1
|
Gasson SB, Dobson LK, Pfau-Cloud MR, Beltran FO, Gregory CA, Grunlan MA, Saunders WB. Shape Memory Polymer Scaffolds-Utility for In Vitro Osteogenesis of Canine Multipotent Stromal Cells. J Biomed Mater Res B Appl Biomater 2024; 112:e35503. [PMID: 39587932 DOI: 10.1002/jbm.b.35503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
A biodegradable, shape memory polymer (SMP) scaffold based on poly(ε-caprolactone) (PCL) represents an attractive alternative therapy for the repair of critically sized bone defects given its ability to press-fit within irregular defects. Clinical translation of SMP scaffolds requires successful movement beyond proof-of-concept rodent studies through a relevant large-animal model and into the clinical setting. In addition to representing a clinical veterinary population, the canine species is a strong translational model for humans due to similarities in orthopedic disorders, biomechanics, and bone healing. The present study was performed to assess in vitro cytocompatibility and osteogenic differentiation of canine multipotent stromal cells (cMSCs) cultured on SMP scaffolds in preparation for future canine in vivo studies. Two different SMP scaffold compositions were utilized: a "PCL-only" scaffold prepared from PCL-diacrylate (PCL-DA) and a semi-interpenetrating network (semi-IPN) formed from PCL-DA and poly(L-lactic acid) (PCL:PLLA). The PCL:PLLA scaffolds degrade faster and are more mechanically rigid versus the PCL scaffolds. Canine bone marrow-derived MSCs (cMSCs) were evaluated in terms of attachment, proliferation, and osteogenic differentiation. cMSCs exhibited excellent cytocompatibility, attachment, and proliferation on both SMP scaffold compositions. PCL scaffolds were more conducive to both early- and late-stage in vitro osteogenesis of cMSCs versus PCL:PLLA scaffolds. However, cMSCs deposited mineralized extracellular matrix over 21 days when cultured on both SMP scaffold compositions. These results demonstrate that the SMP scaffolds are suitable for in vitro cMSC attachment, proliferation, and osteogenic differentiation, representing a significant step toward canine in vivo studies and potential translation to human patients.
Collapse
Affiliation(s)
- Shelby B Gasson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lauren K Dobson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Michaela R Pfau-Cloud
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Felipe O Beltran
- Department of Materials Science & Engineering, College of Engineering, College Station, Texas, USA
| | - Carl A Gregory
- Department of Molecular & Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
- Department of Materials Science & Engineering, College of Engineering, College Station, Texas, USA
- Department of Chemistry, College of Engineering, College Station, Texas, USA
| | - W Brian Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
The Current Status, Prospects, and Challenges of Shape Memory Polymers Application in Bone Tissue Engineering. Polymers (Basel) 2023; 15:polym15030556. [PMID: 36771857 PMCID: PMC9920657 DOI: 10.3390/polym15030556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/28/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Bone defects can occur after severe trauma, infection, or bone tumor resection surgery, which requires grafting to repair the defect when it reaches a critical size, as the bone's self-healing ability is insufficient to complete the bone repair. Natural bone grafts or artificial bone grafts, such as bioceramics, are currently used in bone tissue engineering, but the low availability of bone and high cost limit these treatments. Therefore, shape memory polymers (SMPs), which combine biocompatibility, biodegradability, mechanical properties, shape tunability, ease of access, and minimally invasive implantation, have received attention in bone tissue engineering in recent years. Here, we reviewed the various excellent properties of SMPs and their contribution to bone formation in experiments at the cellular and animal levels, respectively, especially for the repair of defects in craniomaxillofacial (CMF) and limb bones, to provide new ideas for the application of these new SMPs in bone tissue engineering.
Collapse
|
3
|
Four-Dimensional Printing and Shape Memory Materials in Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24010814. [PMID: 36614258 PMCID: PMC9821376 DOI: 10.3390/ijms24010814] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
The repair of severe bone defects is still a formidable clinical challenge, requiring the implantation of bone grafts or bone substitute materials. The development of three-dimensional (3D) bioprinting has received considerable attention in bone tissue engineering over the past decade. However, 3D printing has a limitation. It only takes into account the original form of the printed scaffold, which is inanimate and static, and is not suitable for dynamic organisms. With the emergence of stimuli-responsive materials, four-dimensional (4D) printing has become the next-generation solution for biological tissue engineering. It combines the concept of time with three-dimensional printing. Over time, 4D-printed scaffolds change their appearance or function in response to environmental stimuli (physical, chemical, and biological). In conclusion, 4D printing is the change of the fourth dimension (time) in 3D printing, which provides unprecedented potential for bone tissue repair. In this review, we will discuss the latest research on shape memory materials and 4D printing in bone tissue repair.
Collapse
|
4
|
Stukel Shah JM, Lundquist B, Macaitis J, Pfau-Cloud MR, Beltran FO, Grunlan MA, Lien W, Wang HC, Burdette AJ. Comparative evaluation of mesenchymal stromal cell growth and osteogenic differentiation on a shape memory polymer scaffold. J Biomed Mater Res B Appl Biomater 2022; 110:2063-2074. [PMID: 35344262 DOI: 10.1002/jbm.b.35061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 11/06/2022]
Abstract
Trauma-induced, critical-size bone defects pose a clinical challenge to heal. Albeit autografts are the standard-of-care, they are limited by their inability to be shaped to various defect geometries and often incur donor site complications. Herein, the combination of a "self-fitting" shape memory polymer (SMP) scaffold and seeded mesenchymal stromal cells (MSCs) was investigated as an alternative. The porous SMP scaffold, prepared from poly(ε-caprolactone) diacrylate (PCL-DA) and coated with polydopamine, provided conformal shaping and cell adhesion. MSCs from five tissues, amniotic (AMSCs), chorionic tissue (CHSCs), umbilical cord (UCSCs), adipose (ADSCs), and bone marrow (BMSCs) were evaluated for viability, density, and osteogenic differentiation on the SMP scaffold. BMSCs exhibited the fastest increase in cell density by day 3, but after day 10, CHSCs, UCSCs, and ADSCs approached similar cell density. BMSCs also showed the greatest calcification among the cell types, followed closely by ADSCs, CHSCs and AMSCs. Alkaline phosphatase (ALP) activity peaked at day 7 for AMSCs, UCSCs, ADSCs and BMSCs, and at day 14 for CHSCs, which had the greatest overall ALP activity. Of all the cell types, only scaffolds cultured with ADSCs in osteogenic media had increased hardness and local modulus as compared to blank scaffolds after 21 days of cell culture and osteogenic differentiation. Overall, ADSCs performed most favorably on the SMP scaffold. The SMP scaffold was able to support key cellular behaviors of MSCs and could potentially be a viable, regenerative alternative to autograft.
