1
|
Yoshizaki Y, Horii K, Murase N, Kuzuya A, Ohya Y. Development of immune cell delivery system using biodegradable injectable polymers for cancer immunotherapy. Int J Pharm 2024; 652:123801. [PMID: 38244647 DOI: 10.1016/j.ijpharm.2024.123801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Immune cell delivery using injectable hydrogel attracts much attention for improving its therapeutic effect. Specifically, dendritic cells (DCs) are the trigger cells for immune responses, and DC vaccines are studied for improving cancer immunotherapy. Hydrogel-assisted cell delivery is expected to enhance the viability of the implanted cells. We recently reported temperature-responsive biodegradable injectable polymer (IP) formulation utilizing poly(ε-caprolactone-co-glycolide)-b-poly(ethylene glycol)(PEG)-b-poly(ε-caprolactone-co-glycolide) (tri-PCG). Tri-PCG-based IP was reported to exhibit immediate sol-to-gel transition in response to temperature increase, in vivo biodegradability, and excellent biocompatibility. In this study, tri-PCG-based IP was applied to DC delivery. IP encapsulated live DCs, and the DCs incorporated ovalbumin (OVA) as a model antigen and CpG-DNA (oligo DNA with adjuvant effect) in IP hydrogel. Results suggested that DCs encapsulated in IP hydrogel internalized OVA and CpG-DNA and DCs were maturated to present antigens to T cells. Moreover, subcutaneously injected tri-PCG-based IP prolonged the retention period of cell accumulation at injected sites. Tri-PCG IP hydrogel could release matured DCs as the degradation of the hydrogel progressed. Tri-PCG IP formulation improved treatment efficacy of OVA transfected mouse lymphoma (E.G7-OVA) tumor. Hence, tri-PCG IP is a promising platform for immune cell delivery.
Collapse
Affiliation(s)
- Yuta Yoshizaki
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Kenta Horii
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
| | - Nobuo Murase
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan; Kansai University Medical Polymer Research Center (KUMP-RC), Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
| | - Akinori Kuzuya
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan; Kansai University Medical Polymer Research Center (KUMP-RC), Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
| | - Yuichi Ohya
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan; Kansai University Medical Polymer Research Center (KUMP-RC), Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
2
|
Qin Q, Chen M, Yu N, Yao K, Liu X, Zhang Q, Wang Y, Ji J, Wang K, Jia F. Macromolecular carrier with long retention and body-temperature triggered nitric oxide release for corneal alkali burn therapy via leptin-related signaling. NANO TODAY 2024; 54:102108. [DOI: 10.1016/j.nantod.2023.102108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
|
3
|
Loss of multipotency in adipose-derived stem cells after culture in temperature-responsive injectable polymer hydrogels. Polym J 2022. [DOI: 10.1038/s41428-022-00739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractAdipose-derived stem cells (AdSCs), a type of mesenchymal stem cell, are expected to be applicable to regenerative medicine and cellular delivery systems. The maintenance of cell multipotency and control of the differentiation direction are important for these applications. However, the differentiation direction of these cells is widely believed to depend on the physical properties of their scaffold. In this study, we explored whether the multipotency of AdSCs, that is, their ability to differentiate into multiple cells, is maintained when they are removed from injectable polymer (IP) hydrogels with various degrees of cross-linking and induced to differentiate into osteoblasts and adipocytes. We confirmed that AdSCs cultured in IP hydrogels maintained an undifferentiated state. However, their differentiation into osteoblasts and adipocytes cannot be ensured; specifically, the multipotency of AdSCs may decrease when they are cultured in IP hydrogels. When cultured in an IP hydrogel with extreme softness and poor cell adhesion properties, the AdSCs remained in an undifferentiated state, but their multipotency was reduced. These results provide important insights into stem cell delivery systems using IP hydrogels.
