1
|
Wang WJ, Xin ZY, Liu D, Liu Q, Liu Y, Qiu Z, Zhang J, Alam P, Cai XM, Zhao Z, Tang BZ. Intracellularly manipulable aggregation of the aggregation-induced emission luminogens. Biosens Bioelectron 2025; 267:116800. [PMID: 39341072 DOI: 10.1016/j.bios.2024.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Biophotonics has seen significant advancements with the development of optical imaging techniques facilitating the noninvasive detection of biologically relevant species. Aggregation-induced emission (AIE) materials have emerged as a novel class of luminogens exhibiting enhanced luminescence or photodynamic efficiency in the aggregated state, making them ideal for biomedical applications. The intracellularly controlled aggregation of aggregate-induced emission luminogens (AIEgens) enables high-resolution imaging of intracellular targets and diagnosis of related diseases, and enables disease therapy by exploiting the novel properties of aggregates. This review provides an in-depth analysis of the strategies employed to modulate the aggregation of AIEgens, focusing on the importance of molecular modifications to improve hydrophilicity and achieve precise control over the intercellular aggregation of AIEgens. Furthermore, the representative applications of AIEgens in bioimaging, such as enzyme activity monitoring, protein tracking, organelle function monitoring, and in vivo tumor-specific therapeutics, are reviewed. Additionally, we outline the challenges and future opportunities for AIE research, emphasizing the importance of the strategies for realizing the precisely controllable aggregation of AIEgens inside cells and the need for extending AIEgens' absorption and emission wavelengths. This review aims to elucidate the rational development of responsive AIEgens for advanced biomedical applications.
Collapse
Affiliation(s)
- Wen-Jin Wang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Zhuo-Yang Xin
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Dan Liu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Yong Liu
- AIE Institute, Guangzhou 510530, China.
| | - Zijie Qiu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Jianquan Zhang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Parvej Alam
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Xu-Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering, Nanjing Forestry University, China.
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China; Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, China.
| |
Collapse
|
2
|
Fan K, Li Q, Qian Y, Zhang L, Lu D, Zhu L, Yan S, Xu B, Wang Y. Enhanced Photothermal Therapy under Low-Power Near-Infrared Irradiation Enabled by a Si-Cyclopentadithiophene-Based Organic Molecule. Adv Healthc Mater 2024:e2403248. [PMID: 39555634 DOI: 10.1002/adhm.202403248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/30/2024] [Indexed: 11/19/2024]
Abstract
Due to the inadequate photothermal conversion efficiency (PCE), most photothermal agents (PTAs) have to be used under high-power near-infrared (NIR) irradiation, which significantly exceeds medical safety standards, for achieving effective photothermal therapy (PTT) in antitumor treatment. This significantly hinders practical PTT application. Herein, three acceptor-donor-acceptor(A-D-A)-type molecules are synthesized based on cyclopentadithiophene unit to develop effective PTAs. By incorporating the large-size Si atom in the A-D-A molecules, the photosensitizer displays an increased packing distance in the aggregate state, leading to a blue-shifted absorption spectrum that better matches the medial laser wavelength. Also, the Si incorporation strategy elevates the nonradiative decay rate constants (knr) of the A-D-A photosensitizer, and thereby a further enhancement in PCE is achieved for the PTA. Consequently, the SiO-4F-based nanoparticles exhibited 64.23% PCE, with excellent biosafety and photothermal stability. Under NIR irradiation with medical safety (808 nm, 0.33 W cm-2), SiO-4F nanoparticles with 100 µg mL-1 yield a death rate of over 91% for diverse tumor cells. Moreover, in vivo experiments, SiO-4F-based PTT effectively inhibited and eliminated tumors. These findings suggest that the Si-incorporated CDPT is promising for constructing effective A-D-A photosensitizers, enabling the PTT under NIR irradiation that meets medical safety standards.
