1
|
Alkazemi H, Mitchell GM, Lokmic-Tomkins Z, Heath DE, O'Connor AJ. Hierarchically vascularized and suturable tissue constructs created through angiogenesis from tissue-engineered vascular grafts. Acta Biomater 2024:S1742-7061(24)00579-8. [PMID: 39368723 DOI: 10.1016/j.actbio.2024.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
A major roadblock in implementing engineered tissues clinically lies in their limited vascularization. After implantation, such tissues do not integrate with the host's circulation as quickly as needed, commonly resulting in loss of viability and functionality. This study presents a solution to the vascularization problem that could enable the survival and function of large, transplantable, and vascularized engineered tissues. The technique allows vascularization of a cell laden hydrogel through angiogenesis from a suturable tissue-engineered vascular graft (TEVG) constructed from electrospun polycaprolactone with macropores. The graft is surrounded by a layer of cell-laden gelatin-methacryloyl hydrogel. The constructs are suturable and possess mechanical properties like native vessels. Angiogenesis occurs through the pores in the graft, resulting in a hydrogel containing an extensive vascular network that is connected to an implantable TEVG. The size of the engineered tissue and the degree of vascularization can be increased by adding multiple TEVGs into a single construct. The engineered tissue has the potential to be immediately perfused by the patient's blood upon surgical anastomosis to host vessels, enabling survival of implanted cells. These findings provide a meaningful step to address the longstanding problem of fabricating suturable pre-vascularized tissues which could survive upon implantation in vivo. STATEMENT OF SIGNIFICANCE: Creating vascularized engineered tissues that can be transplanted and rapidly perfused by the host blood supply is a major challenge which has limited the clinical impact of tissue engineering. In this study we demonstrate a technique to fabricate vascularized tissue constructs via angiogenesis from a suturable tissue-engineered vascular graft. The macroporous graft is surrounded with hydrogel, allowing endothelial cells to migrate from the lumen and vascularize the hydrogel layer with capillary-like structures connected to the macrovessel. The graft has comparable mechanical properties to native blood vessels and larger constructs can be fabricated by incorporating multiple grafts. These constructs could potentially be connected surgically to the circulation at an implantation site to support their immediate perfusion and survival.
Collapse
Affiliation(s)
- Hazem Alkazemi
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Victoria 3010, Australia
| | - Geraldine M Mitchell
- O'Brien Institute Department of Vincent's Institute of Medical Research, Victoria 3065, Australia; Faculty of Health Sciences, Australian Catholic University, Victoria 3065, Australia; Department of Surgery at St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | | | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Victoria 3010, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Victoria 3010, Australia; Aikenhead Centre for Medical Discovery (ACMD), Fitzroy, Victoria 3065, Australia.
| |
Collapse
|
2
|
Natesh NR, Mogha P, Chen A, Antonia SJ, Varghese S. Differential roles of normal and lung cancer-associated fibroblasts in microvascular network formation. APL Bioeng 2024; 8:016120. [PMID: 38524671 PMCID: PMC10959556 DOI: 10.1063/5.0188238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Perfusable microvascular networks offer promising three-dimensional in vitro models to study normal and compromised vascular tissues as well as phenomena such as cancer cell metastasis. Engineering of these microvascular networks generally involves the use of endothelial cells stabilized by fibroblasts to generate robust and stable vasculature. However, fibroblasts are highly heterogenous and may contribute variably to the microvascular structure. Here, we study the effect of normal and cancer-associated lung fibroblasts on the formation and function of perfusable microvascular networks. We examine the influence of cancer-associated fibroblasts on microvascular networks when cultured in direct (juxtacrine) and indirect (paracrine) contacts with endothelial cells, discovering a generative inhibition of microvasculature in juxtacrine co-cultures and a functional inhibition in paracrine co-cultures. Furthermore, we probed the secreted factors differential between cancer-associated fibroblasts and normal human lung fibroblasts, identifying several cytokines putatively influencing the resulting microvasculature morphology and functionality. These findings suggest the potential contribution of cancer-associated fibroblasts in aberrant microvasculature associated with tumors and the plausible application of such in vitro platforms in identifying new therapeutic targets and/or agents that can prevent formation of aberrant vascular structures.
Collapse
Affiliation(s)
- Naveen R. Natesh
- Department of Biomedical Engineering, Duke University, 203 Research Drive, MSRB1 Room No. 381, Durham, North Carolina 27710, USA
| | - Pankaj Mogha
- Department of Orthopaedic Surgery, Duke University, 200 Trent Drive, Durham, North Carolina 27710, USA
| | - Alan Chen
- Department of Medical Oncology, Duke University, Durham, North Carolina 27710, USA
| | - Scott J. Antonia
- Department of Medical Oncology, Duke University, Durham, North Carolina 27710, USA
| | | |
Collapse
|
3
|
Rojek KO, Wrzos A, Żukowski S, Bogdan M, Lisicki M, Szymczak P, Guzowski J. Long-term day-by-day tracking of microvascular networks sprouting in fibrin gels: From detailed morphological analyses to general growth rules. APL Bioeng 2024; 8:016106. [PMID: 38327714 PMCID: PMC10849774 DOI: 10.1063/5.0180703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024] Open
Abstract
Understanding and controlling of the evolution of sprouting vascular networks remains one of the basic challenges in tissue engineering. Previous studies on the vascularization dynamics have typically focused only on the phase of intense growth and often lacked spatial control over the initial cell arrangement. Here, we perform long-term day-by-day analysis of tens of isolated microvasculatures sprouting from endothelial cell-coated spherical beads embedded in an external fibrin gel. We systematically study the topological evolution of the sprouting networks over their whole lifespan, i.e., for at least 14 days. We develop a custom image analysis toolkit and quantify (i) the overall length and area of the sprouts, (ii) the distributions of segment lengths and branching angles, and (iii) the average number of branch generations-a measure of network complexity. We show that higher concentrations of vascular endothelial growth factor (VEGF) lead to earlier sprouting and more branched networks, yet without significantly affecting the speed of growth of individual sprouts. We find that the mean branching angle is weakly dependent on VEGF and typically in the range of 60°-75°, suggesting that, by comparison with the available diffusion-limited growth models, the bifurcating tips tend to follow local VEGF gradients. At high VEGF concentrations, we observe exponential distributions of segment lengths, which signify purely stochastic branching. Our results-due to their high statistical relevance-may serve as a benchmark for predictive models, while our new image analysis toolkit, offering unique features and high speed of operation, could be exploited in future angiogenic drug tests.
Collapse
Affiliation(s)
- Katarzyna O. Rojek
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Antoni Wrzos
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | | | - Michał Bogdan
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Lisicki
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Piotr Szymczak
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Liang J, Zhao J, Chen Y, Li B, Li Y, Lu F, Dong Z. New Insights and Advanced Strategies for In Vitro Construction of Vascularized Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:692-709. [PMID: 37409413 DOI: 10.1089/ten.teb.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Inadequate vascularization is a significant barrier to clinical application of large-volume tissue engineered grafts. In contrast to in vivo vascularization, in vitro prevascularization shortens the time required for host vessels to grow into the graft core and minimizes necrosis in the core region of the graft. However, the challenge of prevascularization is to construct hierarchical perfusable vascular networks, increase graft volume, and form a vascular tip that can anastomose with host vessels. Understanding advances in in vitro prevascularization techniques and new insights into angiogenesis could overcome these obstacles. In the present review, we discuss new perspectives on angiogenesis, the differences between in vivo and in vitro tissue vascularization, the four elements of prevascularized constructs, recent advances in perfusion-based in vitro prevascularized tissue fabrication, and prospects for large-volume prevascularized tissue engineering.
