristics, and cellular infiltration capability of combined scaffolds and control cryogels. The incorporation of the 3D-printed lattice demonstrated patient-specific geometry capabilities and significantly improved mechanical strength compared to the control cryogel. The combined scaffolds exhibited similar porosity and relative swelling ratio to the control cryogels. However, they had reduced elasticity, reduced absolute swelling capacity, and are potentially cytotoxic, which may affect their performance. This paper presents a novel approach to combine two scaffold types to retain the advantages of each scaffold type while mitigating their shortcomings.
Collapse
Affiliation(s)
- Levi M. Olevsky
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (L.M.O.); (A.A.)
| | - Amritha Anup
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (L.M.O.); (A.A.)
| | - Mason Jacques
- College of Engineering and Physical Sciences, University of New Hampshire, Durham, NH 03824, USA; (M.J.); (N.K.)
| | - Nadia Keokominh
- College of Engineering and Physical Sciences, University of New Hampshire, Durham, NH 03824, USA; (M.J.); (N.K.)
| | - Eric P. Holmgren
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA;
| | - Katherine R. Hixon
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (L.M.O.); (A.A.)
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA;
| |
Collapse
|
8
|
Incorporation of clove essential oil nanoemulsion in chitosan coating to control Burkholderia gladioli and improve postharvest quality of fresh Tremella fuciformis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|