Collapse
Affiliation(s)
- Kexin Fan
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingyang Li
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuping Qian
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Ludan Zhang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Di Lu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nano-science and Technology, Beijing, 100190, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nano-science and Technology, Beijing, 100190, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bowei Xu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuguang Wang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| |
Collapse
|
3
|
Gawade VK, Jadhav RW, Bhosale SV. AIE-Based & Organic Luminescent Materials: Nanoarchitectonics and Advanced Applications. Chem Asian J 2024; 19:e202400682. [PMID: 39136399 DOI: 10.1002/asia.202400682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Indexed: 10/18/2024]
Abstract
Organic luminescence materials makes the molecule more enthusiastic in wide variety of applications. The luminescent organic materials are in a attraction of the researchers, and the Aggregation-Induced Emission (AIE) is attributed to the occurrence that particular chromophores (typically fluorophores) display very low or nearly no emission in the monomolecular soluble state but become highly emissive when forming aggregates in solution or in solid state. This phenomenon is relatively abnormal when compared with many other traditional fluorophores. AIE research suppresses aggregation-caused quenching (ACQ). Nevertheless, the carbon dots (CDs) and quantum dots have shown to have tyical florescence properties, therefore, recent years many researchers have also attracted for their developments. The CDs, luminescent, and AIE materials are not only used in biomedical applications and organic light-emitting diodes but also in sensing, self-assembly, and other areas. One should introduce promising material to a designed framework that exhibits AIE characteristics to ensure moral results in AIE. Amongest, AIE-active tetraphenylethylene (TPE) is attractive fluorophores due to its easy synthesis strategy. This review article discusses the synthesis properties of TPE, CDs, and luminescent materials with a broad range of applications. We have outlined linear, branched-shaped supramolecular, and hybrid macromolecules due to its potential in the future.
Collapse
Affiliation(s)
- Vilas K Gawade
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Karnataka, Kalaburgi, 585367, India
| | - Ratan W Jadhav
- Department of Chemical Sciences, IISER Kolkata, Kolkata, 741246, India
| | - Sheshanath V Bhosale
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Karnataka, Kalaburgi, 585367, India
| |
Collapse
|
4
|
Balszuweit J, Stahl P, Cappellari V, Lorberg RY, Wölper C, Niemeyer FC, Koch J, Prymak O, Knauer SK, Strassert CA, Voskuhl J. Merging of a Supramolecular Ligand with a Switchable Luminophore - Light-Responsiveness, Photophysics and Bioimaging. Chemistry 2024; 30:e202402578. [PMID: 39054904 DOI: 10.1002/chem.202402578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/27/2024]
Abstract
In this contribution we report on a novel approach towards luminescent light-responsive ligands. To this end, cyanostilbene- guanidiniocarbonyl-pyrrole hybrids were designed and investigated. Merging of a luminophore with a supramolecular bioactive ligand bears numerous advantages by overcoming the typical drawbacks of drug-labelling, influencing the overall performance of the active species by attachment of a large luminophore. Here we were able to establish a simple and easily accessible synthesis route to different cyanostyryl-guanidininiocarbonyl-pyrrole (CGCP) derivatives. These compounds were investigated regarding their light-responsive double bond isomerisation, their molecular structures in single crystals by means of X-ray diffractometry, their emission properties by state of the art photophysical characterisation as well as bioimaging and assessment of cell toxicity.
Collapse
Affiliation(s)
- Jan Balszuweit
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany
| | - Paul Stahl
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Victoria Cappellari
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - Rick Y Lorberg
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany
| | - Christoph Wölper
- Institute for Inorganic Chemistry and Center for NanoIntegration (CENIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Germany
| | - Felix C Niemeyer
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany
| | - Johannes Koch
- Center of Medical Biotechnology (ZMB), University of Duisburg Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Oleg Prymak
- Institute for Inorganic Chemistry and Center for NanoIntegration (CENIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Germany
| | - Shirley K Knauer
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany
| |
Collapse
|
5
|
Oroojalian F, Azizollahi F, Kesharwani P, Sahebkar A. Stimuli-responsive nanotheranostic systems conjugated with AIEgens for advanced cancer bio-imaging and treatment. J Control Release 2024; 373:766-802. [PMID: 39047871 DOI: 10.1016/j.jconrel.2024.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Aggregation-induced emission (AIE) is a unique phenomenon observed in various materials such as organic luminophores, carbon dots (CDs), organic-inorganic nanocomposites, fluorescent dye molecules, and nanoparticles (NPs). These AIE-active materials, or AIEgens, are ideal for balancing multifunctional phototheranostics and energy dissipation. AIE properties can manifest in organic fluorescent probes, rendering them effective for cancer treatment due to their ability to penetrate deeply and provide high therapeutic efficacy. This efficacy is attributed to their high photobleaching thresholds, ability to induce Stokes shifts, and capacity to activate fluorophores. Therefore, the development of innovative AIE-based materials for disease diagnosis and treatment, particularly for cancer, is both important and promising. Recent years have seen successful demonstrations of nanoparticles with AIE properties being used for photodynamic therapy (PDT) and multimodal imaging of tumor cells. These fluorophores have been shown to impact mitochondria and lysosomes, generate reactive oxygen species (ROS), activate the immune system, load and release drugs, and ultimately induce apoptosis in tumor cells. In this review, we examine previous studies on the manufacturing methods and effects of AIEgens on cancer cells, with a theranostic strategy of simultaneous treatment and imaging. We also investigate the factors affecting drug delivery on different cancer cells, including internal stimuli such as pH, ROS, enzymes, and external stimuli like near-infrared (NIR) light and ultrasound waves.