Collapse
Affiliation(s)
- Jiancong Liang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Zhao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yunzi Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Bin Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ziqing Dong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
5
|
Le HT, Phan HL, Lenshof A, Duong VT, Choi C, Cha C, Laurell T, Koo KI. Ultrasound standing wave spatial patterning of human umbilical vein endothelial cells for 3D micro-vascular networks formation. Biofabrication 2023; 16:015009. [PMID: 37844581 DOI: 10.1088/1758-5090/ad03be] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
Generating functional and perfusable micro-vascular networks is an important goal for the fabrication of large and three-dimensional tissues. Up to now, the fabrication of micro-vascular networks is a complicated multitask involving several different factors such as time consuming, cells survival, micro-diameter vasculature and strict alignment. Here, we propose a technique combining multi-material extrusion and ultrasound standing wave forces to create a network structure of human umbilical vein endothelial cells within a mixture of calcium alginate and decellularized extracellular matrix. The functionality of the matured microvasculature networks was demonstrated through the enhancement of cell-cell adhesion, angiogenesis process, and perfusion tests with microparticles, FITC-dextran, and whole mouse blood. Moreover, animal experiments exhibited the implantability including that the pre-existing blood vessels of the host sprout towards the preformed vessels of the scaffold over time and the microvessels inside the implanted scaffold matured from empty tubular structures to functional blood-carrying microvessels in two weeks.
Collapse
Affiliation(s)
- Huong Thi Le
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Huu Lam Phan
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Andreas Lenshof
- Department of Biomedical Engineering, Lund University, S-221 00 Lund, Sweden
| | - Van Thuy Duong
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Cholong Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Chaenyung Cha
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Thomas Laurell
- Department of Biomedical Engineering, Lund University, S-221 00 Lund, Sweden
| | - Kyo-In Koo
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|
6
|
Thai VL, Ramos-Rodriguez DH, Mesfin M, Leach JK. Hydrogel degradation promotes angiogenic and regenerative potential of cell spheroids for wound healing. Mater Today Bio 2023; 22:100769. [PMID: 37636986 PMCID: PMC10450977 DOI: 10.1016/j.mtbio.2023.100769] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Chronic nonhealing wounds are debilitating and diminish one's quality of life, necessitating the development of improved strategies for effective treatment. Biomaterial- and cell-based therapies offer an alternative treatment compared to conventional wound care for regenerating damaged tissues. Cell-based approaches frequently utilize endothelial cells (ECs) to promote vascularization and mesenchymal stromal cells (MSCs) for their potent secretome that promotes host cell recruitment. Spheroids have improved therapeutic potential over monodisperse cells, while degradable scaffolds can influence cellular processes conducive to long-term tissue regeneration. However, the role of biomaterial degradation on the therapeutic potential of heterotypic EC-MSC spheroids for wound healing is largely unknown. We formed poly(ethylene) glycol (PEG) hydrogels with varying ratios of matrix metalloproteinase (MMP)-degradable and non-degradable crosslinkers to develop three distinct constructs - fully degradable, partially degradable, and non-degradable - and interrogate the influence of degradation rate on engineered cell carriers for wound healing. We found that the vulnerability to degradation was critical for cellular proliferation, while inhibition of degradation impaired spheroid metabolic activity. Higher concentrations of degradable crosslinker promoted robust cell spreading, outgrowth, and secretion of proangiogenic cytokines (i.e., VEGF, HGF) that are critical in wound healing. The degree of degradation dictated the unique secretory profile of spheroids. When applied to a clinically relevant full-thickness ex vivo skin model, degradable spheroid-loaded hydrogels restored stratification of the epidermal layer, confirming the efficacy of scaffolds to promote wound healing. These results highlight the importance of matrix remodeling and its essential role in the therapeutic potential of heterotypic spheroids.
Collapse
Affiliation(s)
- Victoria L. Thai
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA
- Department of Biomedical Engineering, UC Davis, Davis, CA, 95616, USA
| | | | - Meron Mesfin
- Department of Biomedical Engineering, UC Davis, Davis, CA, 95616, USA
| | - J. Kent Leach
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA
- Department of Biomedical Engineering, UC Davis, Davis, CA, 95616, USA
| |
Collapse
|
7
|
Fuenteslópez CV, Thompson MS, Ye H. Development and Optimisation of Hydrogel Scaffolds for Microvascular Network Formation. Bioengineering (Basel) 2023; 10:964. [PMID: 37627849 PMCID: PMC10451297 DOI: 10.3390/bioengineering10080964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Traumatic injuries are a major cause of morbidity and mortality worldwide; however, there is limited research on microvascular traumatic injuries. To address this gap, this research aims to develop and optimise an in vitro construct for traumatic injury research at the microvascular level. Tissue engineering constructs were created using a range of polymers (collagen, fibrin, and gelatine), solvents (PBS, serum-free endothelial media, and MES/NaCl buffer), and concentrations (1-5% w/v). Constructs created from these hydrogels and HUVECs were evaluated to identify the optimal composition in terms of cell proliferation, adhesion, migration rate, viability, hydrogel consistency and shape retention, and tube formation. Gelatine hydrogels were associated with a lower cell adhesion, whereas fibrin and collagen ones displayed similar or better results than the control, and collagen hydrogels exhibited poor shape retention; fibrin scaffolds, particularly at high concentrations, displayed good hydrogel consistency. Based on the multipronged evaluation, fibrin hydrogels in serum-free media at 3 and 5% w/v were selected for further experimental work and enabled the formation of interconnected capillary-like networks. The networks formed in both hydrogels displayed a similar architecture in terms of the number of segments (10.3 ± 3.21 vs. 9.6 ± 3.51) and diameter (8.6446 ± 3.0792 μm vs. 7.8599 ± 2.3794 μm).
Collapse
Affiliation(s)
| | | | - Hua Ye
- Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK; (C.V.F.); (M.S.T.)
| |
Collapse
|
8
|
Chen S, Zhao X, Huang J, Lin N, Xu Q, Chen J, Huang J, Wang L, Lin C, Zhang Z. The effects of propranolol on the biology and Notch signaling pathway of human umbilical vein endothelial cells. Medicine (Baltimore) 2023; 102:e34672. [PMID: 37565874 PMCID: PMC10419639 DOI: 10.1097/md.0000000000034672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Propranolol is the first choice for treating infantile hemangioma (IH). How propranolol works in IH remains unclear. Infantile hemangioma endothelial cells (HemECs) express Notch1, Jagged, Hey1, and other molecules in the Notch pathway, suggesting that Notch pathway-related molecules play an important role in affecting vascular endothelial cell proliferation. Whether propranolol can affect the Notch signaling pathway in IH treatment is unclear. METHODS We performed this study to observe the effect of propranolol on the expression of Notch signaling pathway molecules in human umbilical vein endothelial cells (HUVECs) and to explore the therapeutic mechanism of propranolol on IH. HUVECs cultured in vitro were exposed to 60, 120, 240, 360, or 480 µM propranolol. The morphological changes of the HUVECs were observed under an inverted microscope. HUVECs proliferation was detected with Cell Counting Kit-8 (CCK-8). The effects of propranolol on HUVECs apoptosis were detected by flow cytometry. The role of Notch in propranolol inhibition of HUVEC proliferation was analyzed with real-time polymerase chain reaction (PCR) and western blotting. RESULTS Propranolol reduced HUVECs numbers and altered their morphology. The inhibitory effect of propranolol on cell proliferation was dependent on the reaction time and drug concentration. Propranolol upregulated Jagged1, Notch1, and Hey1 expression and downregulated delta-like ligand4 (DLL4) expression. CONCLUSIONS Propranolol may play a role in IH treatment by increasing Jagged1 expression in endothelial cells, activating the Notch pathway and inducing the upregulation of the downstream target gene HEY1.
