1
|
Zhang W, Xu Y, Guo R, Zhuang P, Hong H, Tan H, Wang M. Theranostic Bottle-Brush Polymers Tailored for Universal Solid-Tumor Targeting. ACS NANO 2024; 18:11688-11702. [PMID: 38665009 DOI: 10.1021/acsnano.3c11755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Designing an efficient nanocarrier to target multiple types of cancer remains a major challenge in the development of cancer nanomedicines. The majority of systemically administered nanoparticles (NPs) are rapidly cleared by the liver, resulting in poor tumor-targeting efficiency and severe side effects. Here, we present a delicately tailored design and synthesis of fluorescent bottle-brush polymers and screen nine derived NPs, each varying in size and surface coatings, for tumor imaging and targeted delivery. Our optimized polymer bearing (oligo(ethylene glycol) methyl ether methacrylate) in the side chains shows reduced macrophage uptake, prolonged blood-circulation time (up to 27 h), and exceptionally high accumulation in the tumor compared to the liver, elucidating an immune-evasion-induced tumor-targeting mechanism. High tumor accumulation significantly improved the antitumor efficacy. The outstanding tumor-targeting ability has been further validated across five distinct tumor models, including orthotopic glioblastoma and pancreatic cancer, which demonstrate the universality of our polymeric nanocarrier for tumor-targeting delivery.
Collapse
Affiliation(s)
- Wei Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Yanwen Xu
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518000, Guangdong, China
| | - Rongjun Guo
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518000, Guangdong, China
| | - Peiling Zhuang
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518000, Guangdong, China
| | - Huixia Hong
- College of Chemistry, Xinjiang University, Urumqi 830046, China
| | - Hui Tan
- Shenzhen Children's Hospital of Shantou University Medical College, Shenzhen Second People's Hospital, Shenzhen University Health Science Center, Shenzhen 518026, Guangdong, China
| | - Mingfeng Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| |
Collapse
|
2
|
Kannaujiya VK, Qiao Y, Sheikh RH, Xue J, Dargaville TR, Liang K, Wich PR. pH-Responsive Micellar Nanoparticles for the Delivery of a Self-Amplifying ROS-Activatable Prodrug. Biomacromolecules 2024; 25:1775-1789. [PMID: 38377594 DOI: 10.1021/acs.biomac.3c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The objective of this study is to enhance the therapeutic efficacy of the anticancer drug, camptothecin (CPT) via a nanoparticle (NP) formulation using a novel amphiphilic biopolymer. We have designed a dimeric prodrug of CPT with the ability to self-amplify and respond to reactive oxygen species (ROS). For this, we incorporated the intracellular ROS generator cinnamaldehyde into a ROS-cleavable thioacetal (TA) linker to obtain the dimeric prodrug of CPT (DCPT(TA)). For its efficient NP delivery, a pH-responsive block copolymer of acetalated dextran and poly(2-ethyl-2-oxazoline) (AcDex-b-PEOz) was synthesized. The amphiphilic feature of the block copolymer enables its self-assembly into micellar NPs and results in high prodrug loading capacity and a rapid release of the prodrug under acidic conditions. Upon cellular uptake by HeLa cells, DCPT(TA)-loaded micellar NPs induce intracellular ROS generation, resulting in accelerated prodrug activation and enhanced cytotoxicity. These results indicate that this system holds significant potential as an effective prodrug delivery strategy in anticancer treatment.
Collapse
Affiliation(s)
- Vinod K Kannaujiya
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Yijie Qiao
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Rakib H Sheikh
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Jueyi Xue
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Tim R Dargaville
- ARC Centre for Cell & Tissue Engineering Technologies, QUT Centre for Materials Science, School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane 4000, Australia
| | - Kang Liang
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney 2052, New South Wales, Australia
| |
Collapse
|
3
|
Ngo TLH, Wang KL, Pan WY, Ruan T, Lin YJ. Immunomodulatory Prodrug Micelles Imitate Mild Heat Effects to Reshape Tumor Microenvironment for Enhanced Cancer Immunotherapy. ACS NANO 2024; 18:5632-5646. [PMID: 38344992 PMCID: PMC10883120 DOI: 10.1021/acsnano.3c11186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Physical stimulation with mild heat possesses the notable ability to induce immunomodulation within the tumor microenvironment (TME). It transforms the immunosuppressive TME into an immune-active state, making tumors more receptive to immune checkpoint inhibitor (ICI) therapy. Transient receptor potential vanilloid 1 (TRPV1), which can be activated by mild heat, holds the potential to induce these alterations in the TME. However, achieving precise temperature control within tumors while protecting neighboring tissues remains a significant challenge when using external heat sources. Taking inspiration from the heat sensation elicited by capsaicin-containing products activating TRPV1, this study employs capsaicin to chemically stimulate TRPV1, imitating immunomodulatory benefits akin to those induced by mild heat. This involves developing a glutathione (GSH)-responsive immunomodulatory prodrug micelle system to deliver capsaicin and an ICI (BMS202) concurrently. Following intravenous administration, the prodrug micelles accumulate at the tumor site through the enhanced permeability and retention effect. Within the GSH-rich TME, the micelles disintegrate and release capsaicin and BMS202. The released capsaicin activates TRPV1 expressed in the TME, enhancing programmed death ligand 1 expression on tumor cell surfaces and promoting T cell recruitment into the TME, rendering it more immunologically active. Meanwhile, the liberated BMS202 blocks immune checkpoints on tumor cells and T cells, activating the recruited T cells and ultimately eradicating the tumors. This innovative strategy represents a comprehensive approach to fine-tune the TME, significantly amplifying the effectiveness of cancer immunotherapy by exploiting the TRPV1 pathway and enabling in situ control of immunomodulation within the TME.
Collapse
Affiliation(s)
- Thi-Lan-Huong Ngo
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Kuan-Lin Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115201, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, 242062, Taiwan
| | - Wen-Yu Pan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110301, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110301, Taiwan
| | - Ting Ruan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, 242062, Taiwan
| | - Yu-Jung Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115201, Taiwan
| |
Collapse
|
4
|
Alavi SE, Alharthi S, Alavi SZ, Raza A, Ebrahimi Shahmabadi H. Bioresponsive drug delivery systems. Drug Discov Today 2024; 29:103849. [PMID: 38052319 DOI: 10.1016/j.drudis.2023.103849] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
In this review, we highlight the potential of stimuli-responsive drug delivery systems (DDSs) to revolutionize healthcare. Through examining pH, temperature, enzyme, and redox responsiveness, the presented case studies highlight the precision and enhanced therapeutic outcomes achievable with these innovative systems. Challenges, such as complex design and bio-based material optimization, underscore the complete journey from bench to bedside. Clinical strides in magnetically and temperature-responsive systems hint at a promising future for healthcare. However, overcoming issues of stability, durability, penetration depth, sensitivity, and active targeting is crucial. The future envisions theranostic systems, amalgamating targeted therapy and diagnosis, for personalized healthcare. Bio-based materials emerge as pivotal, offering a nuanced approach to complex diseases, such as cancer and diabetes, reshaping the healthcare landscape.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran.
| | - Sitah Alharthi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Aun Raza
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran.