Collapse
|
4
|
Zhang S, Ge G, Qin Y, Li W, Dong J, Mei J, Ma R, Zhang X, Bai J, Zhu C, Zhang W, Geng D. Recent advances in responsive hydrogels for diabetic wound healing. Mater Today Bio 2022; 18:100508. [PMID: 36504542 PMCID: PMC9729074 DOI: 10.1016/j.mtbio.2022.100508] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Poor wound healing after diabetes mellitus remains a challenging problem, and its pathophysiological mechanisms have not yet been fully elucidated. Persistent bleeding, disturbed regulation of inflammation, blocked cell proliferation, susceptible infection and impaired tissue remodeling are the main features of diabetic wound healing. Conventional wound dressings, including gauze, films and bandages, have a limited function. They generally act as physical barriers and absorbers of exudates, which fail to meet the requirements of the whol diabetic wound healing process. Wounds in diabetic patients typically heal slowly and are susceptible to infection due to hyperglycemia within the wound bed. Once bacterial cells develop into biofilms, diabetic wounds will exhibit robust drug resistance. Recently, the application of stimuli-responsive hydrogels, also known as "smart hydrogels", for diabetic wound healing has attracted particular attention. The basic feature of this system is its capacities to change mechanical properties, swelling ability, hydrophilicity, permeability of biologically active molecules, etc., in response to various stimuli, including temperature, potential of hydrogen (pH), protease and other biological factors. Smart hydrogels can improve therapeutic efficacy and limit total toxicity according to the characteristics of diabetic wounds. In this review, we summarized the mechanism and application of stimuli-responsive hydrogels for diabetic wound healing. It is hoped that this work will provide some inspiration and suggestions for research in this field.
Collapse
Affiliation(s)
- Siming Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Gaoran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Yi Qin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Wenhao Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Jiale Dong
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Jiawei Mei
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Ruixiang Ma
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China,Corresponding author.
| | - Weiwei Zhang
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China,Corresponding author.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China,Corresponding author.
| |
Collapse
|
5
|
Fujiwara S, Yoshizaki Y, Kuzuya A, Ohya Y. Temperature-responsive biodegradable injectable polymers with tissue adhesive properties. Acta Biomater 2021; 135:318-330. [PMID: 34461346 DOI: 10.1016/j.actbio.2021.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022]
Abstract
Injectable polymers (IPs) exhibiting in situ hydrogel formation have attracted attention as vascular embolization and postoperative adhesion prevention materials. While utilizing hydrogels for such purposes, it is essential to ensure that they have appropriate and controllable tissue adhesion property, as it is crucial for them to not detach from their deposited location in the blood vessel or abdominal cavity. Additionally, it is important to maintain gel state in vivo for the desired period at such locations, where large amounts of body fluid exist. We had previously reported on a biodegradable IP system exhibiting temperature-responsive gelation and subsequent covalent cross-link formation. We had utilized triblock copolymers of aliphatic polyester and poly(ethylene glycol) (tri-PCGs) and its derivative containing acrylate group at the termini (tri-PCG-Acryl), exhibiting a longer and more controllable duration time of the gel state. In this study, the introduction of aldehyde groups by the addition of aldehyde-modified Pluronic (PL-CHO) was performed for conferring controllable and appropriate tissue adhesive properties on these IP systems. The IP systems containing PL-CHO, which were not covalently incorporated into the hydrogel network, exhibited tissue adhesive properties through Schiff base formation. The adhesion strength could be controlled by the amount of PL-CHO added. The IP system showed good vascular embolization performance and pressure resistance in the blood vessels. The IP hydrogel remained at the administration site in the abdominal space for 2 days and displayed effective adhesion prevention performance. STATEMENT OF SIGNIFICANCE: Injectable polymers (IPs), which exhibit in situ hydrogel formation, are expected to be utilized as vascular embolization and postoperative adhesion prevention materials. The tissue adhesion properties of hydrogels are important for such applications. We succeeded in conferring tissue adhesion properties onto a previously reported IP system by mixing it with Pluronic modified with aldehyde groups (PL-CHO). The aldehyde groups allowed for the formation of Schiff bases at the tissue surfaces. The tissue adhesion property could be conveniently controlled by altering the amount of PL-CHO. We revealed that the in vitro embolization properties of IPs in blood vessels could be substantially improved by mixing with PL-CHO. The IP system containing PL-CHO also exhibited good in vivo performance for postoperative adhesion prevention.