Collapse
Affiliation(s)
- Shuming Chen
- Department of General Surgery, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University; Fuzhou General Hospital of Fujian Medical University), Fuzhou, Fujian, China
| | - Xuekai Zhao
- The Second People’s Hospital of Neijiang, Neijiang, Sichuan, China
| | - Junjie Huang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Na Lin
- Department of Anesthesia, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Qianhui Xu
- Department of General Surgery, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University; Fuzhou General Hospital of Fujian Medical University), Fuzhou, Fujian, China
| | - Jianwei Chen
- Department of General Surgery, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University; Fuzhou General Hospital of Fujian Medical University), Fuzhou, Fujian, China
| | - Jianqiang Huang
- Department of General Surgery, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University; Fuzhou General Hospital of Fujian Medical University), Fuzhou, Fujian, China
| | - Lie Wang
- Department of General Surgery, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University; Fuzhou General Hospital of Fujian Medical University), Fuzhou, Fujian, China
| | - Chen Lin
- Department of General Surgery, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University; Fuzhou General Hospital of Fujian Medical University), Fuzhou, Fujian, China
| | - Zaizhong Zhang
- Department of General Surgery, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University; Fuzhou General Hospital of Fujian Medical University), Fuzhou, Fujian, China
| |
Collapse
|
9
|
Ren B, Jiang Z, Murfee WL, Katz AJ, Siemann D, Huang Y. Realizations of vascularized tissues: From in vitro platforms to in vivo grafts. BIOPHYSICS REVIEWS 2023; 4:011308. [PMID: 36938117 PMCID: PMC10015415 DOI: 10.1063/5.0131972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/07/2023] [Indexed: 03/18/2023]
Abstract
Vascularization is essential for realizing thick and functional tissue constructs that can be utilized for in vitro study platforms and in vivo grafts. The vasculature enables the transport of nutrients, oxygen, and wastes and is also indispensable to organ functional units such as the nephron filtration unit, the blood-air barrier, and the blood-brain barrier. This review aims to discuss the latest progress of organ-like vascularized constructs with specific functionalities and realizations even though they are not yet ready to be used as organ substitutes. First, the human vascular system is briefly introduced and related design considerations for engineering vascularized tissues are discussed. Second, up-to-date creation technologies for vascularized tissues are summarized and classified into the engineering and cellular self-assembly approaches. Third, recent applications ranging from in vitro tissue models, including generic vessel models, tumor models, and different human organ models such as heart, kidneys, liver, lungs, and brain, to prevascularized in vivo grafts for implantation and anastomosis are discussed in detail. The specific design considerations for the aforementioned applications are summarized and future perspectives regarding future clinical applications and commercialization are provided.
Collapse
Affiliation(s)
- Bing Ren
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Zhihua Jiang
- Department of Surgery, University of Florida, Gainesville, Florida 32610, USA
| | - Walter Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Adam J. Katz
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Dietmar Siemann
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610, USA
| | - Yong Huang
- Author to whom correspondence should be addressed:
| |
Collapse
|
10
|
Shaik R, Xu J, Wang Y, Hong Y, Zhang G. Fibrin-Enriched Cardiac Extracellular Matrix Hydrogel Promotes In Vitro Angiogenesis. ACS Biomater Sci Eng 2023; 9:877-888. [PMID: 36630688 PMCID: PMC10064974 DOI: 10.1021/acsbiomaterials.2c01148] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Angiogenesis is essential for cardiac repair after myocardial infarction. Promoting angiogenesis has been demonstrated as an effective approach for myocardial infarction treatment. Several different strategies for inducing myocardial angiogenesis have been explored, including exogenous delivery of angiogenic genes, proteins, microRNAs, cells, and extracellular vesicles. Various types of injectable hydrogels have been investigated for cardiac tissue repair. One of the most promising injectable hydrogels in cardiac regeneration is a cardiac extracellular matrix hydrogel that is derived from decellularized porcine myocardium. It can be delivered minimally invasively via transendocardial delivery. The safety and efficacy of cardiac extracellular matrix hydrogels have been shown in small and large animal myocardial infarction models as well as clinical trials. The main mechanisms underlying the therapeutic benefits of cardiac extracellular matrix hydrogels have been elucidated and involved in the modulation of the immune response, downregulation of pathways related to heart failure progression and fibrosis, upregulation of genes important for cardiac muscle contraction, and enhancing cardiomyocyte differentiation and maturation from stem cells. However, no potent capillary network formation induced by cardiac extracellular matrix hydrogels has been reported. In this study, we tested the feasibility of incorporating a fibrin matrix into cardiac extracellular matrix hydrogels to improve the angiogenic properties of the hydrogel. Our in vitro results demonstrate that fibrin-enriched cardiac extracellular matrix hydrogels can induce robust endothelial cell tube formation from human umbilical vein endothelial cells and promote the sprouting of human mesenchymal stem cell spheroids. The obtained information from this study is very critical toward the future in vivo evaluation of fibrin-enriched cardiac extracellular matrix hydrogels in promoting myocardial angiogenesis.
Collapse
Affiliation(s)
- Rubia Shaik
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jiazhu Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yong Wang
- Department of Biomedical Engineering, Pennsylvania State University, State College, University Park, Pennsylvania 16801, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Ge Zhang
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
11
|
Jahn P, Karger RK, Soso Khalaf S, Hamad S, Peinkofer G, Sahito RGA, Pieroth S, Nitsche F, Lu J, Derichsweiler D, Brockmeier K, Hescheler J, Schmidt A, Pfannkuche KP. Engineering of cardiac microtissues by microfluidic cell encapsulation in thermoshrinking non-crosslinked PNIPAAm gels. Biofabrication 2022; 14. [PMID: 35617928 DOI: 10.1088/1758-5090/ac73b5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 05/26/2022] [Indexed: 11/11/2022]
Abstract
Multicellular agglomerates in form of irregularly shaped or spherical clusters can recapitulate cell-cell interactions and are referred to as microtissues. Microtissues gain increasing attention in several fields including cardiovascular research. Cardiac microtissues are evolving as excellent model systems for drug testing in vitro (organ-on-a-chip), are used as tissue bricks in 3D printing processes and pave the way for improved cell replacement therapies in vivo. Microtissues are formed for example in hanging drop culture or specialized microwell plates; truly scalable methods are not yet available. In this study, a novel method of encapsulation of cells in Poly-N-isopropylacrylamid (PNIPAAm) spheres is introduced. Murine induced pluripotent stem cell-derived cardiomyocytes (CMs) and bone marrow-derived mesenchymal stem cells (MSCs) were encapsulated in PNIPAAm by raising the temperature of droplets formed in a microfluidics setup above the lower critical solute temperature (LCST) of 32°C. PNIPAAM precipitates to a water-insoluble physically linked gel above the LCST and shrinks by the expulsion of water, thereby trapping the cells in a collapsing polymer network and increasing the cell density by one order of magnitude. Within 24 hours, stable cardiac microtissues were first formed and later released from their polymer shell by washout of PNIPAAm at temperatures below the LCST. Rhythmically contracting microtissues showed homogenous cell distribution, age-dependent sarcomere organizations and action potential generation. The novel approach is applicable for microtissue formation from various cell types and can be implemented into scalable workflows.