| |
Collapse
|
5
|
pH-responsive nanoprodrugs combining a Src inhibitor and chemotherapy to potentiate antitumor immunity via pyroptosis in head and neck cancer. Acta Biomater 2022; 154:497-509. [PMID: 36367476 DOI: 10.1016/j.actbio.2022.10.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/27/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022]
Abstract
As the prominent feature of the development and progression of head and neck squamous cell carcinoma (HNSCC) is immunosuppression, therapeutic strategies to restore antitumor immunity have shown promising prospects. The efficacy of chemotherapy, a mainstay in HNSCC treatment, is exemplified by cytotoxic effects as well as immunostimulation, whereas compensatory activation of prosurvival signals in tumor tissues may compromise its efficacy. Aberrant activation of Src is present in many human malignancies including HNSCC, and is implicated in chemotherapy resistance. In this regard, tumor-microenvironment-responsive prodrug nanomicelles (PDO NPs) are rationally designed to combine chemotherapy (oxaliplatin, OXA) and Src inhibitors (dasatinib, DAS) for HNSCC therapy. PDO NPs are constructed by chemically modifying small-molecule prodrugs (DAS-OXA) loaded in block copolymer iPDPA with pH-triggered transforming capability. PDO NPs can controllably release drugs in response to tumor acidity, thus increasing tumor accumulation and therapeutic efficacy. Moreover, PDO NPs can elicit pyroptosis of tumor cells and induce T-cell-mediated antitumor immunity in murine HNSCC models. In summary, nanoprodrugs integrating Src inhibitors enhance the immunological effects of chemotherapy and provide insight into promising approaches for augmenting immunochemotherapy for HNSCC. STATEMENT OF SIGNIFICANCE: In this study, pH-responsive nanomicelles (PDO NPs) were constructed by loading a small molecular prodrug synthesized by the Src inhibitor dasatinib and the chemotherapy drug oxaliplatin into the amphiphilic block copolymer iPDPA to improve the immunological effects of chemotherapy for HNSCC. These nanomicelles can efficiently accumulate in tumor cells and achieve pH-responsive drug release. The PDO NPs can induce pyroptosis of tumor cells and potentiate antitumor immunity in subcutaneous and syngenetic orthotopic HNSCC mouse models, which may present a promising strategy to enhance immunochemotherapy for HNSCC.
Collapse
|
6
|
Redox-responsive waterborne polyurethane nanocarriers for targeted doxorubicin delivery. Int J Pharm 2022; 628:122275. [DOI: 10.1016/j.ijpharm.2022.122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022]
|
7
|
López Ruiz A, Ramirez A, McEnnis K. Single and Multiple Stimuli-Responsive Polymer Particles for Controlled Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14020421. [PMID: 35214153 PMCID: PMC8877485 DOI: 10.3390/pharmaceutics14020421] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023] Open
Abstract
Polymers that can change their properties in response to an external or internal stimulus have become an interesting platform for drug delivery systems. Polymeric nanoparticles can be used to decrease the toxicity of drugs, improve the circulation of hydrophobic drugs, and increase a drug’s efficacy. Furthermore, polymers that are sensitive to specific stimuli can be used to achieve controlled release of drugs into specific areas of the body. This review discusses the different stimuli that can be used for controlled drug delivery based on internal and external stimuli. Internal stimuli have been defined as events that evoke changes in different characteristics, inside the body, such as changes in pH, redox potential, and temperature. External stimuli have been defined as the use of an external source such as light and ultrasound to implement such changes. Special attention has been paid to the particular chemical structures that need to be incorporated into polymers to achieve the desired stimuli response. A current trend in this field is the incorporation of several stimuli in a single polymer to achieve higher specificity. Therefore, to access the most recent advances in stimuli-responsive polymers, the focus of this review is to combine several stimuli. The combination of different stimuli is discussed along with the chemical structures that can produce it.
Collapse
Affiliation(s)
- Aida López Ruiz
- Chemical and Materials Engineering Department, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| | - Ann Ramirez
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| | - Kathleen McEnnis
- Chemical and Materials Engineering Department, New Jersey Institute of Technology, Newark, NJ 07102, USA;
- Correspondence:
| |
Collapse
|
8
|
Long M, Xu J, Fang W, Mao J, Zhang J, Liu S, Qiu L. Enhanced delivery of artesunate by stimuli-responsive polymeric micelles for lung tumor therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Zheng Q, Xu C, Jiang Z, Zhu M, Chen C, Fu F. Smart Actuators Based on External Stimulus Response. Front Chem 2021; 9:650358. [PMID: 34136462 PMCID: PMC8200850 DOI: 10.3389/fchem.2021.650358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Smart actuators refer to integrated devices that are composed of smart and artificial materials, and can provide actuation and dampening capabilities in response to single/multi external stimuli (such as light, heat, magnetism, electricity, humidity, and chemical reactions). Due to their capability of dynamically sensing and interaction with complex surroundings, smart actuators have attracted increasing attention in different application fields, such as artificial muscles, smart textiles, smart sensors, and soft robots. Among these intelligent material, functional hydrogels with fiber structure are of great value in the manufacture of smart actuators. In this review, we summarized the recent advances in stimuli-responsive actuators based on functional materials. We emphasized the important role of functional nano-material-based additives in the preparation of the stimulus response materials, then analyzed the driving response medium, the preparation method, and the performance of different stimuli responses in detail. In addition, some challenges and future prospects of smart actuators are reported.
Collapse
Affiliation(s)
- Qinchao Zheng
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China
| | - Chenxue Xu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China
| | - Zhenlin Jiang
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China.,Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, China
| | - Min Zhu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China
| | - Chen Chen
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China
| | - Fanfan Fu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Wang S, Liu Q, Li L, Urban MW. Recent Advances in Stimuli-Responsive Commodity Polymers. Macromol Rapid Commun 2021; 42:e2100054. [PMID: 33749047 DOI: 10.1002/marc.202100054] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Known for their adaptability to surroundings, capability of transport control of molecules, or the ability of converting one type of energy to another as a result of external or internal stimuli, responsive polymers play a significant role in advancing scientific discoveries that may lead to an array of diverge applications. This review outlines recent advances in the developments of selected commodity polymers equipped with stimuli-responsiveness to temperature, pH, ionic strength, enzyme or glucose levels, carbon dioxide, water, redox agents, electromagnetic radiation, or electric and magnetic fields. Utilized diverse applications ranging from drug delivery to biosensing, dynamic structural components to color-changing coatings, this review focuses on commodity acrylics, epoxies, esters, carbonates, urethanes, and siloxane-based polymers containing responsive elements built into their architecture. In the context of stimuli-responsive chemistries, current technological advances as well as a critical outline of future opportunities and applications are also tackled.
Collapse
Affiliation(s)
- Siyang Wang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Qianhui Liu
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Lei Li
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Marek W Urban
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
11
|
Pinyakit Y, Palaga T, Kiatkamjornwong S, Hoven VP. Sequential post-polymerization modification of a pentafluorophenyl ester-containing homopolymer: a convenient route to effective pH-responsive nanocarriers for anticancer drugs. J Mater Chem B 2021; 8:454-464. [PMID: 31833524 DOI: 10.1039/c9tb01533g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recently, pH-responsive polymeric micelles have gained significant attention as effective carriers for anti-cancer drug delivery. Herein, pH-responsive polymeric micelles were constructed by a simple post-polymerization modification of a single homopolymer, poly(pentafluorophenyl acrylate) (PPFPA). The PPFPA was first subjected to modification with 1-amino-2-propanol yielding the amphiphilic copolymer of poly(pentafluorophenyl acrylate)-ran-poly(N-(2-hydroxypropyl acrylamide)). A series of amphiphilic random copolymers of different compositions could self-assemble into spherical micelles with a unimodal size distribution in aqueous solution. Then, 1-(3-aminopropyl)imidazole (API), a reagent to introduce charge conversional entities, was reacted with the remaining PPFPA segment in the micellar core resulting in API-modified micelles which can encapsulate doxorubicin (DOX), a hydrophobic anti-cancer drug. As monitored by dynamic light scattering, the API-modified micelles underwent disintegration upon pH switching from 7.4 to 5.0, presumably due to imidazolyl group protonation. This pH-responsiveness of the API-modified micelles was responsible for the faster and greater in vitro DOX release in an acidic environment than neutral pH. Cellular uptake studies revealed that the developed carriers were internalized into MDA-MB-231 cells within 30 min via endocytosis and exhibited cytotoxicity in a dose-dependent manner.