Collapse
Affiliation(s)
- Jessica M Stukel Shah
- Directorate of Combat Casualty Care & Operational Medicine, Naval Medical Research Unit San Antonio, San Antonio, Texas, USA
| | - Bridney Lundquist
- Directorate of Combat Casualty Care & Operational Medicine, Naval Medical Research Unit San Antonio, San Antonio, Texas, USA
| | - Joseph Macaitis
- Directorate of Combat Casualty Care & Operational Medicine, Naval Medical Research Unit San Antonio, San Antonio, Texas, USA
| | - Michaela R Pfau-Cloud
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Felipe O Beltran
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA.,Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Wen Lien
- USAF Dental Research & Consultation Service, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | - Heuy-Ching Wang
- Directorate of Combat Casualty Care & Operational Medicine, Naval Medical Research Unit San Antonio, San Antonio, Texas, USA
| | - Alexander J Burdette
- Directorate of Combat Casualty Care & Operational Medicine, Naval Medical Research Unit San Antonio, San Antonio, Texas, USA
| |
Collapse
|
5
|
Pfau MR, Beltran FO, Woodard LN, Dobson LK, Gasson SB, Robbins AB, Lawson ZT, Brian Saunders W, Moreno MR, Grunlan MA. Evaluation of a self-fitting, shape memory polymer scaffold in a rabbit calvarial defect model. Acta Biomater 2021; 136:233-242. [PMID: 34571270 PMCID: PMC8742656 DOI: 10.1016/j.actbio.2021.09.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
Self-fitting scaffolds prepared from biodegradable poly(ε-caprolactone)-diacrylate (PCL-DA) have been developed for the treatment of craniomaxillofacial (CMF) bone defects. As a thermoresponsive shape memory polymer (SMP), with the mere exposure to warm saline, these porous scaffolds achieve a conformal fit in defects. This behavior was expected to be advantageous to osseointegration and thus bone healing. Herein, for an initial assessment of their regenerative potential, a pilot in vivo study was performed using a rabbit calvarial defect model. Exogenous growth factors and cells were excluded from the scaffolds. Key scaffold material properties were confirmed to be maintained following gamma sterilization. To assess scaffold integration and neotissue infiltration along the defect perimeter, non-critically sized (d = 8 mm) bilateral calvarial defects were created in 12 New Zealand white rabbits. Bone formation was assessed at 4 and 16 weeks using histological analysis and micro-CT, comparing defects treated with an SMP scaffold (d = 9 mm x t = 1 or 2 mm) to untreated defects (i.e. defects able to heal without intervention). To further assess osseointegration, push-out tests were performed at 16 weeks and compared to defects treated with poly(ether ether ketone) (PEEK) discs (d = 8.5 mm x t = 2 mm). The results of this study confirmed that the SMP scaffolds were biocompatible and highly conducive to bone formation and ingrowth at the perimeter. Ultimately, this resulted in similar bone volume and surface area versus untreated defects and superior performance in push-out testing versus defects treated with PEEK discs. STATEMENT OF SIGNIFICANCE: Current treatments of craniomaxillofacial (CMF) bone defects include biologic and synthetic grafts but they are limited in their ability to form good contact with adjacent tissue. A regenerative engineering approach using a biologic-free scaffold able to achieve conformal fitting represents a potential "off-the-shelf" surgical product to heal CMF bone defects. Having not yet been evaluated in vivo, this study provided the preliminary assessment of the bone healing potential of self-fitting PCL scaffolds using a rabbit calvarial defect model. The study was designed to assess scaffold biocompatibility as well as bone formation and ingrowth using histology, micro-CT, and biomechanical push-out tests. The favorable results provide a basis to pursue establishing self-fitting scaffolds as a treatment option for CMF defects.
Collapse
Affiliation(s)
- Michaela R Pfau
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, US
| | - Felipe O Beltran
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, US
| | - Lindsay N Woodard
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, US
| | - Lauren K Dobson
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas 77843, US
| | - Shelby B Gasson
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas 77843, US
| | - Andrew B Robbins
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, US
| | - Zachary T Lawson
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, US
| | - W Brian Saunders
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas 77843, US
| | - Michael R Moreno
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, US; Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, US
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, US; Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, US; Department of Chemistry, Texas A&M University, College Station, Texas 77843, US.
| |
Collapse
|
6
|
Arabiyat AS, Pfau MR, Grunlan MA, Hahn MS. Intrinsic osteoinductivity of PCL-DA/PLLA semi-IPN shape memory polymer scaffolds. J Biomed Mater Res A 2021; 109:2334-2345. [PMID: 33988292 PMCID: PMC8736335 DOI: 10.1002/jbm.a.37216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/22/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023]
Abstract
Engineering osteoinductive, self-fitting scaffolds offers a potential treatment modality to repair irregularly shaped craniomaxillofacial bone defects. Recently, we innovated on osteoinductive poly(ε-caprolactone)-diacrylate (PCL-DA) shape memory polymers (SMPs) to incorporate poly-L-lactic acid (PLLA) into the PCL-DA network, forming a semi-interpenetrating network (semi-IPN). Scaffolds formed from these PCL-DA/PLLA semi-IPNs display stiffnesses within the range of trabecular bone and accelerated degradation relative to scaffolds formed from slowly degrading PCL-DA SMPs. Herein, we demonstrate for the first time that PCL-DA/PLLA semi-IPN SMP scaffolds show increased intrinsic osteoinductivity relative to PCL-DA. We also confirm that application of a bioinspired polydopamine (PD) coating further improves the osteoinductive capacity of these PCL-DA/PLLA semi-IPN SMPs. In the absence of osteogenic supplements, protein level assessment of human mesenchymal stem cells (h-MSCs) cultured in PCL-DA/PLLA scaffolds revealed an increase in expression of osteogenic markers osterix, bone morphogenetic protein-4 (BMP-4), and collagen 1 alpha 1 (COL1A1), relative to PCL-DA scaffolds and osteogenic medium controls. Likewise, the expression of runt-related transcription factor 2 (RUNX2) and BMP-4 was elevated in the presence of PD-coating. In contrast, the chondrogenic and adipogenic responses associated with the scaffolds matched or were reduced relative to osteogenic medium controls, indicating that the scaffolds display intrinsic osteoinductivity.