Collapse
Affiliation(s)
- Philipp Jahn
- University Hospital Cologne, Robert Koch Str. 39, Koln, Nordrhein-Westfalen, 50924, GERMANY
| | - Rebecca Katharina Karger
- Center for Physiology and Pathophysiology, University of Cologne, Robert Koch Str. 39, Cologne, Nordrhein-Westfalen, 50931, GERMANY
| | - Shahab Soso Khalaf
- University Hospital Cologne, Robert Koch Str. 39, Koln, Nordrhein-Westfalen, 50931, GERMANY
| | - Sarkawt Hamad
- University of Cologne, Robert Koch Str. 39, Koln, Nordrhein-Westfalen, 50931, GERMANY
| | - Gabriel Peinkofer
- University Hospital Cologne, Robert Koch Str. 39, Koln, Nordrhein-Westfalen, 50931, GERMANY
| | | | - Stephanie Pieroth
- Department of Chemistry, University of Cologne, Greinstr. 4-6, Koln, 50923, GERMANY
| | - Frank Nitsche
- Institute of Zoology, University of Cologne, Zülpicher Str. 47b, Cologne, Nordrhein-Westfalen, 50674, GERMANY
| | - Junqi Lu
- Department of Chemistry, University of Cologne, Greinstraße 4-6, Cologne, Nordrhein-Westfalen, 50939, GERMANY
| | - Daniel Derichsweiler
- University Hospital Cologne, Robert Koch Str. 39, Koln, Nordrhein-Westfalen, 50931, GERMANY
| | - Konrad Brockmeier
- Department of Pediatric Cardiology, University Hospital of Cologne, Kerpener Str. 62, Cologne, 50924, GERMANY
| | - Jürgen Hescheler
- University Hospital Cologne, Robert Koch Str. 39, Koln, Nordrhein-Westfalen, 50931, GERMANY
| | - Annette Schmidt
- Department Chemistry, University of Cologne, Greinstr. 4-6, Koln, Nordrhein-Westfalen, 50923, GERMANY
| | - Kurt Paul Pfannkuche
- University Hospital Cologne, Robert Koch Str. 39, Koln, Nordrhein-Westfalen, 50931, GERMANY
| |
Collapse
|
12
|
Valdoz JC, Franks NA, Cribbs CG, Jacobs DJ, Dodson EL, Knight CJ, Poulson PD, Garfield SR, Johnson BC, Hemeyer BM, Sudo MT, Saunooke JA, Kartchner BC, Saxton A, Vallecillo-Zuniga ML, Santos M, Chamberlain B, Christensen KA, Nordin GP, Narayanan AS, Raghu G, Van Ry PM. Soluble ECM promotes organotypic formation in lung alveolar model. Biomaterials 2022; 283:121464. [DOI: 10.1016/j.biomaterials.2022.121464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/15/2022] [Accepted: 03/06/2022] [Indexed: 11/25/2022]
|
13
|
Wang Y, Kankala RK, Ou C, Chen A, Yang Z. Advances in hydrogel-based vascularized tissues for tissue repair and drug screening. Bioact Mater 2022; 9:198-220. [PMID: 34820566 PMCID: PMC8586021 DOI: 10.1016/j.bioactmat.2021.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The construction of biomimetic vasculatures within the artificial tissue models or organs is highly required for conveying nutrients, oxygen, and waste products, for improving the survival of engineered tissues in vitro. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular biology have enabled the creation of three-dimensional (3D) tissues and organs composed of highly complex vascular systems. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the vascularization of tissues. Initially, the significance of vascular elements and the regeneration mechanisms of vascularization, including angiogenesis and vasculogenesis, are briefly introduced. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments in fabricating vascularized tissues or organs, in terms of tunable physical properties, high similarity in physiological environments, and alternative shaping mechanisms, among others. Furthermore, we discuss the utilization of such hydrogels-based vascularized tissues in various applications, including tissue regeneration, drug screening, and organ-on-chips. Finally, we put forward the key challenges, including multifunctionalities of hydrogels, selection of suitable cell phenotype, sophisticated engineering techniques, and clinical translation behind the development of the tissues with complex vasculatures towards their future development.
Collapse
Affiliation(s)
- Ying Wang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Caiwen Ou
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Zhilu Yang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| |
Collapse
|
14
|
Mykuliak A, Yrjänäinen A, Mäki AJ, Gebraad A, Lampela E, Kääriäinen M, Pakarinen TK, Kallio P, Miettinen S, Vuorenpää H. Vasculogenic Potency of Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells Results in Differing Vascular Network Phenotypes in a Microfluidic Chip. Front Bioeng Biotechnol 2022; 10:764237. [PMID: 35211462 PMCID: PMC8861308 DOI: 10.3389/fbioe.2022.764237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
The vasculature is an essential, physiological element in virtually all human tissues. Formation of perfusable vasculature is therefore crucial for reliable tissue modeling. Three-dimensional vascular networks can be formed through the co-culture of endothelial cells (ECs) with stromal cells embedded in hydrogel. Mesenchymal stem/stromal cells (MSCs) derived from bone marrow (BMSCs) and adipose tissue (ASCs) are an attractive choice as stromal cells due to their natural perivascular localization and ability to support formation of mature and stable microvessels in vitro. So far, BMSCs and ASCs have been compared as vasculature-supporting cells in static cultures. In this study, BMSCs and ASCs were co-cultured with endothelial cells in a fibrin hydrogel in a perfusable microfluidic chip. We demonstrated that using MSCs of different origin resulted in vascular networks with distinct phenotypes. Both types of MSCs supported formation of mature and interconnected microvascular networks-on-a-chip. However, BMSCs induced formation of fully perfusable microvasculature with larger vessel area and length whereas ASCs resulted in partially perfusable microvascular networks. Immunostainings revealed that BMSCs outperformed ASCs in pericytic characteristics. Moreover, co-culture with BMSCs resulted in significantly higher expression levels of endothelial and pericyte-specific genes, as well as genes involved in vasculature maturation. Overall, our study provides valuable knowledge on the properties of MSCs as vasculature-supporting cells and highlights the importance of choosing the application-specific stromal cell source for vascularized organotypic models.
Collapse
Affiliation(s)
- Anastasiia Mykuliak
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Alma Yrjänäinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Antti-Juhana Mäki
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Arjen Gebraad
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Ella Lampela
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Minna Kääriäinen
- Department of Plastic and Reconstructive Surgery, Tampere University Hospital, Tampere, Finland
| | | | - Pasi Kallio
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Hanna Vuorenpää
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
15
|
Cell-based therapies for vascular regeneration: Past, present and future. Pharmacol Ther 2021; 231:107976. [PMID: 34480961 DOI: 10.1016/j.pharmthera.2021.107976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022]
Abstract
Tissue vascularization remains one of the outstanding challenges in regenerative medicine. Beyond its role in circulating oxygen and nutrients, the vasculature is critical for organ development, function and homeostasis. Importantly, effective vascular regeneration is key in generating large 3D tissues for regenerative medicine applications to enable the survival of cells post-transplantation, organ growth, and integration into the host system. Therefore, the absence of clinically applicable means of (re)generating vessels is one of the main obstacles in cell replacement therapy. In this review, we highlight cell-based vascularization strategies which demonstrate clinical potential, discuss their strengths and limitations and highlight the main obstacles hindering cell-based therapeutic vascularization.
Collapse
|
16
|
Ramirez-Calderon G, Susapto HH, Hauser CAE. Delivery of Endothelial Cell-Laden Microgel Elicits Angiogenesis in Self-Assembling Ultrashort Peptide Hydrogels In Vitro. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29281-29292. [PMID: 34142544 DOI: 10.1021/acsami.1c03787] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Blood vessel generation is an essential process for tissue formation, regeneration, and repair. Notwithstanding, vascularized tissue fabrication in vitro remains a challenge, as current fabrication techniques and biomaterials lack translational potential in medicine. Naturally derived biomaterials harbor the risk of immunogenicity and pathogen transmission, while synthetic materials need functionalization or blending to improve their biocompatibility. In addition, the traditional top-down fabrication techniques do not recreate the native tissue microarchitecture. Self-assembling ultrashort peptides (SUPs) are promising chemically synthesized natural materials that self-assemble into three-dimensional nanofibrous hydrogels resembling the extracellular matrix (ECM). Here, we use a modular tissue-engineering approach, embedding SUP microgels loaded with human umbilical vein endothelial cells (HUVECs) into a 3D SUP hydrogel containing human dermal fibroblast neonatal (HDFn) cells to trigger angiogenesis. The SUPs IVFK and IVZK were used to fabricate microgels that gel in a water-in-oil emulsion using a microfluidic droplet generator chip. The fabricated SUP microgels are round structures that are 300-350 μm diameter in size and have ECM-like topography. In addition, they are stable enough to keep their original size and shape under cell culture conditions and long-term storage. When the SUP microgels were used as microcarriers for growing HUVECs and HDFn cells on the microgel surface, cell attachment, stretching, and proliferation could be demonstrated. Finally, we performed an angiogenesis assay in both SUP hydrogels using all SUP combinations between micro- and bulky hydrogels. Endothelial cells were able to migrate from the microgel to the surrounding area, showing angiogenesis features such as sprouting, branching, coalescence, and lumen formation. Although both SUP hydrogels support vascular network formation, IVFK outperformed IVZK in terms of vessel network extension and branching. Overall, these results demonstrated that cell-laden SUP microgels have great potential to be used as a microcarrier cell delivery system, encouraging us to study the angiogenesis process and to develop vascularized tissue-engineering therapies.