Collapse
Affiliation(s)
- Yuwaporn Pinyakit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | | | | |
Collapse
|
12
|
Kist JA, Zhao H, Mitchell-Koch KR, Baker GA. The study and application of biomolecules in deep eutectic solvents. J Mater Chem B 2021; 9:536-566. [DOI: 10.1039/d0tb01656j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deep eutectic solvents offer stimulating possibilities for biomolecular stabilization and manipulation, biocatalysis, bioextraction, biomass processing, and drug delivery and therapy.
Collapse
Affiliation(s)
- Jennifer A. Kist
- Department of Chemistry
- University of Missouri-Columbia
- Columbia
- USA
| | - Hua Zhao
- Department of Chemistry and Biochemistry
- University of Northern Colorado
- Greeley
- USA
| | | | - Gary A. Baker
- Department of Chemistry
- University of Missouri-Columbia
- Columbia
- USA
| |
Collapse
|
13
|
Rarokar N, C R, Gurav S, Khedekar P. Meloxicam encapsulated nanostructured colloidal self-assembly for evaluating antitumor and anti-inflammatory efficacy in 3D printed scaffolds. J Biomed Mater Res A 2020; 109:1441-1456. [PMID: 33289225 DOI: 10.1002/jbm.a.37135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/18/2020] [Accepted: 11/28/2020] [Indexed: 01/10/2023]
Abstract
Nanostructured colloidal self-assembly (NCS) is one of the most promising drug delivery carriers in cancer treatment. The present research work aimed towards synthesizing meloxicam (MLX) loaded NCS for its improved circulation half-life and increased cellular internalization. NCS was formulated using glyceryl monoolein, Pluronic® F127, and MLX. Quality by Design experiments with a quadratic model was subjected to optimization of the formulation. The optimized NCS with an average particle size of 185.5 ± 3.02 nm showed higher MLX encapsulation (94.74 ± 3.41%) and sustained release behavior of MLX up to 24 hr. in vitro cytotoxicity of the developed NCS with MCF-7 and MDA-MB-231 cell lines confirmed lower cell viability and a higher rate of cell growth inhibition. This MLX loaded NCS showed dual activity as an antitumor and anti-inflammatory in highly invasive estrogen-dependent MDA-MB-231 cells due to the high expression of cyclooxygenase-2 (COX-2). Besides, an activity of the MLX-NCS was also observed in 3D printed MCF-7 cells. This investigation shows the possible use of MLX-NCS as an efficient cancer drug delivery system with excellent colloidal stability, sustained release of MLX, enhanced antitumor and anti-inflammatory efficacy in 3D printed scaffolds. In contrast to toxicity study in 2D culture, the 3D constructs revealed the activity of the MLX via COX-2 independent mechanism and demonstrated that the relationship between COX-2 expression and antitumor activity of inhibitors is limited. In conclusion, the overall observations and results of this study strengthen the hypothesized development of NCS as a next-generation therapeutics regimen for cancer therapy.
Collapse
Affiliation(s)
- Nilesh Rarokar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Ravikumar C
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra, India
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji, Goa, India
| | - Pramod Khedekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| |
Collapse
|
14
|
Van Gheluwe L, Buchy E, Chourpa I, Munnier E. Three-Step Synthesis of a Redox-Responsive Blend of PEG- block-PLA and PLA and Application to the Nanoencapsulation of Retinol. Polymers (Basel) 2020; 12:E2350. [PMID: 33066418 PMCID: PMC7602167 DOI: 10.3390/polym12102350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 01/06/2023] Open
Abstract
Smart polymeric nanocarriers have been developed to deliver therapeutic agents directly to the intended site of action, with superior efficacy. Herein, a mixture of poly(lactide) (PLA) and redox-responsive poly(ethylene glycol)-block-poly(lactide) (PEG-block-PLA) containing a disulfide bond was synthesized in three steps. The nanoprecipitation method was used to prepare an aqueous suspension of polymeric nanocarriers with a hydrodynamic diameter close to 100 nm. Retinol, an anti-aging agent very common in cosmetics, was loaded into these smart nanocarriers as a model to measure their capacity to encapsulate and to protect a lipophilic active molecule. Retinol was encapsulated with a high efficiency with final loading close to 10% w/w. The stimuli-responsive behavior of these nanocarriers was demonstrated in vitro, in the presence of l-Glutathione, susceptible to break of disulfide bond. The toxicity was low on human keratinocytes in vitro and was mainly related to the active molecule. Those results show that it is not necessary to use 100% of smart copolymer in a nanosystem to obtain a triggered release of their content.
Collapse
Affiliation(s)
- Louise Van Gheluwe
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37 200 Tours, France; (L.V.G.); (I.C.)
| | - Eric Buchy
- Laboratoires Eriger, 39 Rue des Granges Galand, 37550 Saint-Avertin, France;
| | - Igor Chourpa
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37 200 Tours, France; (L.V.G.); (I.C.)
| | - Emilie Munnier
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37 200 Tours, France; (L.V.G.); (I.C.)
| |
Collapse
|
15
|
Carbonylimidazole-hydroxyl coupling chemistry: Synthesis and block copolymerization of fully bio-reducible poly(carbonate-disulfide)s. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Li YQ, Sun W, Liu XY, Chen LQ, Huang W, Lu ZL, He L. Synthesis of Glutathione (GSH)-Responsive Amphiphilic Duplexes and their Application in Gene Delivery. Chempluschem 2020; 84:1060-1069. [PMID: 31943961 DOI: 10.1002/cplu.201900295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/13/2019] [Indexed: 12/16/2022]
Abstract
Oligoamide molecular strands with hydrogen-bonding sequences DADDAD and guanidine (O-1) or 1,5,9-triazacyclododecane ([12]aneN3 ; O-2) side chains and oligoamides with hydrogen-bonding sequences ADAADA and octyl moieties (O-3), were synthesized. Two duplexes (D-1 and D-2) were prepared by conjugating the hydrophilic O-1 or O-2 and hydrophobic O-3 through sequence-specific hydrogen-bond association and cross-linked disulfide bonds. Electrophoresis measurements indicated that O-1, O-2, D-1, and D-2 were able to completely retard the DNA mobiliy at concentrations of 30, 30, 10, and 20 μM, respectively. Reversible DNA release in O-1 and O-2 complexes can be achieved in the presence of heparin sodium, whereas the presence of GSH greatly improved DNA release in D-1 and D-2 complexes. The particles formed were in a size range of 50-170 nm with positively charged surfaces. D-1 and D-2 transfected pEGFP-N1 into HeLa cells successfully.