Collapse
Affiliation(s)
- Soichiro Fujiwara
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
| | - Yuta Yoshizaki
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
| | - Akinori Kuzuya
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan; Kansai University Medical Polymer Research Center (KUMP-RC), Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
| | - Yuichi Ohya
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan; Kansai University Medical Polymer Research Center (KUMP-RC), Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
6
|
Zhou Y, Cui Y, Wang LQ. A Dual-sensitive Hydrogel Based on Poly(Lactide-co-Glycolide)-Polyethylene Glycol-Poly(Lactide-co-Glycolide) Block Copolymers for 3D Printing. Int J Bioprint 2021; 7:389. [PMID: 34286155 PMCID: PMC8287494 DOI: 10.18063/ijb.v7i3.389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
The thermo-sensitive hydrogel formed by triblock copolymers of polyethylene glycols and aliphatic polyesters serves as a promising candidate for bioink due to its excellent biodegradability and biocompatibility. However, the thermo-crosslinking alone cannot achieve a robust hydrogel to support the 3D printed constructs without collapse. Herein, a photo-crosslinkable group was introduced into the triblock copolymers to achieve a dual-sensitive hydrogel. A triblock copolymer poly(lactide-co-glycolide)-polyethylene glycol-poly(lactide-co-glycolide) decorated with acrylate group in the chain end was prepared. The obtained aqueous solutions of the copolymers could transform into hydrogels with excellent shear thinning properties and rapid elastic recovery properties spontaneously on the increase of temperature. The resulted thermogels also allowed for photo-crosslinking by exposure to ultraviolet radiation, with storage modulus dramatically increased to stable the printed constructs. Through a two-step crosslinking strategy, complicated tissue-like constructs with high shape fidelity can be printed using the dual-sensitive inks. Moreover, the mechanical strength, swelling ratio, and printability of the hydrogels can be tuned by varying the substitution rate of the acrylate group without compromising the inks' extrudability. We expect that the dual-sensitive hydrogels may be used as bioinks to print large constructs for applications in tissue engineering.
Collapse
Affiliation(s)
- Yang Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yuecheng Cui
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Li-Qun Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Hangzhou Medsun Biological Technology Co., Ltd, Hangzhou Economic and Technological Development Area, Hangzhou 310027, P. R. China
| |
Collapse
|
7
|
Fujisawa N, Takanohashi M, Chen L, Uto K, Matsumoto Y, Takeuchi M, Ebara M. A Diels-Alder polymer platform for thermally enhanced drug release toward efficient local cancer chemotherapy. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:522-531. [PMID: 34220340 PMCID: PMC8231351 DOI: 10.1080/14686996.2021.1939152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We reports a novel thermally enhanced drug release system synthesized via a dynamic Diels-Alder (DA) reaction to develop chemotherapy for pancreatic cancer. The anticancer prodrug was designed by tethering gemcitabine (GEM) to poly(furfuryl methacrylate) (PFMA) via N-(3-maleimidopropionyloxy)succinimide as a linker by DA reaction (PFMA-L-GEM). The conversion rate of the DA reaction was found to be approximately 60% at room temperature for 120 h. The reversible deconstruction of the DA covalent bond in retro Diels-Alder (rDA) reaction was confirmed by proton nuclear magnetic resonance, and the reaction was significantly accelerated at 90 °C. A PFMA-LGEM film containing magnetic nanoparticles (MNPs) was prepared for thermally enhanced release of the drug via the rDA reaction. Drug release was initiated by heating MNPs by alternating magnetic field. This enables local heating within the film above the rDA reaction temperature while maintaining a constant surrounding medium temperature. The MNPs/PFMA-L-GEM film decreased the viability of pancreatic cancer cells by 49% over 24 h. Our results suggest that DA/rDA-based thermally enhanced drug release systems can serve as a local drug release platform and deliver the target drug within locally heated tissue, thereby improving the therapeutic efficiency and overcoming the side effects of conventional drugs used to treat pancreatic cancer.