Collapse
Affiliation(s)
- Ahmad S. Arabiyat
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute (RPI), Troy, New York
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, New York
| | - Michaela R. Pfau
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Melissa A. Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas
- Department of Chemistry, Texas A&M University, College Station, Texas
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute (RPI), Troy, New York
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, New York
| |
Collapse
|
7
|
Polydopamine-assisted shape memory of polyurethane nanofibers with light-induced tunable responsiveness and improved cell adhesiveness. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Abstract
Smart scaffolds based on shape memory polymer (SMPs) have been increasingly studied in tissue engineering. The unique shape actuating ability of SMP scaffolds has been utilized to improve delivery and/or tissue defect filling. In this regard, these scaffolds may be self-deploying, self-expanding, or self-fitting. Smart scaffolds are generally thermoresponsive or hydroresponsive wherein shape recovery is driven by an increase in temperature or by hydration, respectively. Most smart scaffolds have been directed towards regenerating bone, cartilage, and cardiovascular tissues. A vast variety of smart scaffolds can be prepared with properties targeted for a specific tissue application. This breadth of smart scaffolds stems from the variety of compositions employed as well as the numerous methods used to fabricated scaffolds with the desired morphology. Smart scaffold compositions span across several distinct classes of SMPs, affording further tunability of properties using numerous approaches. Specifically, these SMPs include those based on physically cross-linked and chemically cross-linked networks and include widely studied shape memory polyurethanes (SMPUs). Various additives, ranging from nanoparticles to biologicals, have also been included to impart unique functionality to smart scaffolds. Thus, given their unique functionality and breadth of tunable properties, smart scaffolds have tremendous potential in tissue engineering.
Collapse
Affiliation(s)
- Michaela R Pfau
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA. and Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA and Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Pfau MR, McKinzey KG, Roth AA, Graul LM, Maitland DJ, Grunlan MA. Shape memory polymer (SMP) scaffolds with improved self-fitting properties. J Mater Chem B 2021; 9:3826-3837. [PMID: 33979417 DOI: 10.1039/d0tb02987d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
"Self-fitting" shape memory polymer (SMP) scaffolds prepared as semi-interpenetrating networks (semi-IPNs) with crosslinked linear-poly(ε-caprolactone)-diacrylate (PCL-DA, Mn∼10 kg mol-1) and linear-poly(l-lactic acid) (PLLA, Mn∼15 kg mol-1) [75/25 wt%] exhibited robust mechanical properties and accelerated degradation rates versus a PCL-DA scaffold control. However, their potential to treat irregular craniomaxillofacial (CMF) bone defects is limited by their relatively high fitting temperature (Tfit∼55 °C; related to the Tm of PCL) required for shape recovery (i.e. expansion) and subsequent shape fixation during press fitting of the scaffold, which can be harmful to surrounding tissue. Additionally, the viscosity of the solvent-based precursor solutions, cast over a fused salt template during fabrication, can limit scaffold size. Thus, in this work, analogous semi-IPN SMP scaffolds were formed with a 4-arm star-PCL-tetracryalate (star-PCL-TA) (Mn∼10 kg mol-1) and star-PLLA (Mn∼15 kg mol-1). To assess the impact of a star-polymer architecture, four semi-IPN compositions were prepared: linear-PCL-DA/linear-PLLA (L/L), linear-PCL-DA/star-PLLA (L/S), star-PCL-TA/linear-PLLA (S/L) and star-PCL-TA/star-PLLA (S/S). Two PCL controls were also prepared: LPCL (i.e. 100% linear-PCL-DA) and SPCL (i.e. 100% star-PCL-TA). The S/S semi-IPN scaffold exhibited particularly desirable properties. In addition to achieving a lower, tissue-safe Tfit (∼45 °C), it exhibited the fastest rate of degradation which is anticipated to more favourably permit neotissue infiltration. The radial expansion pressure exerted by the S/S semi-IPN scaffold at Tfit was greater than that of LPCL, which is expected to enhance osseointegration and mechanical stability. The intrinsic viscosity of the S/S semi-IPN macromer solution was also reduced such that larger scaffold specimens could be prepared.
Collapse
Affiliation(s)
- Michaela R Pfau
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Beltran FO, Houk CJ, Grunlan MA. Bioactive Siloxane-Containing Shape-Memory Polymer (SMP) Scaffolds with Tunable Degradation Rates. ACS Biomater Sci Eng 2021; 7:1631-1639. [PMID: 33667062 DOI: 10.1021/acsbiomaterials.1c00113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A material-guided, regenerative approach to heal cranial defects requires a scaffold that cannot only achieve conformal fit into irregular geometries but also has bioactivity and suitable resorption rates. We have previously reported "self-fitting" shape-memory polymer (SMP) scaffolds based on poly(ε-caprolactone) diacrylate (PCL-DA) that shape recover to fill irregular defect geometries. However, PCL-DA scaffolds lack innate bioactivity and degrade very slowly. Polydimethylsiloxane (PDMS) has been shown to impart innate bioactivity and modify degradation rates when combined with organic cross-linked networks. Thus, this work reports the introduction of PDMS segments to form PCL/PDMS SMP scaffolds. These were prepared as co-matrices with three types of macromers to systematically alter PDMS content and cross-link density. Specifically, PCL90-DA was combined with linear-PDMS66-dimethacrylate (DMA) or 4-armed star-PDMS66-tetramethacrylate (TMA) macromers at 90:10, 75:25, and 60:40 wt % ratios. Additionally, a triblock macromer (AcO-PCL45-b-PDMS66-b-PCL45-OAc), having a 65:35 wt % ratio PCL/PDMS, was used. Scaffolds exhibited pore interconnectivity and uniform pore sizes and further maintained excellent shape-memory behavior. Degradation rates increased with PDMS content and reduced cross-link density, with phase separation contributing to this effect. Irrespective of PDMS content, all PCL/PDMS scaffolds exhibited the formation of carbonated hydroxyapatite (HAp) following exposure to simulated body fluid (SBF). While inclusion of PDMS expectedly reduced scaffold modulus and strength, mineralization increased these properties and, in some cases, to values exceeding or similar to the PCL-DA, which did not mineralize.