Collapse
Affiliation(s)
- Fatemeh Oroojalian
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Fatemeh Azizollahi
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Fan K, Zhang L, Zhong Q, Xiang Y, Xu B, Wang Y. Acceptor-donor-acceptor-type molecules with large electrostatic potential difference for effective NIR photothermal therapy. J Mater Chem B 2024; 12:5140-5149. [PMID: 38712564 DOI: 10.1039/d4tb00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Although acceptor-donor-acceptor (A-D-A)-type molecules offer advantages in constructing NIR absorbing photothermal agents (PTAs) due to their strong intramolecular charge transfer and molecular planarity, their applications in photothermal therapy (PTT) of tumors remain insufficiently explored. In particular, the influence of ESP distribution on the optical properties of A-D-A photosensitizers has not been investigated. Herein, we analyze and compare the difference in ESP distribution between A-D-A-type small molecules and polymers to construct NIR absorbing PTAs with a high extinction coefficient (ε) and high photothermal conversion efficiency (PCE). The calculation results of density functional theory (DFT) indicate that the large ESP difference makes A-D-A-type small molecules superior to their polymer counterparts in realizing tight molecular packing and strong NIR absorbance. Among the as-prepared nanoparticles (NPs), Y6 NPs exhibited an obvious bathochromic shift of absorption peak from 711 nm to 822 nm, with the NIR-II emission extended to 1400 nm. Moreover, a high ε value of 5.69 L g-1 cm-1 and a PCE of 66.3% were attained, making Y6 NPs suitable for PTT. With a concentration of 100 μg mL-1, Y6 NPs in aqueous dispersion yielded a death rate of 93.4% for 4T1 cells upon 808 nm laser irradiation (1 W cm-2) for 10 min, which is comparable with the best results of recently reported PTT agents.
Collapse
Affiliation(s)
- Kexin Fan
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ludan Zhang
- National Engineering Laboratory for Digital and Material Technology of Stomatology Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Qinqiu Zhong
- National Engineering Laboratory for Digital and Material Technology of Stomatology Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Yanhe Xiang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing 100029, China.
| | - Bowei Xu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yuguang Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| |
Collapse
|
7
|
Deng H, Li X, Pan L, Tang M, Wang B, Zhang Y, Zhang H, Kong X, Wang S, Zhu W. GSH-Responsive Liposomes with Heat Shock Protein Regulatory Ability for Efficient Photodynamic/Photothermal Combined Therapy of Tumors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25788-25798. [PMID: 38716694 DOI: 10.1021/acsami.4c03484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Phototherapy, represented by photodynamic therapy (PDT) and photothermal therapy (PTT), has great potential in tumor treatment. However, the presence of antioxidant glutathione (GSH) and the heat shock proteins (HSPs) expression caused by high temperature can weaken the effects of PDT and PTT. Here, a multifunctional nanocomplex BT&GA@CL is constructed to realize enhanced synergistic PDT/PTT. Cinnamaldehyde liposomes (CLs) formed by cinnamaldehyde dimer self-assembly were loaded with in gambogic acid (GA) and an aggregation-induced emission molecule BT to obtain BT&GA@CL. As a drug carrier, CL can consume glutathione (GSH) and release drugs responsively. The released BT aggregates can simultaneously act as both a photothermal agent and photosensitizer to achieve PDT and PTT under 660 nm laser irradiation. Specifically, GA as an HSP90 inhibitor can attenuate PTT-induced HSP90 protein expression, thereby weakening the tolerance of tumor cells to high temperatures and enhancing PTT. Such a multifunctional nanocomplex simultaneously modulates the content of GSH and HSP90 in tumor cells, thus enhancing both PDT and PTT, ultimately achieving the goal of efficient combined tumor suppression.