Collapse
Affiliation(s)
- Nanami Fujisawa
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Masato Takanohashi
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Lili Chen
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Koichiro Uto
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Yoshitaka Matsumoto
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Masayuki Takeuchi
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Mitsuhiro Ebara
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Graduate School of Advanced Engineering, Department of Materials Science and Technology, Tokyo University of Science, Katsushika-ku, Japan
- CONTACT Mitsuhiro Ebara Research Center for Functional Materials, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
8
|
Rizzo F, Kehr NS. Recent Advances in Injectable Hydrogels for Controlled and Local Drug Delivery. Adv Healthc Mater 2021; 10:e2001341. [PMID: 33073515 DOI: 10.1002/adhm.202001341] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Injectable hydrogels have received considerable interest in the biomedical field due to their potential applications in minimally invasive local drug delivery, more precise implantation, and site-specific drug delivery into poorly reachable tissue sites and into interface tissues, where wound healing takes a long time. Injectable hydrogels, such as in situ forming and/or shear-thinning hydrogels, can be generated using chemically and/or physically crosslinked hydrogels. Yet, for controlled and local drug delivery applications, the ideal injectable hydrogel should be able to provide controlled and sustained release of drug molecules to the target site when needed and should limit nonspecific drug molecule distribution in healthy tissues. Thus, such hydrogels should sense the environmental changes that arise in disease states and be able to release the optimal amount of drug over the necessary time period to the target region. To address this, researchers have designed stimuli-responsive injectable hydrogels. Stimuli-responsive hydrogels change their shape or volume when they sense environmental stimuli, e.g., pH, temperature, light, electrical signals, or enzymatic changes, and deliver an optimal concentration of drugs to the target site without affecting healthy tissues.
Collapse
Affiliation(s)
- Fabio Rizzo
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC) Consiglio Nazionale delle Ricerche (CNR) via Fantoli 16/15 Milan 20138 Italy
- Organic Chemistry Institute Westfälische Wilhelms‐Universität Münster Corrensstr. 36 Münster 48149 Germany
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms‐Universität Münster Busso‐Peus‐Str. 10 Münster 48149 Germany
| | - Nermin Seda Kehr
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms‐Universität Münster Busso‐Peus‐Str. 10 Münster 48149 Germany
- Physikalisches Institut Westfälische Wilhelms‐Universität Münster Wilhelm‐Klemm‐Str. 10 Münster 48149 Germany
| |
Collapse
|
9
|
Park SJ, Akimoto J, Sakakibara N, Kobatake E, Ito Y. Thermally Induced Switch of Coupling Reaction Using the Morphological Change of a Thermoresponsive Polymer on a Reactive Heteroarmed Nanoparticle. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49165-49173. [PMID: 32991144 DOI: 10.1021/acsami.0c12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Control of the cross-linking reaction is imperative when developing a sophisticated in situ forming hydrogel in the body. In this study, a heteroarmed thermoresponsive (TR) nanoparticle was designed to investigate the mechanism of controlling reactivity of the functional groups introduced into the nanoparticles. The coupling reaction was suppressed/proceeded by utilizing temperature-induced morphological changes of the TR polymer. The heteroarmed TR nanoparticle was prepared by the coassembly of amphiphilic block copolymers possessing both a TR segment and hydrophilic segment with reactive functional groups of succinimide. The longer TR chain on the nanoparticle covered the succinimide group and suppressed the reaction with the primary amine on the external nanoparticle. In contrast, the coupling reaction was promoted at a high temperature to create the chemical cross-linking structure between the nanoparticles because of the exposure of the succinimide group on the surface of the particle as a consequence of the morphological change of the TR polymer. In addition, the thermally controlled chemical reaction modulated initiation of the gelation using a highly concentrated nanoparticle solution. The heteroarmed TR nanoparticle offers great practical advantages for clinical uses, such as embolization agents, through precise control of the reaction.