Collapse
Affiliation(s)
- Felipe O Beltran
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Christopher J Houk
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Melissa A Grunlan
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States.,Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
11
|
Pretorius D, Serpooshan V, Zhang J. Nano-Medicine in the Cardiovascular System. Front Pharmacol 2021; 12:640182. [PMID: 33746761 PMCID: PMC7969876 DOI: 10.3389/fphar.2021.640182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/19/2021] [Indexed: 01/19/2023] Open
Abstract
Nano-medicines that include nanoparticles, nanocomposites, small molecules, and exosomes represent new viable sources for future therapies for the dysfunction of cardiovascular system, as well as the other important organ systems. Nanomaterials possess special properties ranging from their intrinsic physicochemical properties, surface energy and surface topographies which can illicit advantageous cellular responses within the cardiovascular system, making them exceptionally valuable in future clinical translation applications. The success of nano-medicines as future cardiovascular theranostic agents requires a comprehensive understanding of the intersection between nanomaterial and the biomedical fields. In this review, we highlight some of the major types of nano-medicine systems that are currently being explored in the cardiac field. This review focusses on the major differences between the systems, and how these differences affect the specific therapeutic or diagnostic applications. The important concerns relevant to cardiac nano-medicines, including cellular responses, toxicity of the different nanomaterials, as well as cardio-protective and regenerative capabilities are discussed. In this review an overview of the current development of nano-medicines specific to the cardiac field is provided, discussing the diverse nature and applications of nanomaterials as therapeutic and diagnostic agents.
Collapse
Affiliation(s)
- Danielle Pretorius
- Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vahid Serpooshan
- Emory Children's Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
12
|
Sarvari R, Keyhanvar P, Agbolaghi S, Gholami Farashah MS, Sadrhaghighi A, Nouri M, Roshangar L. Shape-memory materials and their clinical applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1833010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Raana Sarvari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Peyman Keyhanvar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Convergence of Knowledge, Technology and Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
- ARTAN110 Startup Accelerator, Tabriz, Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Amirhouman Sadrhaghighi
- Department of Orthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, University of Medical Sciences, Tabriz, Iran
| | - Laila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Sun L, Gao X, Wu D, Guo Q. Advances in Physiologically Relevant Actuation of Shape Memory Polymers for Biomedical Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1825487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Luyao Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xu Gao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Decheng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qiongyu Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
Zhang F, Xia Y, Liu Y, Leng J. Nano/microstructures of shape memory polymers: from materials to applications. NANOSCALE HORIZONS 2020; 5:1155-1173. [PMID: 32567643 DOI: 10.1039/d0nh00246a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Shape memory polymers (SMPs) are macromolecules in which linear chains and crosslinking points play a key role in providing a shape memory effect. As smart polymers, SMPs have the ability to change shape, stiffness, size, and structure when exposed to external stimuli, leading to potential uses for SMPs throughout our daily lives in a diverse range of areas including the aerospace and automotive industries, robotics, biomedical engineering, smart textiles, and tactile devices. SMPs can be fabricated in many forms and sizes from the nanoscale to the macroscale, including nanofibers, nanoparticles, thin films, microfoams, and bulk devices. The introduction of nanostructure into SMPs can result in enhanced mechanical properties, unique structural color, specific surface area, and multiple functions. It is necessary to enhance the current understanding of the various nano/microstructures of SMPs and their fabrication, and to find suitable approaches for constructing SMP-based nano/microstructures for different applications. In this review, we summarize the current state of different SMP nano/microstructures, fabrication techniques, and applications, and give suggestions for their future development.
Collapse
Affiliation(s)
- Fenghua Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Enviroments, Harbin Institute of Technology (HIT), Harbin 150080, P. R. China.
| | | | | | | |
Collapse
|
15
|
Li Q, Zhang Y, Chen Z, Pan X, Zhang Z, Zhu J, Zhu X. Organoselenium chemistry-based polymer synthesis. Org Chem Front 2020. [DOI: 10.1039/d0qo00640h] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel synthesis of selenium containing polymers with pre-determined structures and applications thereof.
Collapse
Affiliation(s)
- Qilong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yuanyuan Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Zijun Chen
- The Faculty of Engineering
- University of Waterloo
- Waterloo
- Canada
| | - Xiangqiang Pan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Zhengbiao Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
16
|
Shie MY, Shen YF, Astuti SD, Lee AKX, Lin SH, Dwijaksara NLB, Chen YW. Review of Polymeric Materials in 4D Printing Biomedical Applications. Polymers (Basel) 2019; 11:E1864. [PMID: 31726652 PMCID: PMC6918275 DOI: 10.3390/polym11111864] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/30/2022] Open
Abstract
The purpose of 4D printing is to embed a product design into a deformable smart material using a traditional 3D printer. The 3D printed object can be assembled or transformed into intended designs by applying certain conditions or forms of stimulation such as temperature, pressure, humidity, pH, wind, or light. Simply put, 4D printing is a continuum of 3D printing technology that is now able to print objects which change over time. In previous studies, many smart materials were shown to have 4D printing characteristics. In this paper, we specifically review the current application, respective activation methods, characteristics, and future prospects of various polymeric materials in 4D printing, which are expected to contribute to the development of 4D printing polymeric materials and technology.
Collapse
Affiliation(s)
- Ming-You Shie
- School of Dentistry, China Medical University, Taichung City 404, Taiwan;
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 404, Taiwan; (A.K.-X.L.); (S.-H.L.)
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413, Taiwan; (Y.-F.S.); (N.L.B.D.)
| | - Yu-Fang Shen
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413, Taiwan; (Y.-F.S.); (N.L.B.D.)