Collapse
|
17
|
Xu X, Liao L, Tian W. Strategies of Prevascularization in Tissue Engineering and Regeneration of Craniofacial Tissues. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:464-475. [PMID: 34191620 DOI: 10.1089/ten.teb.2021.0004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Craniofacial tissue defects caused by trauma, developmental malformation, or surgery are critical issues of high incidence, which are harmful to physical and psychological health. Transplantation of engineered tissues or biomaterials is a potential method to repair defects and regenerate the craniofacial tissues. Revascularization is essential to ensure the survival and regeneration of the grafts. Since microvessels play a critical role in blood circulation and substance exchange, the pre-establishment of the microvascular network in transplants provides a technical basis for the successful regeneration of the tissue defect. In this study, we reviewed the recent development of strategies and applications of prevascularization in tissue engineering and regeneration of craniofacial tissues. We focused on the cellular foundation of the in vitro prevascularized microvascular network, the cell source for prevascularization, and the strategies of prevascularization. Several key strategies, including coculture, microspheres, three-dimensional printing and microfluidics, and microscale technology, were summarized and the feasibility of these technologies in the clinical repair of craniofacial defects was discussed.
Collapse
Affiliation(s)
- Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Margolis EA, Cleveland DS, Kong YP, Beamish JA, Wang WY, Baker BM, Putnam AJ. Stromal cell identity modulates vascular morphogenesis in a microvasculature-on-a-chip platform. LAB ON A CHIP 2021; 21:1150-1163. [PMID: 33538719 PMCID: PMC7990720 DOI: 10.1039/d0lc01092h] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Supportive stromal cells of mesenchymal origins regulate vascular morphogenesis in developmental, pathological, and regenerative contexts, contributing to vessel formation, maturation, and long-term stability, in part via the secretion of bioactive molecules. In this work, we adapted a microfluidic lab-on-a-chip system that enables the formation and perfusion of microvascular capillary beds with connections to arteriole-scale endothelialized channels to explore how stromal cell (SC) identity influences endothelial cell (EC) morphogenesis. We compared and contrasted lung fibroblasts (LFs), dermal fibroblasts (DFs), and bone marrow-derived mesenchymal stem cells (MSCs) for their abilities to support endothelial morphogenesis and subsequent perfusion of microvascular networks formed in fibrin hydrogels within the microfluidic device. We demonstrated that while all 3 SC types supported EC morphogenesis, LFs in particular resulted in microvascular morphologies with the highest total network length, vessel diameter, and vessel interconnectivity across a range of SC-EC ratio and density conditions. Not only did LFs support robust vascular morphology, but also, they were the only SC type to support functional perfusion of the resultant capillary beds. Lastly, we identified heightened traction stress produced by LFs as a possible mechanism by which LFs enhance endothelial morphogenesis in 3D compared to other SC types examined. This study provides a unique comparison of three different SC types and their role in supporting the formation of microvasculature that could provide insights for the choice of cells for vascular cell-based therapies and the regulation of tissue-specific vasculature.
Collapse
Affiliation(s)
- Emily A Margolis
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Scott RA, Fowler EW, Jia X, Kiick KL, Akins RE. Regulation of neovasculogenesis in co-cultures of aortic adventitial fibroblasts and microvascular endothelial cells by cell-cell interactions and TGF-β/ALK5 signaling. PLoS One 2020; 15:e0244243. [PMID: 33370415 PMCID: PMC7769260 DOI: 10.1371/journal.pone.0244243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/04/2020] [Indexed: 01/03/2023] Open
Abstract
Adventitial fibroblasts (AFs) are critical mediators of vascular remodeling. However, the contributions of AFs towards development of vasculature and the specific mechanisms by which these cells regulate physiological expansion of the vasa vasorum, the specialized microvasculature that supplies nutrients to the vascular wall, are not well understood. To determine the regulatory role of AFs in microvascular endothelial cell (MVEC) neovasculogenesis and to investigate the regulatory pathways utilized for communication between the two cell types, AFs and MVECs were cultured together in poly(ethylene glycol)-based hydrogels. Following preliminary evaluation of a set of cell adhesion peptides (AG10, AG73, A2G78, YIGSR, RGD), 7.5wt% hydrogels containing 3 mM RGD were selected as these substrates did not initiate primitive tubule structures in 3D MVEC monocultures, thus providing a passive platform to study AF-MVEC interaction. The addition of AFs to hydrogels promoted MVEC viability; however, increasing AF density within hydrogels stimulated MVEC proliferation, increased microvessel density and size, and enhanced deposition of basement membrane proteins, collagen IV and laminin. Importantly, AF-MVEC communication through the transforming growth factor beta (TGF-β)/activin receptor-like kinase 5 (ALK5) signaling pathway was observed to mediate microvessel formation, as inhibition of ALK5 significantly decreased MVEC proliferation, microvessel formation, mural cell recruitment, and basement membrane production. These data indicate that AFs regulate MVEC neovasculogenesis and suggest that therapeutics targeting the TGF-β/ALK5 pathway may be useful for regulation of vasculogenic and anti-vasculogenic responses.
Collapse
Affiliation(s)
- Rebecca A. Scott
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, United States of America
- Nemours—Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Eric W. Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, United States of America
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, United States of America
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, United States of America
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Robert E. Akins
- Nemours—Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| |
Collapse
|
20
|
Alshammari RH, Rajesh UC, Morgan DG, Zaleski JM. Au-Cu@PANI Alloy Core Shells for Aerobic Fibrin Degradation under Visible Light Exposure. ACS APPLIED BIO MATERIALS 2020; 3:7631-7638. [PMID: 35019503 DOI: 10.1021/acsabm.0c00833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fibrin plays a critical role in wound healing and hemostasis, yet it is also the main case of cardiovascular diseases and thrombosis. Here, we show the unique design of Au-Cu@PANI alloy core-shell rods for fibrin clot degradation. Microscopic (transmission electron microscopy (TEM), scanning transmission electron microscopy-energy-dispersive X-ray (STEM-EDX)) and structural characterizations (powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS)) of the Au-Cu@PANI hybrid material reveal the formation of Au-Cu heterogeneous alloy core rods (aspect ratio = 3.7) with thin Cu2O and PANI shells that create a positive surface charge (ζ-potential = +22 mV). This architecture is supported by the survey XPS spectrum showing the presence of Cu 2p, N 1s, and C 1s features with binding energies of 934.8, 399.7, and 284.8 eV, respectively. Upon photolysis (λ ≥ 495 or 590 nm), these hybrid composite nanorods provide sufficient excited-state redox potential to generate reactive oxygen species (ROS) for degradation of model fibrin clots within 5-7 h. Detailed scanning electron microscopy (SEM) analysis of the fibrin network shows significant morphology modification including formation of large voids and strand termini, indicating degradation of fibrin protofibril by Au-Cu@PANI. The dye 1,3-diphenylisobenzofuran (DPBF) used to detect the presence of 1O2 shows a 27% bleaching of the absorption at λ = 418 nm within 75 min of irradiation of an aqueous Au-Cu@PANI solution in air. Moreover, electron paramagnetic resonance (EPR) spin-trapping experiments reveal a hyperfine-coupled triplet signature at room temperature with intensities 1:1:1: and g-value = 2.0057, characteristic of the reaction between the spin probe 4-Oxo-TEMP and 1O2 during irradiation. Controlled 1O2 scavenging experiments by NaN3 show 82% reduction in the spin-trapped EPR signal area. Both DPBF bleaching and EPR spin trapping indicate that in situ generated 1O2 is responsible for fibrin strand scission. This unique nanomaterial function via use of ubiquitous oxygen as a reagent could open creative avenues for future in vivo biomedical applications to treat fibrin clot diseases.