Collapse
Affiliation(s)
- Yong-Qiang Li
- College of Chemistry, Bejjing Normal University, Xinjiekouwai Street 19, Beijing, China.,State Key laboratory of bioactive substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xiannongtan Street 1, Beijing, China
| | - Wan Sun
- College of Chemistry, Bejjing Normal University, Xinjiekouwai Street 19, Beijing, China
| | - Xu-Ying Liu
- College of Chemistry, Bejjing Normal University, Xinjiekouwai Street 19, Beijing, China
| | - Li-Qing Chen
- State Key laboratory of bioactive substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xiannongtan Street 1, Beijing, China
| | - Wei Huang
- State Key laboratory of bioactive substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xiannongtan Street 1, Beijing, China
| | - Zhong-Lin Lu
- College of Chemistry, Bejjing Normal University, Xinjiekouwai Street 19, Beijing, China
| | - Lan He
- National Institute for Food and Drug Control, Institute of Chemical Drug Control, TianTan XiLi 2, Beijing, 100050, China
| |
Collapse
|
17
|
Javanbakht S, Saboury A, Shaabani A, Mohammadi R, Ghorbani M. Doxorubicin Imprinted Photoluminescent Polymer as a pH-Responsive Nanocarrier. ACS APPLIED BIO MATERIALS 2020; 3:4168-4178. [DOI: 10.1021/acsabm.0c00254] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O.
Box 19396-4716, Tehran 55555, Iran
| | - Ayda Saboury
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O.
Box 19396-4716, Tehran 55555, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666, Iran
| | - Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666, Iran
| |
Collapse
|
18
|
Kalva N, Uthaman S, Augustine R, Jeon SH, Huh KM, Park IK, Kim I. Photo- and pH-Responsive Polycarbonate Block Copolymer Prodrug Nanomicelles for Controlled Release of Doxorubicin. Macromol Biosci 2020; 20:e2000118. [PMID: 32567108 DOI: 10.1002/mabi.202000118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Photo/pH dual-responsive amphiphilic diblock copolymers with alkyne functionalized pendant o-nitrobenzyl ester group are synthesized using poly(ethylene glycol) as a macroinitiator. The pendant alkynes are functionalized as aldehyde groups by the azide-alkyne Huisgen cycloaddition. The anticancer drug doxorubicin (DOX) molecules are then covalently conjugated through acid-sensitive Schiff-base linkage. The resultant prodrug copolymers self-assemble into nanomicelles in aqueous solution. The prodrug nanomicelles have a well-defined morphology with an average size of 20-40 nm. The dual-stimuli are applied individually or simultaneously to study the release behavior of DOX. Under UV light irradiation, nanomicelles are disassembled due to the ONB ester photocleavage. The light-controlled DOX release behavior is demonstrated using fluorescence spectroscopy. Due to the pH-sensitive imine linkage the DOX molecules are released rapidly from the nanomicelles at the acidic pH of 5.0, whereas only minimal amount of DOX molecules is released at the pH of 7.4. The DOX release rate is tunable by applying the dual-stimuli simultaneously. In vitro studies against colon cancer cells demonstrate that the nanomicelles show the efficient cellular uptake and the intracellular DOX release, indicating that the newly designed copolymers with dual-stimuli-response have significant potential applications as a smart nanomedicine against cancer.
Collapse
Affiliation(s)
- Nagendra Kalva
- BK21 PLUS Centre for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Rimesh Augustine
- BK21 PLUS Centre for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Su Hyeon Jeon
- BK21 PLUS Centre for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Science, BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Il Kim
- BK21 PLUS Centre for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
19
|
Gao M, Yang Y, Bergfel A, Huang L, Zheng L, Bowden TM. Self-assembly of cholesterol end-capped polymer micelles for controlled drug delivery. J Nanobiotechnology 2020; 18:13. [PMID: 31941501 PMCID: PMC6964014 DOI: 10.1186/s12951-020-0575-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/07/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND During the past few decades, drug delivery system (DDS) has attracted many interests because it could enhance the therapeutic effects of drugs and reduce their side effects. The advent of nanotechnology has promoted the development of nanosized DDSs, which could promote drug cellular uptake as well as prolong the half-life in blood circulation. Novel polymer micelles formed by self-assembly of amphiphilic polymers in aqueous solution have emerged as meaningful nanosystems for controlled drug release due to the reversible destabilization of hydrophobic domains under different conditions. RESULTS The amphiphilic polymers presented here were composed of cholesterol groups end capped and poly (poly (ethylene glycol) methyl ether methacrylate) (poly (OEGMA)) as tailed segments by the synthesis of cholesterol-based initiator, followed by atom transfer radical polymerization (ATRP) with OEGMA monomer. FT-IR and NMR confirmed the successfully synthesis of products including initiator and polymers as well as the Mw of the polymers were from 33,233 to 89,088 g/mol and their corresponding PDI were from 1.25 to 1.55 by GPC. The average diameter of assembled polymer micelles was in hundreds nanometers demonstrated by DLS, AFM and SEM. The behavior of the amphiphilic polymers as micelles was investigated using pyrene probing to explore their critical micelle concentration (CMC) ranging from 2.53 × 10-4 to 4.33 × 10-4 mg/ml, decided by the balance between cholesterol and poly (OEGMA). Besides, the CMC of amphiphilic polymers, the quercetin (QC) feeding ratio and polarity of solvents determined the QC loading ratio maximized reaching 29.2% certified by UV spectrum, together with the corresponding size and stability changes by DLS and Zeta potential, and thermodynamic changes by TGA and DSC. More significantly, cholesterol end-capped polymer micelles were used as nanosized systems for controlled drug release, not only alleviated the cytotoxicity of QC from 8.6 to 49.9% live cells and also achieved the QC release in control under different conditions, such as the presence of cyclodextrin (CD) and change of pH in aqueous solution. CONCLUSIONS The results observed in this study offered a strong foundation for the design of favorable polymer micelles as nanosized systems for controlled drug release, and the molecular weight adjustable amphiphilic polymer micelles held potential for use as controlled drug release system in practical application.
Collapse
Affiliation(s)
- Ming Gao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Yifeng Yang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Andreas Bergfel
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Lanli Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Tim Melander Bowden
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden.
| |
Collapse
|
20
|
Yang H, Miao Y, Chen L, Li Z, Yang R, Xu X, Liu Z, Zhang LM, Jiang X. Redox-responsive nanoparticles from disulfide bond-linked poly-(N-ε-carbobenzyloxy-l-lysine)-grafted hyaluronan copolymers as theranostic nanoparticles for tumor-targeted MRI and chemotherapy. Int J Biol Macromol 2020; 148:483-492. [PMID: 31926232 DOI: 10.1016/j.ijbiomac.2020.01.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/03/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Redox-responsive theranostic nanoparticles based on poly-(N-ε-carbobenzyloxy-l-lysine) (PZLL) grafted hyaluronan (HA) (HA-g-SS-PZLL) copolymers were constructed for hepatocellular carcinoma diagnosis and therapy. These hyaluronan derivatives formed nanoparticles via a self-assembly process in aqueous solution at low concentration. Theranostic nanoparticles were obtained after loading hydrophobic doxorubicin (DOX) and superparamagnetic iron oxide (SPIO) into the core of the nanoparticles via a dialysis method. Theranostic nanoparticles exhibited redox triggered DOX release behavior, and faster DOX released from theranostic nanoparticles was detected under a reducing environment compared with slow DOX release under a normal physiological environment. Confocal laser scanning microscopy (CLSM), flow cytometry and Prussian blue staining against HepG2 cells demonstrated that HA-g-SS-PZLL theranostic nanoparticles were capable of delivering DOX and SPIO into the cells. The analysis of the anticancer effect revealed that the HA-g-SS-PZLL theranostic nanoparticles shown higher cytotoxicity against HepG2 cells than DOX-loaded HA-g-PZLL nanoparticles. In vitro T2 magnetic resonance imaging (MRI) results exhibited that theranostic nanoparticles showed a good contrast enhancement effect, and the r2 relaxivity value was approximately 231 Fe mM-1 s-1. Finally, the theranostic nanoparticles acted as nanoprobes for HepG2 tumor-bearing BALB/c mice for in vivo MRI. Therefore, HA-g-SS-PZLL copolymers have great potential as theranostic nanoparticles for tumor-targeted diagnosis and treatment.