Collapse
Affiliation(s)
- Hairui Deng
- Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xianan Li
- Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Lingfeng Pan
- Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Mengcheng Tang
- Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Beibei Wang
- Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yongjia Zhang
- Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Han Zhang
- Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiangdong Kong
- Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Shibo Wang
- Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Wei Zhu
- College of Textiles Science and Engineering (International silk institute), Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
8
|
Cyniak JS, Kasprzak A. Grind, shine and detect: mechanochemical synthesis of AIE-active polyaromatic amide and its application as molecular receptor of monovalent anions or nucleotides. RSC Adv 2024; 14:13227-13236. [PMID: 38655472 PMCID: PMC11037028 DOI: 10.1039/d4ra02129k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
A mechanochemical synthesis of novel polyaromatic amide consisting of 1,3,5-triphenylbenzene and 1,1',2,2'-tetraphenylethylene skeletons has been established. The designed mechanochemical approach using readily available and low-cost equipment allowed a twofold increase in reaction yield, a 350-fold reduction in reaction time and a significant reduction in the use of harmful reactants in comparison to the solution synthesis method. The parameters of Green Chemistry were used to highlight the advantages of the developed synthesis method over the solution-based approach. The title compound was found to exhibit attractive optical properties related to the Aggregation-induced emission (AIE) behaviour. Taking the advantage of AIE-active properties of the synthesized polyaromatic amide, its application as effective and versatile molecular receptor towards detection of monovalent anions, as well as bio-relevant anions - nucleotides, has been demonstrated. The values of the binding constants were at the satisfactory level of 104, the detection limit values were low and ranged from 0.2 μM to 19.9 μM.
Collapse
Affiliation(s)
- Jakub S Cyniak
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego Str. 3 00-664 Warsaw Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego Str. 3 00-664 Warsaw Poland
| |
Collapse
|
9
|
Zhong W, Zhang J, Lin Y, Li S, Yang Y, Wang WJ, Si C, Kühn FE, Zhao Z, Cai XM, Tang BZ. Multi-site isomerization of synergistically regulated stimuli-responsive AIE materials toward multi-level decryption. Chem Sci 2024; 15:3920-3927. [PMID: 38487249 PMCID: PMC10935665 DOI: 10.1039/d3sc06191d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Stimuli-responsive aggregation-induced emission (AIE) materials are highly sensitive and rapidly responsive to external signals, making them ideal solid materials for anti-counterfeiting encryption. However, the limited conformational and packing variations resulting from regio-isomerization with a single substituent restricts the stimuli-responsive behavior of these materials. In this work, several AIE-active regio-structural isomers based on the salicylaldehyde Schiff base scaffold have been straightforwardly obtained through multiple substitutions with bromide and triphenylamine moieties. Solvent-effect experiments demonstrate their different orders of charge-transfer and excited-state intramolecular proton transfer upon photoexcitation, indicating the regulation of excited-state processes via multi-site isomerization. These isomers also demonstrate mechanochromism and acidichromism, allowing for adjustable stimuli-responsive effects. As a demonstration, p-Br-TPA with both mechanochromism and acidichromism can be synergistically utilized for multi-level decryption. This study successfully regulates the evolution of excited states through multi-site isomerization, offering a general approach for achieving tunable stimuli-responsive properties in AIE-active salicylaldehyde Schiff bases toward multi-level decryption.