Collapse
Affiliation(s)
- Riyadh H Alshammari
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.,Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - U Chinna Rajesh
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David Gene Morgan
- Electron Microscopy Center, Indiana University, Bloomington, Indiana 47405, United States
| | - Jeffrey M Zaleski
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
21
|
Friend NE, Rioja AY, Kong YP, Beamish JA, Hong X, Habif JC, Bezenah JR, Deng CX, Stegemann JP, Putnam AJ. Injectable pre-cultured tissue modules catalyze the formation of extensive functional microvasculature in vivo. Sci Rep 2020; 10:15562. [PMID: 32968145 PMCID: PMC7511337 DOI: 10.1038/s41598-020-72576-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Revascularization of ischemic tissues is a major barrier to restoring tissue function in many pathologies. Delivery of pro-angiogenic factors has shown some benefit, but it is difficult to recapitulate the complex set of factors required to form stable vasculature. Cell-based therapies and pre-vascularized tissues have shown promise, but the former require time for vascular assembly in situ while the latter require invasive surgery to implant vascularized scaffolds. Here, we developed cell-laden fibrin microbeads that can be pre-cultured to form primitive vascular networks within the modular structures. These microbeads can be delivered in a minimally invasive manner and form functional microvasculature in vivo. Microbeads containing endothelial cells and stromal fibroblasts were pre-cultured for 3 days in vitro and then injected within a fibrin matrix into subcutaneous pockets on the dorsal flanks of SCID mice. Vessels deployed from these pre-cultured microbeads formed functional connections to host vasculature within 3 days and exhibited extensive, mature vessel coverage after 7 days in vivo. Cellular microbeads showed vascularization potential comparable to bulk cellular hydrogels in this pilot study. Furthermore, our findings highlight some potentially advantageous characteristics of pre-cultured microbeads, such as volume preservation and vascular network distribution, which may be beneficial for treating ischemic diseases.
Collapse
Affiliation(s)
- Nicole E Friend
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Ana Y Rioja
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Yen P Kong
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Jeffrey A Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - Xiaowei Hong
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Julia C Habif
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Jonathan R Bezenah
- Department of Chemical Engineering, University of Michigan, Ann Arbor, USA
| | - Cheri X Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA.
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
22
|
Shahin H, Elmasry M, Steinvall I, Söberg F, El-Serafi A. Vascularization is the next challenge for skin tissue engineering as a solution for burn management. BURNS & TRAUMA 2020; 8:tkaa022. [PMID: 32766342 PMCID: PMC7396265 DOI: 10.1093/burnst/tkaa022] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/23/2020] [Indexed: 12/19/2022]
Abstract
Skin regeneration represents a promising line of management for patients with skin loss, including burn victims. The current approach of spraying single cells over the defective areas results in variable success rates in different centers. The modern approach is to synthesize a multilayer skin construct that is based on autologous stem cells. One of the main complications with different types of transplants is sloughing due to the absence of proper vascularization. Ensuring proper vascularization will be crucial for the integration of skin constructs with the surrounding tissues. Combination of the right cells with scaffolds of proper physico-chemical properties, vascularization can be markedly enhanced. The material effect, pore size and adsorption of certain proteins, as well as the application of appropriate growth factors, such as vascular endothelial growth factors, can have an additive effect. A selection of the most effective protocols is discussed in this review.
Collapse
Affiliation(s)
- Hady Shahin
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, 581 85, Linköping, Östergötland, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, 581 83, Linköping, Östergötland, Sweden
- Faculty of Biotechnology, MSA University, 26 July Mehwar Road, 125 85, 6th October City. Egypt
| | - Moustafa Elmasry
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, 581 85, Linköping, Östergötland, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, 581 83, Linköping, Östergötland, Sweden
| | - Ingrid Steinvall
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, 581 85, Linköping, Östergötland, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, 581 83, Linköping, Östergötland, Sweden
| | - Folke Söberg
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, 581 85, Linköping, Östergötland, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, 581 83, Linköping, Östergötland, Sweden
| | - Ahmed El-Serafi
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, 581 85, Linköping, Östergötland, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, 581 83, Linköping, Östergötland, Sweden
| |
Collapse
|
23
|
Park E, Hart ML, Rolauffs B, Stegemann JP, T Annamalai R. Bioresponsive microspheres for on-demand delivery of anti-inflammatory cytokines for articular cartilage repair. J Biomed Mater Res A 2019; 108:722-733. [PMID: 31788947 DOI: 10.1002/jbm.a.36852] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022]
Abstract
Despite innovations in surgical interventions, treatment of cartilage injury in osteoarthritic joints remains a challenge due to concomitant inflammation. Obstructing a single dominant inflammatory cytokine has shown remarkable clinical benefits in rheumatoid arthritis, and similar strategies are being suggested to target inflammatory pathways in osteoarthritis (OA). Here, we describe the utility of gelatin microspheres that are responsive to proteolytic enzymes typically expressed in arthritic flares, resulting in on-demand and spatiotemporally controlled release of anti-inflammatory cytokines for cartilage preservation and repair. These microspheres were designed with a net negative charge to sequester cationic anti-inflammatory cytokines, and the magnitude of the negative charge potential increased with an increase in crosslinking density. Collagenase-mediated degradation of the microspheres was dependent on the concentration of the enzyme. Release of anti-inflammatory cytokines from the loaded microspheres directly correlated with the degradation of the gelatin matrix. Exposure of the IL-4 and IL-13 loaded microspheres reduced the inflammation of chondrocytes up to 80%. Hence, the delivery of these microspheres in an OA joint can attenuate the stimulation of chondrocytes and the resulting secretion of catabolic factors such as proteinases and nitric oxide. The microsphere format also allows for minimally invasive delivery and is less susceptible to mechanically induced drug release. Consequently, bioresponsive microspheres can be an effective tool for cartilage preservation and arthritis treatment.
Collapse
Affiliation(s)
- Eunjae Park
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Melanie L Hart
- Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bernd Rolauffs
- Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Ramkumar T Annamalai
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
24
|
Xu L, Huang Y, Wang D, Zhu S, Wang Z, Yang Y, Guo Y. Reseeding endothelial cells with fibroblasts to improve the re-endothelialization of pancreatic acellular scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:85. [PMID: 31292746 DOI: 10.1007/s10856-019-6287-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
Pancreatic transplantation remains the only cure for diabetes, but the shortage of donors limits its clinical application. Whole organ decellularized scaffolds offer a new opportunity for pancreatic organ regeneration; however inadequate endothelialization and vascularization can prevent sufficient transport of oxygen and nutrient supplies to the transplanted organ, as well as leading unwanted thrombotic events. In the present study, we explored the re-endothelialization of rat pancreatic acellular scaffolds via circulation perfusion using human skin fibroblasts (FBs) and human umbilical vein endothelial cells (HUVECs). Our results revealed that the cell adhesion rate when these cells were co-cultured was higher than under control conditions, and this increase was associated with increased release of growth factors including VEGF, FGFb, EGF, and IGF-1 as measured by ELISA. When these recellularized organs were implanted in vivo for 28 days in rat dorsal subcutaneous pockets, we found that de novo vasculature formation in the co-culture samples was superior to the control samples. Together these results suggest that endothelial cell and FB co-culture enhances the re-endothelialization and vascularization of pancreatic acellular scaffolds.