- 3D Printing Medical Research Institute, Asia University, Taichung City 413, Taiwan
| | - Suryani Dyah Astuti
- Biomedical Engineering Study Program, Department of Physic, Faculty of Science and Technology, Univerisitas Airlangga, Surabaya 61115, Indonesia;
| | - Alvin Kai-Xing Lee
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 404, Taiwan; (A.K.-X.L.); (S.-H.L.)
- School of Medicine, China Medical University, Taichung City 404, Taiwan
| | - Shu-Hsien Lin
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 404, Taiwan; (A.K.-X.L.); (S.-H.L.)
| | - Ni Luh Bella Dwijaksara
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413, Taiwan; (Y.-F.S.); (N.L.B.D.)
- Biomedical Engineering Study Program, Department of Physic, Faculty of Science and Technology, Univerisitas Airlangga, Surabaya 61115, Indonesia;
| | - Yi-Wen Chen
- 3D Printing Medical Research Institute, Asia University, Taichung City 413, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 404, Taiwan
| |
Collapse
|
17
|
Diaz-Rodriguez P, Erndt-Marino JD, Gharat T, Munoz Pinto DJ, Samavedi S, Bearden R, Grunlan MA, Saunders WB, Hahn MS. Toward zonally tailored scaffolds for osteochondral differentiation of synovial mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 2019; 107:2019-2029. [PMID: 30549205 PMCID: PMC6934364 DOI: 10.1002/jbm.b.34293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/22/2018] [Accepted: 11/10/2018] [Indexed: 12/15/2022]
Abstract
Synovium-derived mesenchymal stem cells (SMSCs) are an emerging cell source for regenerative medicine applications, including osteochondral defect (OCD) repair. However, in contrast to bone marrow MSCs, scaffold compositions which promote SMSC chondrogenesis/osteogenesis are still being identified. In the present manuscript, we examine poly(ethylene) glycol (PEG)-based scaffolds containing zonally-specific biochemical cues to guide SMSC osteochondral differentiation. Specifically, SMSCs were encapsulated in PEG-based scaffolds incorporating glycosaminoglycans (hyaluronan or chondroitin-6-sulfate [CSC]), low-dose of chondrogenic and osteogenic growth factors (TGFβ1 and BMP2, respectively), or osteoinductive poly(dimethylsiloxane) (PDMS). Initial studies suggested that PEG-CSC-TGFβ1 scaffolds promoted enhanced SMSC chondrogenic differentiation, as assessed by significant increases in Sox9 and aggrecan. Conversely, PEG-PDMS-BMP2 scaffolds stimulated increased levels of osteoblastic markers with significant mineral deposition. A "Transition" zone formulation was then developed containing a graded mixture of the chondrogenic and osteogenic signals present in the PEG-CSC-TGFβ1 and PEG-PDMS-BMP2 constructs. SMSCs within the "Transition" formulation displayed a phenotypic profile similar to hypertrophic chondrocytes, with the highest expression of collagen X, intermediate levels of osteopontin, and mineralization levels equivalent to "bone" formulations. Overall, these results suggest that a graded transition from PEG-CSC-TGFβ1 to PEG-PDMS-BMP2 scaffolds elicits a gradual SMSC phenotypic shift from chondrocyte to hypertrophic chondrocyte to osteoblast-like. As such, further development of these scaffold formulations for use in SMSC-based OCD repair is warranted. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2019-2029, 2019.
Collapse
Affiliation(s)
| | - Josh D Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Tanmay Gharat
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Dany J Munoz Pinto
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Satyavrata Samavedi
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Robert Bearden
- Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - W Brian Saunders
- Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Mariah S Hahn
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
18
|
Chen H, Erndt-Marino J, Diaz-Rodriguez P, Kulwatno J, Jimenez-Vergara AC, Thibeault SL, Hahn MS. In vitro evaluation of anti-fibrotic effects of select cytokines for vocal fold scar treatment. J Biomed Mater Res B Appl Biomater 2019; 107:1056-1067. [PMID: 30184328 PMCID: PMC7011756 DOI: 10.1002/jbm.b.34198] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/30/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023]
Abstract
Scarring of the vocal fold lamina propria (LP) can cause considerable voice disorders due to reduced pliability in scar tissue, attributed in part to abnormal extracellular matrix (ECM) deposition produced by the fibrotic vocal fold fibroblast (fVFF). Cytokines with anti-fibrotic potential have been investigated to limit abnormal LP ECM, but are limited by the need for repeat injections. Moreover, the potentially significant role played by activated macrophages (AMOs) is usually not considered even though the interaction between AMO and fibrotic fibroblasts is known to regulate scar formation across different tissues. AMO are also regulated by cytokines that are used for LP scar removal, but little is known about AMO behaviors in response to these cytokines within the context of LP scar. In the present study, we evaluated anti-fibrotic effects of hepatocyte growth factor (HGF), interleukin-10 (IL-10) and interleukin-6 (IL-6) in a 3D, in vitro fVFF-AMO co-culture system using poly(ethylene glycol) diacrylate (PEGDA) hydrogels. Data from all cytokines was synthesized into a heat-map that enabled assessment of specific associations between AMO and fVFF phenotypes. Cumulatively, our results indicated that both HGF and IL-10 are potentially anti-fibrotic (reduction in fibrotic markers and enhancement in normal, anti-fibrotic VFF markers), while IL-6 displays more complex, marker specific effects. Possible associations between AMO and fVFF phenotypes were found and may highlight a potential desirable macrophage phenotype. These data support the therapeutic potential of HGF and IL-10 for LP scar treatment, and shed light on future strategies aimed at targeting specific AMO phenotypes. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1056-1067, 2019.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Josh Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | - Jonathan Kulwatno
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | - Susan L Thibeault
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
19
|
Nie Y, Wang W, Xu X, Zou J, Bhuvanesh T, Schulz B, Ma N, Lendlein A. Enhancement of human induced pluripotent stem cells adhesion through multilayer laminin coating. Clin Hemorheol Microcirc 2019; 70:531-542. [PMID: 30347612 DOI: 10.3233/ch-189318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioengineered cell substrates are a highly promising tool to govern the differentiation of stem cells in vitro and to modulate the cellular behavior in vivo. While this technology works fine for adult stem cells, the cultivation of human induced pluripotent stem cells (hiPSCs) is challenging as these cells typically show poor attachment on the bioengineered substrates, which among other effects causes substantial cell death. Thus, very limited types of surfaces have been demonstrated suitable for hiPSC cultures. The multilayer coating approach that renders the surface with diverse chemical compositions, architectures, and functions can be used to improve the adhesion of hiPSCs on the bioengineered substrates. We hypothesized that a multilayer formation based on the attraction of molecules with opposite charges could functionalize the polystyrene (PS) substrates to improve the adhesion of hiPSCs. Polymeric substrates were stepwise coated, first with dopamine to form a polydopamine (PDA) layer, second with polylysine and last with Laminin-521. The multilayer formation resulted in the variation of hydrophilicity and chemical functionality of the surfaces. Hydrophilicity was detected using captive bubble method and the amount of primary and secondary amines on the surface was quantified by fluorescent staining. The PDA layer effectively immobilized the upper layers and thereby improved the attachment of hiPSCs. Cell adhesion was enhanced on the surfaces coated with multilayers, as compared to those without PDA and/or polylysine. Moreover, hiPSCs spread well over this multilayer laminin substrate. These cells maintained their proliferation capacity and differentiation potential. The multilayer coating strategy is a promising attempt for engineering polymer-based substrates for the cultivation of hiPSCs and of interest for expanding the application scope of hiPSCs.