Collapse
Affiliation(s)
- Huikang Yang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yingling Miao
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Lipeng Chen
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Zhuoran Li
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Ruimeng Yang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Xiangdong Xu
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Zhaosong Liu
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Li-Ming Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xinqing Jiang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
21
|
Hu J, Xu Y, Zhang Y. Amphiphilic random polycarbonate self-assemble into GSH/pH dual responsive micelle-like aggregates in water. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Deng Z, Hu J, Liu S. Disulfide-Based Self-Immolative Linkers and Functional Bioconjugates for Biological Applications. Macromol Rapid Commun 2019; 41:e1900531. [PMID: 31755619 DOI: 10.1002/marc.201900531] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/05/2019] [Indexed: 12/12/2022]
Abstract
It is of vital importance to reversibly mask and selectively activate bioactive agents for advanced therapeutic and diagnostic purposes, aiming to efficiently suppress background interferences and attenuate systemic toxicity. This strategy has been involved in diverse applications spanning from chemical/biological sensors and diagnostics to drug delivery nanocarriers. Among these, redox-responsive disulfide linkages have been extensively utilized by taking advantage of extracellular and intracellular glutathione (GSH) gradients. However, direct conjugation of cleavable triggers to bioactive agents through disulfide bonds suffers from bulky steric hindrance and limited choice of trigger-drug combinations. Fortunately, the emergence of disulfide self-immolative linkers (DSILs) provides a general and robust strategy to not only mask various bioactive agents through the formation of dynamic disulfide linkages but also make it possible to be selectively activated upon disulfide cleavage in the reductive cytoplasmic milieu. In this review, recent developments in DSILs are focused with special attention on emerging chemical design strategies and functional applications in the biomedical field.
Collapse
Affiliation(s)
- Zhengyu Deng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
| |
Collapse
|
23
|
Abstract
Introduction: Prodrugs have been used to improve the selectivity and efficacy of cancer therapy by targeting unique abnormal markers that are overexpressed by cancer cells and are absent in normal tissues. In this context, different strategies have been exploited and new ones are being developed each year. Areas covered: In this review, an integrated view of the potential use of prodrugs in targeted cancer therapy is provided. Passive and active strategies are discussed in light of the advantages of each one and some successful examples are provided, as well as the clinical status of several prodrugs. Among them, antibody-drug conjugates (ADCs) are the most commonly used. However, several drawbacks, including limited prodrug uptake, poor pharmacokinetics, immunogenicity problems, difficulties in selective targeting and gene expression, and optimized bystander effects limit their clinical applications. Expert opinion: Despite the efforts of different companies and research groups, several drawbacks, such as the lack of relevant in vivo models, complexity of the human metabolism, and economic limitations, have hampered the development of new prodrugs for targeted cancer therapy. As a result, we believe that the combination of prodrugs with cancer nanotechnology and other newly developed approaches, such as aptamer-conjugated nanomaterials, are efficient strategies.
Collapse
Affiliation(s)
- Carla Souza
- a Center of Nanotechnology and Tissue Engineering, Department of Chemistry , School of Philosophy, Sciences and Letters of Ribeirão Preto- USP , Ribeirão Preto , Brazil
| | - Diogo Silva Pellosi
- b Department of Chemistry, Laboratory of Hybrid Materials , Federal University of São Paulo - UNIFESP , Diadema , Brazil
| | - Antonio Claudio Tedesco
- a Center of Nanotechnology and Tissue Engineering, Department of Chemistry , School of Philosophy, Sciences and Letters of Ribeirão Preto- USP , Ribeirão Preto , Brazil
| |
Collapse
|
24
|
Pluronic F127-based micelles for tumor-targeted bufalin delivery. Int J Pharm 2019; 559:289-298. [PMID: 30707933 DOI: 10.1016/j.ijpharm.2019.01.049] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/17/2018] [Accepted: 01/19/2019] [Indexed: 12/15/2022]
|
25
|
Zhang Y, Xu Y, Wei C, Sun C, Yan B, Hu J, Lu W. One-shot synthesis and solution properties of ROS/pH responsive methoxy poly(ethylene glycol)-b-polycarbonate. Polym Chem 2019. [DOI: 10.1039/c9py00060g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A one-shot method was employed to synthesize ROS/pH responsive methoxy poly(ethylene glycol)-b-polycarbonate (mPEG-b-poly(MN-co-MSe)) with the selenide and tertiary amine groups situated on the backbone.
Collapse
Affiliation(s)
- Yan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology. Shanghai
- P. R. China
| | - Yue Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology. Shanghai
- P. R. China
| | - Chao Wei
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology. Shanghai
- P. R. China
| | - Chuanhao Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology. Shanghai
- P. R. China
| | - Bingkun Yan
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology. Shanghai
- P. R. China
| | - Jieni Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology. Shanghai
- P. R. China
| | - Wei Lu
- Department of Pharmaceutics
- School of Pharmacy
- Key Laboratory of Smart Drug Delivery
- Ministry of Education
- State Key Laboratory of Molecular Engineering of Polymers
| |
Collapse
|
26
|
Wang L, Zhu K, Cao W, Sun C, Lu C, Xu H. ROS-triggered degradation of selenide-containing polymers based on selenoxide elimination. Polym Chem 2019. [DOI: 10.1039/c9py00171a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A degradable ROS responsive selenide-containing block polymer would undergo an oxidation-related elimination and degradation process.
Collapse
Affiliation(s)
- Lu Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Kuixin Zhu
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Wei Cao
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | - Chenxing Sun
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Chenjie Lu
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
27
|
Oh JK. Disassembly and tumor-targeting drug delivery of reduction-responsive degradable block copolymer nanoassemblies. Polym Chem 2019. [DOI: 10.1039/c8py01808a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Review on recent strategies to synthesize novel disulfide-containing reductively-degradable block copolymers and their nanoassemblies as being classified with the number, position, and location of the disulfide linkages toward effective tumor-targeting intracellular drug delivery exhibiting enhanced release of encapsulated drugs.
Collapse
Affiliation(s)
- Jung Kwon Oh
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| |
Collapse
|
28
|
Pradeepkumar P, Rajendran NK, Alarfaj AA, Munusamy MA, Rajan M. Deep Eutectic Solvent-Mediated FA-g-β-Alanine-co-PCL Drug Carrier for Sustainable and Site-Specific Drug Delivery. ACS APPLIED BIO MATERIALS 2018; 1:2094-2109. [DOI: 10.1021/acsabm.8b00554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Periyakaruppan Pradeepkumar
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu,India
| | - Naresh Kumar Rajendran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Abdullah A. Alarfaj
- Department of Botany and Microbiology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Murugan A. Munusamy
- Department of Botany and Microbiology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu,India
| |
Collapse
|
29
|
Huang S, Wei X, Wang M. Self-Assembled Nanostructures of Red Fluorescent Amphiphilic Block Copolymers as Both Imaging Probes and Drug Carriers. Polymers (Basel) 2018; 10:E1120. [PMID: 30961045 PMCID: PMC6403604 DOI: 10.3390/polym10101120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/22/2018] [Accepted: 09/29/2018] [Indexed: 01/15/2023] Open
Abstract
We report a red-fluorescent drug delivery system formed by biodegradable and biocompatible amphiphilic A-B-A block copolymers. Each polymer consists of a red fluorescent dye covalently bonded in the middle of hydrophobic block (B) of polylactone, tethered at both ends with poly[(oligo ethylene glycol) methyl ether methacrylate] (POEGMA) as the hydrophilic block. Two types of polylactones, i.e., semicrystalline poly(ε-caprolactone) (PCL) and amorphous poly(δ-decalactone) (PDL), respectively, were incorporated as the hydrophobic segment in the block copolymers. Using transmission electron microscopy, we characterized the self-assembled nanostructures formed by these amphiphilic block copolymers in mixtures of water/tetrahydrofuran or water/dimethylformamide. All of these polymers remained highly fluorescent in water, although some extent of aggregation-induced fluorescence quenching was still observed. Among the three types of polymers presented here, the polymer (RPO-3) containing an amorphous block of PDL showed the highest drug-loading capacity and the largest extent of drug release in acidic media. RPO-3 micelles loaded with doxorubicin as a model of anticancer drug showed sustainable intracellular release and cytotoxicity against HeLa cells.