Collapse
Affiliation(s)
- Liancheng Xu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yan Huang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Dongzhi Wang
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Shajun Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhiwei Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration, Neural Regeneration Co-Innovation Center of Jiangsu Province, Nantong University, Nantong, China.
| | - Yibing Guo
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
25
|
Annamalai RT, Hong X, Schott NG, Tiruchinapally G, Levi B, Stegemann JP. Injectable osteogenic microtissues containing mesenchymal stromal cells conformally fill and repair critical-size defects. Biomaterials 2019; 208:32-44. [PMID: 30991216 PMCID: PMC6500486 DOI: 10.1016/j.biomaterials.2019.04.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
Repair of complex fractures with bone loss requires a potent, space-filling intervention to promote regeneration of bone. We present a biomaterials-based strategy combining mesenchymal stromal cells (MSC) with a chitosan-collagen matrix to form modular microtissues designed for delivery through a needle to conformally fill cavital defects. Implantation of microtissues into a calvarial defect in the mouse showed that osteogenically pre-differentiated MSC resulted in complete bridging of the cavity, while undifferentiated MSC produced mineralized tissue only in apposition to native bone. Decreasing the implant volume reduced bone regeneration, while increasing the MSC concentration also attenuated bone formation, suggesting that the cell-matrix ratio is important in achieving a robust response. Conformal filling of the defect with microtissues in a carrier gel resulted in complete healing. Taken together, these results show that modular microtissues can be used to augment the differentiated function of MSC and provide an extracellular environment that potentiates bone repair.
Collapse
Affiliation(s)
- Ramkumar T Annamalai
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
| | - Xiaowei Hong
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
| | - Nicholas G Schott
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
| | | | - Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, United States
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States.
| |
Collapse
|
26
|
Annamalai RT, Matthew HWT. Transport Analysis of Engineered Liver Tissue Fabricated Using a Capsule-Based, Modular Approach. Ann Biomed Eng 2019; 47:1223-1236. [PMID: 30796550 PMCID: PMC10766109 DOI: 10.1007/s10439-018-02192-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022]
Abstract
The bioinspired, microscale tissue engineering approach has emerged in recent years as a promising alternative to preformed scaffolds. Using this approach, complex tissues and organs can be efficiently engineered from microscale modules to replicate the intricate architecture and physiology of vascularized organs and tissues. Previously, we demonstrated assembly of a prototype, engineered liver tissue, formed by the fusion of hepatocyte-containing capsules. Here, we analyzed the effects of various controllable system parameters with the aim of predicting the operating limits of our modular tissue in high cell density, perfused cultures. Both the capsule diameter and construct height were limited by mass transfer requirements, while the shear stress on the capsule wall and the pressure drop across the packed capsule bed were dictated by the capsule diameter and permissible flow rates of the system. Our analysis predicts that capsules with a 200 µm radius can efficiently maintain hepatocytes at cell densities comparable to liver tissue. Some model predictions were validated by packed bed perfusion cultures. Flow-induced bed compaction hysteresis was tested experimentally and found to have minimal effect on flow characteristics. The effectiveness factor (η) for the overall oxygen transfer within packed beds of capsule modules was estimated to be 0.72 for all conditions. Primary hepatocytes encapsulated in the capsules exhibited normal metabolism and formed spheroids during a 7-day culture. The model predictions can be useful to study mass transfer and shear stress in high-density perfusion cultures. Overall, analysis of a perfused, capsule-based, modular tissue demonstrated the feasibility of the technology as a platform for fabrication of highly metabolic solid organs.
Collapse
Affiliation(s)
- Ramkumar T Annamalai
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, 48202, USA
| | - Howard W T Matthew
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, 48202, USA.
- Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA.
| |
Collapse
|
27
|
Du P, Casavitri C, Suhaeri M, Wang PY, Lee JH, Koh WG, Park K. A Fibrous Hybrid Patch Couples Cell-Derived Matrix and Poly(l-lactide-co-caprolactone) for Endothelial Cells Delivery and Skin Wound Repair. ACS Biomater Sci Eng 2018; 5:900-910. [DOI: 10.1021/acsbiomaterials.8b01118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ping Du
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Cininta Casavitri
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Muhammad Suhaeri
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Peng-Yuan Wang
- Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jong Ho Lee
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
28
|
Sasmal P, Datta P, Wu Y, Ozbolat IT. 3D bioprinting for modelling vasculature. MICROPHYSIOLOGICAL SYSTEMS 2018; 2:9. [PMID: 30931432 PMCID: PMC6436836 DOI: 10.21037/mps.2018.10.02] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Though in vivo models provide the most physiologically-relevant environment for studying tissue development and function, an in vitro substitute is being offered by the advancement of three-dimensional (3D) bioprinting technology, which is a reproducible and scalable fabrication strategy providing precise 3D control compared to conventional microfluidic tissue fabrication methods. In this review, vasculature models printed using extrusion-, droplet-, and laser-based bioprinting techniques are summarized and compared. Besides bioprinting of hydrogels as bioinks, an alternative method to obtain vascular models by bioprinting is to use exogenous biomaterial-free cell aggregates such as tissue spheroids and cell pellet, which has also been discussed here. In addition, there have been efforts to fabricate micro-vasculature constructs (e.g., capillaries) to overcome the practical limitations of bioprinting of large scale vascular networks. At the end of the review, limitations and prospective of bioprinting in vasculature modelling has also been expounded.
Collapse
Affiliation(s)
- Pranabesh Sasmal
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah, India
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah, India
| | - Yang Wu
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
- Biomedical Engineering Department, Penn State University, University Park, PA, USA
- Materials Research Institute, Penn State University, University Park, PA, USA
| |
Collapse
|
29
|
Pill K, Melke J, Mühleder S, Pultar M, Rohringer S, Priglinger E, Redl HR, Hofmann S, Holnthoner W. Microvascular Networks From Endothelial Cells and Mesenchymal Stromal Cells From Adipose Tissue and Bone Marrow: A Comparison. Front Bioeng Biotechnol 2018; 6:156. [PMID: 30410879 PMCID: PMC6209673 DOI: 10.3389/fbioe.2018.00156] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
Abstract
A promising approach to overcome hypoxic conditions in tissue engineered constructs is to use the potential of endothelial cells (EC) to form networks in vitro when co-cultured with a supporting cell type in a 3D environment. Adipose tissue-derived stromal cells (ASC) as well as bone marrow-derived stromal cells (BMSC) have been shown to support vessel formation of EC in vitro, but only very few studies compared the angiogenic potential of both cell types using the same model. Here, we aimed at investigating the ability of ASC and BMSC to induce network formation of EC in a co-culture model in fibrin. While vascular structures of BMSC and EC remained stable over the course of 3 weeks, ASC-EC co-cultures developed more junctions and higher network density within the same time frame. Both co-cultures showed positive staining for neural glial antigen 2 (NG2) and basal lamina proteins. This indicates that vessels matured and were surrounded by perivascular cells as well as matrix molecules involved in stabilization. Gene expression analysis revealed a significant increase of vascular endothelial growth factor (VEGF) expression in ASC-EC co-culture compared to BMSC-EC co-culture. These observations were donor-independent and highlight the importance of organotypic cell sources for vascular tissue engineering.
Collapse
Affiliation(s)
- Karoline Pill
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Johanna Melke
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Severin Mühleder
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Marianne Pultar
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sabrina Rohringer
- Department of Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Eleni Priglinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz R Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
30
|
|
31
|
De Moor L, Merovci I, Baetens S, Verstraeten J, Kowalska P, Krysko DV, De Vos WH, Declercq H. High-throughput fabrication of vascularized spheroids for bioprinting. Biofabrication 2018; 10:035009. [PMID: 29798932 DOI: 10.1088/1758-5090/aac7e6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Overcoming the problem of vascularization remains the main challenge in the field of tissue engineering. As three-dimensional (3D) bioprinting is the rising technique for the fabrication of large tissue constructs, small prevascularized building blocks were generated that can be incorporated throughout a printed construct, answering the need for a microvasculature within the small micron range (<10 μm). Uniform spheroids with an ideal geometry and diameter for bioprinting were formed, using a high-throughput non-adhesive agarose microwell system. Since monoculture spheroids of endothelial cells were unable to remain stable, coculture spheroids combining endothelial cells with fibroblasts and/or adipose tissue derived mesenchymal stem cells (ADSC) as supporting cells, were created. When applying the favorable coculture ratio, viable spheroids were obtained and endothelial cells spontaneously formed a capillary-like network and lumina, as shown by immunohistochemistry and transmission electron microscopy. Especially the presence of ADSC led to a higher vascularization and extracellular matrix production of the microtissue. Moreover, spheroids were able to assemble at random in suspension and in a hydrogel, creating a macrotissue. During at random assembly, cells reorganized, creating a branched capillary-network throughout the entire fused construct by inoculating with capillaries of adjacent spheroids. Combining the advantage of this natural capacity of microtissues to self-assemble and the controlled organization by bioprinting technologies, these prevascularized spheroids can be useful as building blocks for the engineering of large vascularized 3D tissues.