Collapse
Affiliation(s)
- Yan Nie
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Xun Xu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jie Zou
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Thanga Bhuvanesh
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Burkhard Schulz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Teltow, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Teltow, Germany
| |
Collapse
|
20
|
Jia L, Han F, Wang H, Zhu C, Guo Q, Li J, Zhao Z, Zhang Q, Zhu X, Li B. Polydopamine-assisted surface modification for orthopaedic implants. J Orthop Translat 2019; 17:82-95. [PMID: 31194087 PMCID: PMC6551362 DOI: 10.1016/j.jot.2019.04.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 01/03/2023] Open
Abstract
Along with the massive use of implants in orthopaedic surgeries in recent few decades, there has been a tremendous demand for the surface modification of the implants to avoid surgery failure and improve their function. Polydopamine (PDA), being able to adhere to almost all kinds of substrates and possessing copious functional groups for covalently immobilizing biomolecules and anchoring metal ions, has been widely used for surface modification of materials since its discovery in the last decade. PDA and its derivatives can be used for the surface modification of orthopaedic implants to modulate cellular responses, including cell spreading, migration, proliferation, and differentiation, and may thereby enhance the function of existing implants. In addition, the osseointegration and antimicrobial properties of orthopaedic implants may also be improved by PDA-based coatings. The aim of this review is to provide a brief overview of current advances of surface modification technologies for orthopaedic implants using PDA and its derivatives as a medium. Given the versatility of PDA-based adhesion, such PDA-assisted surface modification technologies will certainly benefit the development of new orthopaedic implants. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Surface treatments of orthopaedic implants, which are normally inert materials, are essential for their performance in vivo. This review summarizes recent advances in the surface modification of orthopaedic implants using facile and highly versatile techniques based on the use of polydopamine (PDA) and its derivatives.
Collapse
Affiliation(s)
- Luanluan Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Fengxuan Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Huan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Caihong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Qianping Guo
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Jiaying Li
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Zhongliang Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Qiang Zhang
- Second Orthopedics Department, Pingxiang Traditional Chinese Medicine Hospital, Pingxiang, Jiangxi, China
| | - Xuesong Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Ambekar RS, Kandasubramanian B. Progress in the Advancement of Porous Biopolymer Scaffold: Tissue Engineering Application. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05334] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rushikesh S. Ambekar
- Rapid Prototype & Electrospinning Lab, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune 411025, India
| | - Balasubramanian Kandasubramanian
- Rapid Prototype & Electrospinning Lab, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune 411025, India
| |
Collapse
|
22
|
Wu J, Ding C, Xing D, Zhang Z, Huang X, Zhu X, Pan X, Zhu J. The functionalization of poly(ε-caprolactone) as a versatile platform using ε-(α-phenylseleno) caprolactone as a monomer. Polym Chem 2019. [DOI: 10.1039/c9py00467j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes a novel ε-caprolactone monomer modified by a phenylseleno group at the α-position of the carbonyl.