Collapse
Affiliation(s)
- Shuo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Xin Wei
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Mingfeng Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| |
Collapse
|
30
|
Jazani A, Arezi N, Maruya-Li K, Jung S, Oh JK. Facile Strategies to Synthesize Dual Location Dual Acidic pH/Reduction-Responsive Degradable Block Copolymers Bearing Acetal/Disulfide Block Junctions and Disulfide Pendants. ACS OMEGA 2018; 3:8980-8991. [PMID: 31459031 PMCID: PMC6644509 DOI: 10.1021/acsomega.8b01310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/27/2018] [Indexed: 06/01/2023]
Abstract
We report new dual acidic pH/reduction-responsive degradable amphiphilic block copolymers featured with dual acidic pH-labile acetal linkage and a reductively-cleavable disulfide bond at the hydrophilic/hydrophobic block junction as well as pendant disulfide bonds in the hydrophobic block. Centered on the use of a macroinitiator approach, three strategies utilize the combination of atom transfer radical polymerization and reversible addition fragmentation chain transfer polymerization in a sequential or concurrent mechanism, along with facile coupling reactions. Combined structural analysis with dual-stimuli-responsive degradation investigation allows better understanding of the architectures and orthogonalities of the formed block copolymers as a diblock or a triblock copolymer. Our study presents the development of effective synthetic strategies to well-defined multifunctional amphiphilic block copolymers that exhibit dual-stimuli-responsive degradation at dual location (called the DL-DSRD strategy), thus potentially promising as nanoassemblies for effective drug delivery.
Collapse
Affiliation(s)
- Arman
Moini Jazani
- Department of Chemistry and
Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, Canada H4B 1R6
| | - Newsha Arezi
- Department of Chemistry and
Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, Canada H4B 1R6
| | - Keaton Maruya-Li
- Department of Chemistry and
Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, Canada H4B 1R6
| | - Sungmin Jung
- Department of Chemistry and
Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, Canada H4B 1R6
| | - Jung Kwon Oh
- Department of Chemistry and
Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
31
|
Rao NV, Ko H, Lee J, Park JH. Recent Progress and Advances in Stimuli-Responsive Polymers for Cancer Therapy. Front Bioeng Biotechnol 2018; 6:110. [PMID: 30159310 PMCID: PMC6104418 DOI: 10.3389/fbioe.2018.00110] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
The conventional chemotherapeutic agents, used for cancer chemotherapy, have major limitations including non-specificity, ubiquitous biodistribution, low concentration in tumor tissue, and systemic toxicity. In recent years, owing to their unique features, polymeric nanoparticles have been widely used for the target-specific delivery of drugs in the body. Although polymeric nanoparticles have addressed a number of important issues, the bioavailability of drugs at the disease site, and especially upon cellular internalization, remains a challenge. A polymer nanocarrier system with a stimuli-responsive property (e.g., pH, temperature, or redox potential), for example, would be amenable to address the intracellular delivery barriers by taking advantage of pH, temperature, or redox potentials. With a greater understanding of the difference between normal and pathological tissues, there is a highly promising role of stimuli-responsive nanocarriers for drug delivery in the future. In this review, we highlighted the recent advances in different types of stimuli-responsive polymers for drug delivery.
Collapse
Affiliation(s)
- N. Vijayakameswara Rao
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Hyewon Ko
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Suwon, South Korea
| | - Jeongjin Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Suwon, South Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Suwon, South Korea
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
32
|
Mi FL, Wang LF, Chu PY, Peng SL, Feng CL, Lai YJ, Li JN, Lin YH. Active Tumor-Targeted co-Delivery of Epigallocatechin Gallate and Doxorubicin in Nanoparticles for Combination Gastric Cancer Therapy. ACS Biomater Sci Eng 2018; 4:2847-2859. [DOI: 10.1021/acsbiomaterials.8b00242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fwu-Long Mi
- Department of Biochemistry and Molecular Cell Biology, Graduate Institute of Medical Sciences, Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
| | - Li-Fang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100 Shih-Chuan first Road, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, 100 Tzyou first Road, Kaohsiung 807, Taiwan
| | | | | | - Chun-Lung Feng
- Division of Hepatogastroenterology, Department of Internal Medicine, China Medical University Hospital, 91 Hsueh-Shih Road, Taichung 404, Taiwan
| | | | | | | |
Collapse
|
33
|
Reduction-Triggered Transformation of Disulfide-Containing Micelles at Chemically Tunable Rates. Angew Chem Int Ed Engl 2018; 57:8896-8900. [DOI: 10.1002/anie.201802909] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/15/2018] [Indexed: 11/07/2022]
|
34
|
Deng Z, Yuan S, Xu RX, Liang H, Liu S. Reduction-Triggered Transformation of Disulfide-Containing Micelles at Chemically Tunable Rates. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zhengyu Deng
- CAS Key Laboratory of Soft Matter Chemistry; Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); Department of Polymer Science and Engineering; University of Science and Technology of China; 96 Jinzhai Road Hefei Anhui Province 230026 China
| | - Shuai Yuan
- Department of Precision Machinery and Precision Instrumentation; University of Science and Technology of China; 96 Jinzhai Road Hefei Anhui Province 230026 China
| | - Ronald X. Xu
- Department of Precision Machinery and Precision Instrumentation; University of Science and Technology of China; 96 Jinzhai Road Hefei Anhui Province 230026 China
| | - Haojun Liang
- CAS Key Laboratory of Soft Matter Chemistry; Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); Department of Polymer Science and Engineering; University of Science and Technology of China; 96 Jinzhai Road Hefei Anhui Province 230026 China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry; Hefei National Laboratory for Physical Sciences at the Microscale; i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials); Department of Polymer Science and Engineering; University of Science and Technology of China; 96 Jinzhai Road Hefei Anhui Province 230026 China
| |
Collapse
|
35
|
Ewonkem MB, Grinberg S. Maleimide-acetylcholine headed bolaamphiphilic vesicles made from ricinoleic acid: Prospective active targeted drug delivery systems. Chem Phys Lipids 2018; 212:96-110. [PMID: 29408046 DOI: 10.1016/j.chemphyslip.2018.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/20/2018] [Accepted: 01/21/2018] [Indexed: 11/27/2022]
Abstract
Based on ricinoleic acid, two asymmetric bolaamphiphiles with unsymmetrical hydrophobic skeletons and two different hydrophilic head groups were designed and synthesized. The first bola compound had acetylcholine (ACh) and maleimide (MAL) head groups while the second was derived from the first bolaamphiphile by thiol-ene conjugation of its maleimide moiety with l-glutathione and possessed ACh and l-glutathione-MAL head groups. Both synthetic bolaamphiphiles were characterized by common spectroscopic methods. The asymmetric bola compound with ACh and MAL head groups was investigated for its ability to self-aggregate into nanoparticles and showed to form in aqueous media nano-sized vesicles that were stable, positively charged and had symmetrical monolayer membrane with antiparallel packing. These vesicles prepared with or without membrane stabilizers such as cholesterol (CHOL) and cholesteryl hemisuccinate (CHEMS) were able to encapsulate carboxyfluorescein (CF), a water soluble and self-quenching marker and particularly those without additives were more CF encapsulating. The synthesis of bolaamphiphile with ACh-l-glutathione-MAL head groups gives evidence that the bola with ACh and MAL head groups can be utilized as a precursor of a plethora of asymmetric bolas.