Collapse
Affiliation(s)
- Lise De Moor
- Tissue engineering and Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Annamalai RT, Naik T, Prout H, Putnam AJ, Stegemann JP. Biofabrication of injectable fibrin microtissues for minimally-invasive therapies: application of surfactants. ACTA ACUST UNITED AC 2018. [PMID: 29536947 DOI: 10.1088/1748-605x/aab66f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Microtissues created from the protein fibrin and containing embedded cells can be used in modular tissue engineering approaches to create larger, hierarchical and complex tissue structures. In this paper we demonstrate an emulsification-based method for the production of such fibrin microtissues containing fibroblasts (FB) and endothelial cells (EC) and designed to promote tissue vascularization. Surfactants can be beneficial in the microtissue fabrication process to reduce aggregation and to facilitate recovery of microtissues from the emulsion, thereby increasing yield. The nonionic surfactants Pluronic L101® and Tween 20® both increased microtissue yield in a dose-dependent fashion. Cell viability of both human FB and human EC remained high after exposure to low surfactant concentrations but decreased with increasing surfactant concentration. L101 was markedly less cytotoxic than Tween, and therefore was the surfactant of choice in this application. The yield of cell-laden microtissues increased with increasing L101 concentration, though microtissues were slightly larger at low concentrations. The total metabolic activity of cells in retrieved microtissues was bimodal and was highest at an L101 concentration of 0.10% wt/vol. Network formation by EC in microtissues embedded in surrounding 3D fibrin hydrogels was also most extensive in microtissues made using an L101 concentration of 0.10% wt/vol. Minimally-invasive delivery of microtissue populations was demonstrated by injection through a standard 18 G needle, and the ability to form robust endothelial networks was maintained in injected microtissue populations. Taken together, these data demonstrate a facile emulsification-based method to create modular, cell-laden hydrogel microtissues that can be delivered by injection to promote tissue regeneration. Appropriate selection of the type and concentration of surfactant used in the process can be used to maximize viability and specialized function of the embedded cells. Such biomaterial-based microtissues may have broad applicability in cell-based therapies and tissue engineering.
Collapse
|
33
|
Annamalai RT, Turner PA, Carson WF, Levi B, Kunkel S, Stegemann JP. Harnessing macrophage-mediated degradation of gelatin microspheres for spatiotemporal control of BMP2 release. Biomaterials 2018; 161:216-227. [PMID: 29421557 PMCID: PMC5831261 DOI: 10.1016/j.biomaterials.2018.01.040] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Biomaterials-based approaches to harnessing the immune and inflammatory responses to potentiate wound healing hold important promise. Bone fracture healing is characterized by an acute inflammatory phase, followed by a transition to a regenerative and repair phase. In this study, we developed genipin-crosslinked gelatin microspheres designed to be preferentially degraded by inflammatory (M1) macrophages. Highly crosslinked (>90%) microspheres allowed efficient incorporation of bioactive bone morphogenetic protein 2 (BMP2), a potent stimulator of osteogenesis in progenitor cells, via electrostatic interactions. Release of BMP2 was directly correlated with degradation of the gelatin matrix. Exposure of microspheres to polarized murine macrophages showed that degradation was significantly higher in the presence of M1 macrophages, relative to alternatively activated (M2) macrophages and unpolarized controls. Microsphere degradation in the presence of non-inflammatory cells resulted in very low degradation rates. The expression of matrix metalloproteinases (MMPs) and tissue inhibitors of MMP (TIMPs) by macrophages were consistent with the observed phenotype-dependent degradation rates. Indirect co-culture of BMP2-loaded microspheres and macrophages with isolated adipose-derived mesenchymal stem cells (MSC) showed that M1 macrophages produced the strongest osteogenic response, comparable to direct supplementation of the culture medium with BMP2. Controlled release systems that are synchronized with the inflammatory response have the potential to provide better spatiotemporal control of growth factor delivery and therefore may improve the outcomes of recalcitrant wounds.
Collapse
Affiliation(s)
| | - Paul A Turner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | | | - Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | - Steven Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
34
|
Hospodiuk M, Dey M, Ayan B, Sosnoski D, Moncal KK, Wu Y, Ozbolat IT. Sprouting angiogenesis in engineered pseudo islets. Biofabrication 2018; 10:035003. [PMID: 29451122 DOI: 10.1088/1758-5090/aab002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite the recent achievements in cell-based therapies for curing type-1 diabetes (T1D), capillarization in beta (β)-cell clusters is still a major roadblock as it is essential for long-term viability and function of β-cells in vivo. In this research, we report sprouting angiogenesis in engineered pseudo islets (EPIs) made of mouse insulinoma βTC3 cells and rat heart microvascular endothelial cells (RHMVECs). Upon culturing in three-dimensional (3D) constructs under angiogenic conditions, EPIs sprouted extensive capillaries into the surrounding matrix. Ultra-morphological analysis through histological sections also revealed presence of capillarization within EPIs. EPIs cultured in 3D constructs maintained their viability and functionality over time while non-vascularized EPIs, without the presence of RHMVECs, could not retain their viability nor functionality. Here we demonstrate angiogenesis in engineered islets, where patient specific stem cell-derived human beta cells can be combined with microvascular endothelial cells in the near future for long-term graft survival in T1D patients.
Collapse
Affiliation(s)
- Monika Hospodiuk
- The Huck Institutes of the Life Sciences, Penn State University, State College, PA 16801, United States of America. Department of Agriculture and Biological Engineering, Penn State University, State College, PA 16801, United States of America
| | | | | | | | | | | | | |
Collapse
|
35
|
Bezenah JR, Kong YP, Putnam AJ. Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures. Sci Rep 2018; 8:2671. [PMID: 29422650 PMCID: PMC5805762 DOI: 10.1038/s41598-018-20966-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/29/2018] [Indexed: 01/11/2023] Open
Abstract
A major translational challenge in the fields of therapeutic angiogenesis and regenerative medicine is the need to create functional microvasculature. The purpose of this study was to assess whether a potentially autologous endothelial cell (EC) source derived from human induced pluripotent stem cells (iPSC-ECs) can form the same robust, stable microvasculature as previously documented for other sources of ECs. We utilized a well-established in vitro assay, in which endothelial cell-coated (iPSC-EC or HUVEC) beads were co-embedded with fibroblasts in a 3D fibrin matrix to assess their ability to form stable microvessels. iPSC-ECs exhibited a five-fold reduction in capillary network formation compared to HUVECs. Increasing matrix density reduced sprouting, although this effect was attenuated by distributing the NHLFs throughout the matrix. Inhibition of both MMP- and plasmin-mediated fibrinolysis was required to completely block sprouting of both HUVECs and iPSC-ECs. Further analysis revealed MMP-9 expression and activity were significantly lower in iPSC-EC/NHLF co-cultures than in HUVEC/NHLF co-cultures at later time points, which may account for the observed deficiencies in angiogenic sprouting of the iPSC-ECs. Collectively, these findings suggest fundamental differences in EC phenotypes must be better understood to enable the promise and potential of iPSC-ECs for clinical translation to be realized.
Collapse
Affiliation(s)
- Jonathan R Bezenah
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Yen P Kong
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Andrew J Putnam
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|