Collapse
Affiliation(s)
- Jin'an Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Chunlai Ding
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Dong Xing
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiaofei Huang
- Jiangsu Litian Technology Co. Ltd
- Jiangsu 226407
- China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
23
|
Gao B, Chen L, Zhao Y, Yan X, Wang X, Zhou C, Shi Y, Xue W. Methods to prepare dopamine/polydopamine modified alginate hydrogels and their special improved properties for drug delivery. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Tu MG, Ho CC, Hsu TT, Huang TH, Lin MJ, Shie MY. Mineral Trioxide Aggregate with Mussel-inspired Surface Nanolayers for Stimulating Odontogenic Differentiation of Dental Pulp Cells. J Endod 2018; 44:963-970. [DOI: 10.1016/j.joen.2018.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 12/17/2022]
|
25
|
Jafari H, Shahrousvand M, Kaffashi B. Reinforced Poly(ε-caprolactone) Bimodal Foams via Phospho-Calcified Cellulose Nanowhisker for Osteogenic Differentiation of Human Mesenchymal Stem Cells. ACS Biomater Sci Eng 2018; 4:2484-2493. [DOI: 10.1021/acsbiomaterials.7b01020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hafez Jafari
- School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11365-4563, Enghelab Avenue, Tehran, 1417613131, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 119-43841, Chooka Branch, Rezvanshahr, 4386156387, Guilan Province, Iran
| | - Babak Kaffashi
- School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11365-4563, Enghelab Avenue, Tehran, 1417613131, Iran
| |
Collapse
|
26
|
Liu Z, Chen J, Zhang G, Zhao J, Fu R, Tang K, Zhi W, Duan K, Weng J, Li W, Qu S. Enhanced Repairing of Critical-Sized Calvarial Bone Defects by Mussel-Inspired Calcium Phosphate Cement. ACS Biomater Sci Eng 2018; 4:1852-1861. [DOI: 10.1021/acsbiomaterials.8b00243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zongguang Liu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianmei Chen
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Guowei Zhang
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Junsheng Zhao
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Rong Fu
- Department of Plastic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610072, China
| | - Kuangyun Tang
- Department of Plastic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610072, China
| | - Wei Zhi
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ke Duan
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jie Weng
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wei Li
- Department of Burns Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610072, China
| | - Shuxin Qu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
27
|
Streifel BC, Lundin JG, Sanders AM, Gold KA, Wilems TS, Williams SJ, Cosgriff‐Hernandez E, Wynne JH. Hemostatic and Absorbent PolyHIPE–Kaolin Composites for 3D Printable Wound Dressing Materials. Macromol Biosci 2018; 18:e1700414. [DOI: 10.1002/mabi.201700414] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/23/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Benjamin C. Streifel
- Chemistry Division Naval Research Laboratory 4555 Overlook Avenue SW Washington DC 20375 USA
| | - Jeffrey G. Lundin
- Chemistry Division Naval Research Laboratory 4555 Overlook Avenue SW Washington DC 20375 USA
| | - Allix M. Sanders
- National Cancer Institute/National Institutes of Health Frederick MD 21701 USA
| | - Karli A. Gold
- Department of Biomedical Engineering Texas A&M University College Station TX 77843 USA
| | - Thomas S. Wilems
- Department of Biomedical Engineering Texas A&M University College Station TX 77843 USA
| | - Sierra J. Williams
- Chemistry Division Naval Research Laboratory 4555 Overlook Avenue SW Washington DC 20375 USA
| | | | - James H. Wynne
- Chemistry Division Naval Research Laboratory 4555 Overlook Avenue SW Washington DC 20375 USA
| |
Collapse
|
28
|
Enhanced Tissue Compatibility of Polyetheretherketone Disks by Dopamine-Mediated Protein Immobilization. Macromol Res 2018. [DOI: 10.1007/s13233-018-6018-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Comparative Bone Regeneration Potential Studies of Collagen, Heparin, and Polydopamine-Coated Multichannelled BCP Granules. ASAIO J 2018; 64:115-121. [DOI: 10.1097/mat.0000000000000582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
30
|
Woodard LN, Kmetz KT, Roth AA, Page VM, Grunlan MA. Porous Poly(ε-caprolactone)-Poly(l-lactic acid) Semi-Interpenetrating Networks as Superior, Defect-Specific Scaffolds with Potential for Cranial Bone Defect Repair. Biomacromolecules 2017; 18:4075-4083. [PMID: 29037044 PMCID: PMC6371392 DOI: 10.1021/acs.biomac.7b01155] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The treatment of irregular cranial bone defects is currently limited due to the graft resorption that can occur when an ill-fitting interface exists between an autograft and the surrounding tissue. A tissue engineering scaffold able to achieve defect-specific geometries could improve healing. This work reports a macroporous, shape memory polymer (SMP) scaffold composed of a semi-interpenetrating network (semi-IPN) of thermoplastic poly(l-lactic acid) (PLLA) within cross-linked poly(ε-caprolactone) diacrylate (PCL-DA) that is capable of conformal fit within a defect. The macroporous scaffolds were fabricated using a fused salt template and were also found to have superior, highly controlled properties needed for regeneration. Specifically, the scaffolds displayed interconnected pores, improved rigidity, and controlled, accelerated degradation. Although slow degradation rates of scaffolds can limit healing, the unique degradation behavior observed could prove promising. Thus, the described SMP semi-IPN scaffolds overcome two of the largest limitations in bone tissue engineering: defect "fit" and tailored degradation.
Collapse
Affiliation(s)
- Lindsay N. Woodard
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Kevin T. Kmetz
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Abigail A. Roth
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Vanessa M. Page
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Melissa A. Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
31
|
Peterson GI, Dobrynin AV, Becker ML. Biodegradable Shape Memory Polymers in Medicine. Adv Healthc Mater 2017; 6. [PMID: 28941154 DOI: 10.1002/adhm.201700694] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/04/2017] [Indexed: 01/13/2023]
Abstract
Shape memory materials have emerged as an important class of materials in medicine due to their ability to change shape in response to a specific stimulus, enabling the simplification of medical procedures, use of minimally invasive techniques, and access to new treatment modalities. Shape memory polymers, in particular, are well suited for such applications given their excellent shape memory performance, tunable materials properties, minimal toxicity, and potential for biodegradation and resorption. This review provides an overview of biodegradable shape memory polymers that have been used in medical applications. The majority of biodegradable shape memory polymers are based on thermally responsive polyesters or polymers that contain hydrolyzable ester linkages. These materials have been targeted for use in applications pertaining to embolization, drug delivery, stents, tissue engineering, and wound closure. The development of biodegradable shape memory polymers with unique properties or responsiveness to novel stimuli has the potential to facilitate the optimization and development of new medical applications.
Collapse
Affiliation(s)
- Gregory I. Peterson
- The University of Akron Department of Polymer Science Akron OH 44325‐3909 USA
| | - Andrey V. Dobrynin
- The University of Akron Department of Polymer Science Akron OH 44325‐3909 USA
| | - Matthew L. Becker
- The University of Akron Department of Polymer Science Akron OH 44325‐3909 USA
| |
Collapse
|
32
|
Tsai KY, Lin HY, Chen YW, Lin CY, Hsu TT, Kao CT. Laser Sintered Magnesium-Calcium Silicate/Poly-ε-Caprolactone Scaffold for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E65. [PMID: 28772425 PMCID: PMC5344575 DOI: 10.3390/ma10010065] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/31/2022]
Abstract
In this study, we manufacture and analyze bioactive magnesium-calcium silicate/poly-ε-caprolactone (Mg-CS/PCL) 3D scaffolds for bone tissue engineering. Mg-CS powder was incorporated into PCL, and we fabricated the 3D scaffolds using laser sintering technology. These scaffolds had high porosity and interconnected-design macropores and structures. As compared to pure PCL scaffolds without an Mg-CS powder, the hydrophilic properties and degradation rate are also improved. For scaffolds with more than 20% Mg-CS content, the specimens become completely covered by a dense bone-like apatite layer after soaking in simulated body fluid for 1 day. In vitro analyses were directed using human mesenchymal stem cells (hMSCs) on all scaffolds that were shown to be biocompatible and supported cell adhesion and proliferation. Increased focal adhesion kinase and promoted cell adhesion behavior were observed after an increase in Mg-CS content. In addition, the results indicate that the Mg-CS quantity in the composite is higher than 10%, and the quantity of cells and osteogenesis-related protein of hMSCs is stimulated by the Si ions released from the Mg-CS/PCL scaffolds when compared to PCL scaffolds. Our results proved that 3D Mg-CS/PCL scaffolds with such a specific ionic release and good degradability possessed the ability to promote osteogenetic differentiation of hMSCs, indicating that they might be promising biomaterials with potential for next-generation bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Kuo-Yang Tsai
- Department of Oral and Maxillofacial Surgery, Changhua Christian Hospital, Changhua 500, Taiwan.