Collapse
Affiliation(s)
- Monique B Ewonkem
- Department of Chemistry, Ben-Gurion University, Be'er Sheva 84105, Israel; Department of Chemistry, University of Douala, PO Box 2701, Douala, Cameroon.
| | - Sarina Grinberg
- Department of Chemistry, Ben-Gurion University, Be'er Sheva 84105, Israel
| |
Collapse
|
36
|
Bai S, Gao YE, Ma X, Shi X, Hou M, Xue P, Kang Y, Xu Z. Reduction stimuli-responsive unimolecular polymeric prodrug based on amphiphilic dextran-framework for antitumor drug delivery. Carbohydr Polym 2018; 182:235-244. [DOI: 10.1016/j.carbpol.2017.11.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 11/29/2022]
|
37
|
Pradeepkumar P, Elgorban AM, Bahkali AH, Rajan M. Natural solvent-assisted synthesis of amphiphilic co-polymeric nanomicelles for prolonged release of camptothecin delivery. NEW J CHEM 2018. [DOI: 10.1039/c8nj00901e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Biomaterials developed using sustainable methods and non-toxic solvents have been effectively applied as eco-friendly, sustainable reaction medium and catalysts for biological applications.
Collapse
Affiliation(s)
- Periyakaruppan Pradeepkumar
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai
| | | | - Ali Hassan Bahkali
- Department of Botany and Microbiology
- King Saud University
- Riyadh
- Saudi Arabia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai
| |
Collapse
|
38
|
Wei C, Zhang Y, Yan B, Du Z, Lang M. A Versatile Strategy to Main Chain Sulfur/Selenium-Functionalized Polycarbonates by Macro-Ring Closure of Diols and Subsequent Ring-Opening Polymerization. Chemistry 2017; 24:789-792. [DOI: 10.1002/chem.201704301] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Chao Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Yan Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Bingkun Yan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Zhengzhen Du
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Meidong Lang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
39
|
Shi X, Hou M, Bai S, Ma X, Gao YE, Xiao B, Xue P, Kang Y, Xu Z, Li CM. Acid-Activatable Theranostic Unimolecular Micelles Composed of Amphiphilic Star-like Polymeric Prodrug with High Drug Loading for Enhanced Cancer Therapy. Mol Pharm 2017; 14:4032-4041. [PMID: 28980818 DOI: 10.1021/acs.molpharmaceut.7b00704] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stimuli-responsive nanomedicine with theranostic functionalities with reduced side-effects has attracted growing attention, although there are some major obstacles to overcome before clinical applications. Herein, we present an acid-activatable theranostic unimolecular micelles based on amphiphilic star-like polymeric prodrug to systematically address typical existing issues. This smart polymeric prodrug has a preferable size of about 35 nm and strong micellar stability in aqueous solution, which is beneficial to long-term blood circulation and efficient extravasation from tumoral vessels. Remarkably, the polymeric prodrug has a high drug loading rate up to 53.1 wt%, which induces considerably higher cytotoxicity against tumor cells (HeLa cells and MCF-7 cells) than normal cells (HUVEC cells) suggesting a spontaneous tumor-specific targeting capability. Moreover, the polymeric prodrug can serve as a fluorescent nanoprobe activated by the acidic microenvironment in tumor cells, which can be used as a promising platform for tumor diagnosis. The superior antitumor effect in this in vitro study demonstrates the potential of this prodrug as a promising platform for drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Xiaoxiao Shi
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Meili Hou
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Shuang Bai
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Xiaoqian Ma
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Yong-E Gao
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Bo Xiao
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| | - Peng Xue
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Yuejun Kang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Zhigang Xu
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Chang Ming Li
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| |
Collapse
|
40
|
Poupart R, Le Droumaguet B, Guerrouache M, Grande D, Carbonnier B. Gold nanoparticles immobilized on porous monoliths obtained from disulfide-based dimethacrylate: Application to supported catalysis. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.04.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Gao YE, Ma X, Hou M, Bai S, Xue P, Kang Y, Xu Z. Highly cell-penetrating and ultra-pH-responsive nanoplatform for controlled drug release and enhanced tumor therapy. Colloids Surf B Biointerfaces 2017; 159:484-492. [PMID: 28841498 DOI: 10.1016/j.colsurfb.2017.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 01/03/2023]
Abstract
A stimuli-triggered drug release strategy could considerably reduce side effects while improving the bioavailability of chemotherapeutics. Here, we report that a series of ultra-pH-responsive copolymers are highly efficient drug delivery systems for near-infrared (NIR) imaging and controlled drug release. These polymers self-assemble into nano-sized micelles due to their amphipathic structure and deliver hydrophobic drugs (maximum drug loading rate ∼10wt%) into tumor cells via a controlled and pH-triggered modality. By altering the proportion of hydrophilic and hydrophobic chains, the drug loading rate and the in vitro drug release efficiency can be regulated. Moreover, the drug-loaded micelles with optimized compositions exhibited excellent antitumor efficacy in HeLa and MCF-7 cells, while the blank micelles had minimal cytotoxicity. Cellular uptake experiments further indicated that the ultra-pH-responsive micelles could be rapidly internalized in the tumor cells. This study demonstrated the strong potential of the ultra-pH-responsive platform as a universal carrier for the delivery of anticancer drugs to maximize their therapeutic effect.
Collapse
Affiliation(s)
- Yong-E Gao
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, China
| | - Xiaoqian Ma
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, China
| | - Meili Hou
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, China
| | - Shuang Bai
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, China
| | - Peng Xue
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, China
| | - Yuejun Kang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, China.
| | - Zhigang Xu
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, China.
| |
Collapse
|
42
|
Hassan S, Prakash G, Ozturk A, Saghazadeh S, Sohail MF, Seo J, Dockmeci M, Zhang YS, Khademhosseini A. Evolution and Clinical Translation of Drug Delivery Nanomaterials. NANO TODAY 2017; 15:91-106. [PMID: 29225665 PMCID: PMC5720147 DOI: 10.1016/j.nantod.2017.06.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
With the advent of technology, the role of nanomaterials in medicine has grown exponentially in the last few decades. The main advantage of such materials has been exploited in drug delivery applications, due to their effective targeting that in turn reduces systemic toxicity compared to the conventional routes of drug administration. Even though these materials offer broad flexibility based on targeting tissue, disease, and drug payload, the demand for more effective yet highly biocompatible nanomaterial-based drugs is increasing. While therapeutically improved and safe materials have been introduced in nanomedicine platforms, issues related to their degradation rates and bio-distribution still exist, thus making their successful translation for human use very challenging. Researchers are constantly improving upon novel nanomaterials that are safer and more effective not only as therapeutic agents but as diagnostic tools as well, making the research in the field of nanomedicine ever more fascinating. In this review stress has been made on the evolution of nanomaterials that have been approved for clinical applications by the United States Food and Drug Administration Agency (FDA).