Collapse
Affiliation(s)
- Weiren Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Guangzhou 510640 China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology Hongkong 999077 China
| | - Yuting Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Shouji Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Yalan Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Wen-Jin Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen) Shenzhen 518172 China
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology Tianjin 300457 China
| | - Fritz E Kühn
- Department of Chemistry & Catalysis Research Center, Molecular Catalysis, School of Natural Sciences, Technische Universität München München D-85747 Germany
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen) Shenzhen 518172 China
| | - Xu-Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Guangzhou 510640 China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology Hongkong 999077 China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen) Shenzhen 518172 China
| |
Collapse
|
10
|
Imayoshi A, Yokoo H, Kawaguchi M, Tsubaki K, Oba M. Visualization of the Plasmid DNA Delivery System by Complementary Fluorescence Labeling of Arginine-Rich Peptides. Chem Pharm Bull (Tokyo) 2024; 72:856-861. [PMID: 39370260 DOI: 10.1248/cpb.c24-00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Cell-penetrating peptides, such as arginine-rich peptides, encapsulate nucleic acid drugs and deliver them to intracellular compartments. Comprehensive tracking of drug delivery systems (DDSs) provides information about the behavior of the drug as well as the fate of the drug carrier after drug release, which is crucial for minimizing side effects. In this study, we labeled peptides designed to carry plasmid DNA with two types of dyes, traditional dye fluorescein and aggregation-induced emission (AIE) dye tetraphenylethylene, and subsequently tracked the DDS through the complementary ON and OFF fluorescence behaviors of the dyes. Traditional fluorescent dyes are susceptible to aggregation-caused quenching during bioimaging, a problem that is mitigated by using AIE dyes. However, by using both of these contrasting fluorescent labels, we were able to clearly visualize the DDS at different stages of its deployment, from drug transport and delivery to carrier dissociation and migration, demonstrating the feasibility of accurate DDS visualization by complementary fluorescence labeling.
Collapse
Affiliation(s)
- Ayumi Imayoshi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| | - Hidetomo Yokoo
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
- National Institute of Health Sciences
| | - Masashi Kawaguchi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| | - Kazunori Tsubaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| | - Makoto Oba
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| |
Collapse
|
11
|
Sun W, Wang C, Tian C, Li X, Hu X, Liu S. Nanotechnology for brain tumor imaging and therapy based on π-conjugated materials: state-of-the-art advances and prospects. Front Chem 2023; 11:1301496. [PMID: 38025074 PMCID: PMC10663370 DOI: 10.3389/fchem.2023.1301496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
In contemporary biomedical research, the development of nanotechnology has brought forth numerous possibilities for brain tumor imaging and therapy. Among these, π-conjugated materials have garnered significant attention as a special class of nanomaterials in brain tumor-related studies. With their excellent optical and electronic properties, π-conjugated materials can be tailored in structure and nature to facilitate applications in multimodal imaging, nano-drug delivery, photothermal therapy, and other related fields. This review focuses on presenting the cutting-edge advances and application prospects of π-conjugated materials in brain tumor imaging and therapeutic nanotechnology.
Collapse
Affiliation(s)
- Wenshe Sun
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Congxiao Wang
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chuan Tian
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xueda Li
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaokun Hu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shifeng Liu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
12
|
Zhong B, Chen F, Ge Y, Liu D. Developing a fast and catalyst-free protocol to form C=N double bond with high functional group tolerance. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231263. [PMID: 37800155 PMCID: PMC10548102 DOI: 10.1098/rsos.231263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
The carbon-nitrogen double bond (C=N) is a fundamentally important functional group in organic chemistry. This is largely due to the fact that C=N acts as electrophilic synthon to give nitrogen-containing compounds. Here, we report the condensation of primary amine or hydrazine with very electron-deficient aldehyde to form C=N bond in the absence of any catalysts (metals and acids). The protocol performs at room temperature and applies water as co-solvent. Two hundred examples are presented here. With its intrinsic advantages of wide substrate scopes, excellent efficiency (high yields and short reaction time), operational simplicity, mild condition (room temperature as reaction temperature, no catalysts, no additions, water as co-solvent and opening to air) and available starting materials, the protocol can be compatible with various drugs, prodrugs, dyes and pharmacophores containing primary amino group. In addition, we also successfully apply this protocol to rapidly synthesize the core scaffolds of bioactive molecules.
Collapse
Affiliation(s)
- Bin Zhong
- Heifei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Feng Chen
- Heifei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Yushu Ge
- Heifei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Dan Liu
- Heifei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China
| |
Collapse
|
13
|
Sessa L, Diana R, Gentile FS, Mazzaglia F, Panunzi B. AIEgen orthopalladated hybrid polymers for efficient inactivation of the total coliforms in urban wastewater. Sci Rep 2023; 13:15790. [PMID: 37737240 PMCID: PMC10516893 DOI: 10.1038/s41598-023-41315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
Monitorable AIE polymers with a bioactive pattern are employed in advanced biomedical applications such as functional coatings, theranostic probes, and implants. After the global COVID-19 pandemic, interest in developing surfaces with superior antimicrobial, antiproliferative, and antiviral activities dramatically increased. Many formulations for biocide surfaces are based on hybrid organic/inorganic materials. Palladium (II) complexes display relevant activity against common bacteria, even higher when compared to their uncoordinated ligands. This article reports the design and synthesis of two series of orthopalladated polymers obtained by grafting a cyclopalladated fragment on two different O, N chelating Schiff base polymers. Different grafting percentages were examined and compared for each organic polymer. The fluorescence emission in the solid state was explored on organic matrixes and grafted polymers. DFT analysis provided a rationale for the role of the coordination core. The antibacterial response of the two series of hybrid polymers was tested against the total coliform group of untreated urban wastewater, revealing excellent inactivation ability.