| | - Hung-Yang Lin
- Department of Oral and Maxillofacial Surgery, China Medical University Hospital, Taichung 40447, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40447, Taiwan.
| | - Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40447, Taiwan.
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan.
| | - Cheng-Yao Lin
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan.
| | - Tuan-Ti Hsu
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan.
| | - Chia-Tze Kao
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| |
Collapse
|
33
|
Ho CMB, Mishra A, Lin PTP, Ng SH, Yeong WY, Kim YJ, Yoon YJ. 3D Printed Polycaprolactone Carbon Nanotube Composite Scaffolds for Cardiac Tissue Engineering. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600250] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/10/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Chee Meng Benjamin Ho
- School of Mechanical and Aerospace Engineering; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore
- Singapore Centre for 3D Printing; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore
- A*STAR's Singapore Institute of Manufacturing Technology (SIMTech); 2 Fusionopolis Way, Level 10 Innovis and Kinesis 138634 Singapore
| | - Abhinay Mishra
- School of Mechanical and Aerospace Engineering; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore
- Singapore Centre for 3D Printing; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore
| | - Pearlyn Teo Pei Lin
- School of Mechanical and Aerospace Engineering; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore
| | - Sum Huan Ng
- A*STAR's Singapore Institute of Manufacturing Technology (SIMTech); 2 Fusionopolis Way, Level 10 Innovis and Kinesis 138634 Singapore
| | - Wai Yee Yeong
- School of Mechanical and Aerospace Engineering; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore
- Singapore Centre for 3D Printing; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore
| | - Young-Jin Kim
- School of Mechanical and Aerospace Engineering; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore
- Singapore Centre for 3D Printing; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore
| | - Yong-Jin Yoon
- School of Mechanical and Aerospace Engineering; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore
- Singapore Centre for 3D Printing; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore
| |
Collapse
|
34
|
Taskin MB, Xu R, Gregersen H, Nygaard JV, Besenbacher F, Chen M. Three-Dimensional Polydopamine Functionalized Coiled Microfibrous Scaffolds Enhance Human Mesenchymal Stem Cells Colonization and Mild Myofibroblastic Differentiation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15864-15873. [PMID: 27265317 DOI: 10.1021/acsami.6b02994] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Electrospinning has been widely applied for tissue engineering due to its versatility of fabricating extracellular matrix (ECM) mimicking fibrillar scaffolds. Yet there are still challenges such as that these two-dimensional (2D) tightly packed, hydrophobic fibers often hinder cell infiltration and cell-scaffold integration. In this study, polycaprolactone (PCL) was electrospun into a grounded coagulation bath collector, resulting in 3D coiled microfibers with in situ surface functionalization with hydrophilic, catecholic polydopamine (pDA). The 3D scaffolds showed biocompatibility and were well-integrated with human bone marrow derived human mesenchymal stem cells (hMSCs), with significantly higher cell penetration depth compared to that of the 2D PCL microfibers from traditional electrospinning. Further differentiation of human mesenchymal stem cells (hMSCs) into fibroblast phenotype in vitro indicates that, compared to the stiff, tightly packed, 2D scaffolds which aggravated myofibroblasts related activities, such as upregulated gene and protein expression of α-smooth muscle actin (α-SMA), 3D scaffolds induced milder myofibroblastic differentiation. The flexible 3D fibers further allowed contraction with the well-integrated, mechanically active myofibroblasts, monitored under live-cell imaging, whereas the stiff 2D scaffolds restricted that.
Collapse
Affiliation(s)
- Mehmet Berat Taskin
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Ruodan Xu
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Hans Gregersen
- Department of Engineering, Aarhus University , DK-8000 Aarhus C, Denmark
| | - Jens Vinge Nygaard
- Department of Engineering, Aarhus University , DK-8000 Aarhus C, Denmark
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Menglin Chen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
- Department of Engineering, Aarhus University , DK-8000 Aarhus C, Denmark
| |
Collapse
|
35
|
Chan BQY, Low ZWK, Heng SJW, Chan SY, Owh C, Loh XJ. Recent Advances in Shape Memory Soft Materials for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10070-10087. [PMID: 27018814 DOI: 10.1021/acsami.6b01295] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Shape memory polymers (SMPs) are smart and adaptive materials able to recover their shape through an external stimulus. This functionality, combined with the good biocompatibility of polymers, has garnered much interest for biomedical applications. In this review, we discuss the design considerations critical to the successful integration of SMPs for use in vivo. We also highlight recent work on three classes of SMPs: shape memory polymers and blends, shape memory polymer composites, and shape memory hydrogels. These developments open the possibility of incorporating SMPs into device design, which can lead to vast technological improvements in the biomedical field.
Collapse
Affiliation(s)
- Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore , 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Zhi Wei Kenny Low
- Institute of Materials Research and Engineering (IMRE) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore , 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Sylvester Jun Wen Heng
- Institute of Materials Research and Engineering (IMRE) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore , 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Siew Yin Chan
- Institute of Materials Research and Engineering (IMRE) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
- School of Science, Monash University Malaysia , Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore , 9 Engineering Drive 1, Singapore 117576, Singapore
- Singapore Eye Research Institute , 11 Third Hospital Avenue, Singapore 168751, Singapore
| |
Collapse
|