Collapse
Affiliation(s)
- Shabir Hassan
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gyan Prakash
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aycabal Ozturk
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Saghi Saghazadeh
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mohammad Farhan Sohail
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jungmok Seo
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Mehmet Dockmeci
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
43
|
Shen H, Xia Y, Qin Z, Wu J, Zhang L, Lu Y, Xia X, Xu W. Photoresponsive biodegradable poly(carbonate)s with pendent o
-nitrobenzyl ester. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Huihui Shen
- Institute of Polymer Science, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Yingchun Xia
- Institute of Polymer Science, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Zhouliang Qin
- Institute of Polymer Science, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Juan Wu
- Institute of Polymer Science, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Li Zhang
- Institute of Polymer Science, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Yanbing Lu
- Institute of Polymer Science, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Xinnian Xia
- Institute of Polymer Science, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Weijian Xu
- Institute of Polymer Science, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| |
Collapse
|
44
|
Study of a controlled release polymeric system based on Pluronic P123: Spectroscopic characterization and theoretical model approach. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
45
|
Liu X, Yang Y, Urban MW. Stimuli-Responsive Polymeric Nanoparticles. Macromol Rapid Commun 2017; 38. [PMID: 28497535 DOI: 10.1002/marc.201700030] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Indexed: 12/17/2022]
Abstract
There is increasing evidence that stimuli-responsive nanomaterials have become significantly critical components of modern materials design and technological developments. Recent advances in synthesis and fabrication of stimuli-responsive polymeric nanoparticles with built-in stimuli-responsive components (Part A) and surface modifications of functional nanoparticles that facilitate responsiveness (Part B) are outlined here. The synthesis and construction of stimuli-responsive spherical, core-shell, concentric, hollow, Janus, gibbous/inverse gibbous, and cocklebur morphologies are discussed in Part A, with the focus on shape, color, or size changes resulting from external stimuli. Although inorganic/metallic nanoparticles exhibit many useful properties, including thermal or electrical conductivity, catalytic activity, or magnetic properties, their assemblies and formation of higher order constructs are often enhanced by surface modifications. Section B focuses on selected surface reactions that lead to responsiveness achieved by decorating nanoparticles with stimuli-responsive polymers. Although grafting-to and grafting-from dominate these synthetic efforts, there are opportunities for developing novel synthetic approaches facilitating controllable recognition, signaling, or sequential responses. Many nanotechnologies utilize a combination of organic and inorganic phases to produce ceramic or metallic nanoparticles. One can envision the development of new properties by combining inorganic (metals, metal oxides) and organic (polymer) phases into one nanoparticle designated as "ceramers" (inorganics) and "metamers" (metallic).
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Ying Yang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Marek W Urban
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
46
|
Facile fabrication of polyurethane microcapsules carriers for tracing cellular internalization and intracellular pH-triggered drug release. Colloids Surf B Biointerfaces 2017; 153:160-167. [DOI: 10.1016/j.colsurfb.2017.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 11/23/2022]
|
47
|
Sun L, Wan J, Schaefer CG, Zhang Z, Tan J, Guo J, Wu L, Wang C. Specific On-site Assembly of Multifunctional Magnetic Nanocargos Based on Highly Efficient and Parallelized Bioconjugation: Toward Personalized Cancer Targeting Therapy. ACS Biomater Sci Eng 2017; 3:381-391. [PMID: 33465935 DOI: 10.1021/acsbiomaterials.6b00773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The rational design of particle-based cancer theranostic agents, combining diagnostic and therapeutic features in a single entity, has emerged as an effective approach toward personalized cancer therapy; however, creating a flexible assembly of specific targeting ligands with regard to a broad range of tumor tissues and cells is still challenging. Here, we present a convenient and highly variable on-site assembly strategy for the preparation of multifunctional doxorubicin (DOX)-loaded nanocargos with magnetic supraparticles (MSPs) as a core and redox-degradable poly(methylacrylic acid-co-N,N-bis(acryloyl) cystamine) (P(MAA-co-Cy) as the shell, which could be simultaneously modified with multiple targeting ligands through parallelized bioconjugation on the basis of a streptavidin-biotin (SA-BT) interaction. Under physiological conditions similar to those of the cytoplasm of tumor cells, DOX could be released in a controlled manner from these nanocargos to specific tumor sites, while dual-ligand modified nanocargos showed remarkable proliferation inhibition for the HeLa cells and the SK-OV-3 cells that overexpressed both folate as well as integrin receptors. The experimental results demonstrated that the on-site assembly strategy described herein opens access to highly efficient targeting drug delivery systems toward personalized cancer targeting therapy by incorporating functional diversity, which can be easily achieved through highly efficient and parallelized one-step bioconjugation.
Collapse
Affiliation(s)
- Luyan Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China
| | - Jiaxun Wan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China
| | - Christian G Schaefer
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China
| | - Zihao Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China
| | - Jing Tan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China
| | - Limin Wu
- Department of Materials Science, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China
| |
Collapse
|
48
|
Bai T, Du J, Chen J, Duan X, Zhuang Q, Chen H, Kong J. Reduction-responsive dithiomaleimide-based polymeric micelles for controlled anti-cancer drug delivery and bioimaging. Polym Chem 2017. [DOI: 10.1039/c7py01675a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biocompatible amphiphilic block copolymers and the CPT model drug were self-assembled into micelles with bright fluorescence and taken up by tumor cells. Then, the disulfide bonds in the micelles were cleaved to release CPT at a high GSH concentration.
Collapse
Affiliation(s)
- Ting Bai
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Junjie Du
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Jianxin Chen
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Xiao Duan
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Qiang Zhuang
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Heng Chen
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Jie Kong
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| |
Collapse
|
49
|
Xu Z, Hou M, Shi X, Gao YE, Xue P, Liu S, Kang Y. Rapidly cell-penetrating and reductive milieu-responsive nanoaggregates assembled from an amphiphilic folate-camptothecin prodrug for enhanced drug delivery and controlled release. Biomater Sci 2017; 5:444-454. [DOI: 10.1039/c6bm00800c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Self-assembled small molecular prodrug loaded with camptothecin in response to glutathione and folate receptors for combined tumour detection and treatment.
Collapse
Affiliation(s)
- Zhigang Xu
- Institute for Clean Energy and Advanced Materials
- Faculty for Materials and Energy
- Southwest University
- Chongqing
- P. R. China
| | - Meili Hou
- Institute for Clean Energy and Advanced Materials
- Faculty for Materials and Energy
- Southwest University
- Chongqing
- P. R. China
| | - Xiaoxiao Shi
- Institute for Clean Energy and Advanced Materials
- Faculty for Materials and Energy
- Southwest University
- Chongqing
- P. R. China
| | - Yong-E. Gao
- Institute for Clean Energy and Advanced Materials
- Faculty for Materials and Energy
- Southwest University
- Chongqing
- P. R. China
| | - Peng Xue
- Institute for Clean Energy and Advanced Materials
- Faculty for Materials and Energy
- Southwest University
- Chongqing
- P. R. China
| | - Shiying Liu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Yuejun Kang
- Institute for Clean Energy and Advanced Materials
- Faculty for Materials and Energy
- Southwest University
- Chongqing
- P. R. China
| |
Collapse
|
50
|
Quinn JF, Whittaker MR, Davis TP. Glutathione responsive polymers and their application in drug delivery systems. Polym Chem 2017. [DOI: 10.1039/c6py01365a] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Materials which respond to biological cues are the subject of intense research interest due to their possible application in smart drug delivery vehicles.
Collapse
Affiliation(s)
- John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| |
Collapse
|