Collapse
Affiliation(s)
- Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Rosita Diana
- Department of Agricultural Sciences, University of Naples Federico II, Portici, NA, Italy.
| | - Francesco Silvio Gentile
- Department of Chemical Sciences, University of Napoli Federico II, Strada Comunale Cinthia, 26, 80126, Napoli, Italy
| | - Fabio Mazzaglia
- C.R.A. S.R.L., Calle Giovanni Legrenzi, 2, 30171, Venice, VE, Italy
| | - Barbara Panunzi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, NA, Italy
| |
Collapse
|
14
|
Chen Z, Ma J, Sun DW. Aggregates-based fluorescence sensing technology for food hazard detection: Principles, improvement strategies, and applications. Compr Rev Food Sci Food Saf 2023; 22:2977-3010. [PMID: 37199444 DOI: 10.1111/1541-4337.13169] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023]
Abstract
Aggregates often exhibit modified or completely new properties compared with their molecular elements, making them an extraordinarily advantageous form of materials. The fluorescence signal change characteristics resulting from molecular aggregation endow aggregates with high sensitivity and broad applicability. In molecular aggregates, the photoluminescence properties at the molecular level can be annihilated or elevated, leading to aggregation-causing quenching (ACQ) or aggregation-induced emission (AIE) effects. This change in photoluminescence properties can be intelligently introduced in food hazard detection. Recognition units can combine with the aggregate-based sensor by joining the aggregation process, endowing the sensor with the high specificity of analytes (such as mycotoxins, pathogens, and complex organic molecules). In this review, aggregation mechanisms, structural characteristics of fluorescent materials (including ACQ/AIE-activated), and their applications in food hazard detection (with/without recognition units) are summarized. Because the design of aggregate-based sensors may be influenced by the properties of their components, the sensing mechanisms of different fluorescent materials were described separately. Details of fluorescent materials, including conventional organic dyes, carbon nanomaterials, quantum dots, polymers and polymer-based nanostructures and metal nanoclusters, and recognition units, such as aptamer, antibody, molecular imprinting, and host-guest recognition, are discussed. In addition, future trends of developing aggregate-based fluorescence sensing technology in monitoring food hazards are also proposed.
Collapse
Affiliation(s)
- Zhuoyun Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
15
|
Wang L, Zhang C, Tang H, Cao D. A novel chromophore reaction-based pyrrolopyrrole aza-BODIPY fluorescent probe for H 2S detection and its application in food spoilage. Food Chem 2023; 427:136591. [PMID: 37364314 DOI: 10.1016/j.foodchem.2023.136591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
In this work, we developed an aggregation-induced emission enhancement (AIEE) active and NIR emissive pyrrolopyrrole aza-BODIPY (PPAB) polymer (P1) for H2S detection for the first time. P1 showed obvious colorimetric change from green to yellow-green and ratiometric fluorescence "turn on" phenomenon with 167 nm blue-shift (from dark red to bright green). The sensing mechanism revealed a novel chromophore reaction between imine in PPAB core and H2S was involved, leading to less conjugated product. It exhibited distinct advantages of good selectivity, high sensitivity, and low detection limit of 0.66 μM. The potential applicability of P1 for H2S detection in the real samples (tap water, lake water and milk) was demonstrated. In addition, the solid sensor prepared by loading P1 on the PMMA film was successfully realized the visual detection of gaseous H2S gas produced from egg spoilage. Therefore, this work provides a promising approach based on novel sensing mechanism for monitoring H2S in complicated biological systems and practical food samples.
Collapse
Affiliation(s)
- Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China.
| | - Chufeng Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| |
Collapse
|