Collapse
Affiliation(s)
- So Jung Park
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Japan
| | - Jun Akimoto
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoki Sakakibara
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Cardiovascular Surgery, Edogawa Hospital, 2-24-18 Higashikoiwa, Edogawa-ku, Tokyo 133-0052. Japan
| | - Eiry Kobatake
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
10
|
Shi X, Wu J, Wang Z, Song F, Gao W, Liu S. Synthesis and properties of a temperature-sensitive hydrogel based on physical crosslinking via stereocomplexation of PLLA-PDLA. RSC Adv 2020; 10:19759-19769. [PMID: 35520454 PMCID: PMC9054217 DOI: 10.1039/d0ra01790f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
A synthetic route to amphiphilic conetwork (APCN) gels was developed and involved (1) a ring-opening polymerization (ROP) synthesis of the macromonomer HEMA-PLLA/PDLA, and (2) a radical polymerization of a stereocomplex of the synthesized macromonomers with P(MEO2MA-co-OEGMA) to form the APCN gels. The structure of the gel was successfully verified using X-ray diffraction. Thermal analysis and differential scanning calorimetry data showed that the thermal behaviors of the gels were greatly improved compared with that of polylactic acid (PLA). The mechanical properties of the gels were measured by using a dynamic viscometer, and the results indicated a greater mechanical strength before swelling than afterwards, and an increasing strength of the gels with increasing amount of PLA stereocomplex. Gels placed in different aqueous phases at different temperatures showed different swelling ratio (SR) values. Specifically, the SR gradually decreased as the temperature was increased, indicating a temperature sensitivity of the gels. In addition, the gels placed in the aqueous and organic phases presented as hydrogels and hydrophobic gels, respectively, and their SR values were relatively low. These results indicated the amphiphilic nature of the gel, and indicated great application prospects for the gel in biomedicine. A synthetic route to amphiphilic conetwork (APCN) gels was developed and involved (1) ring-opening polymerization synthesis of the macromonomer, and (2) radical polymerization of stereocomplex of the synthesized macromonomers with MEO2MA, OEGMA to form the APCN gels.![]()
Collapse
Affiliation(s)
- Xiaoyu Shi
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education Xi'an 710062 PR China +86-29-81530781.,School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 PR China
| | - Jie Wu
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education Xi'an 710062 PR China +86-29-81530781.,School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 PR China
| | - Zhidan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education Xi'an 710062 PR China +86-29-81530781.,School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 PR China
| | - Fei Song
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education Xi'an 710062 PR China +86-29-81530781.,School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 PR China
| | - Wenli Gao
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education Xi'an 710062 PR China +86-29-81530781.,School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 PR China
| | - Shouxin Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education Xi'an 710062 PR China +86-29-81530781.,School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 PR China
| |
Collapse
|
11
|
Akimoto J, Tamate R, Okazawa S, Akimoto AM, Onoda M, Yoshida R, Ito Y. Reactivity Control of Polymer Functional Groups by Altering the Structure of Thermoresponsive Triblock Copolymers. ACS OMEGA 2019; 4:16344-16351. [PMID: 31616812 PMCID: PMC6787895 DOI: 10.1021/acsomega.9b01816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
A thermoresponsive ABA triblock copolymer bearing an aldehyde group on the thermoresponsive A segments was synthesized. The polymer formed a micellar assembly due to the hydrophobic interactions of the thermoresponsive segment above the lower critical solution temperature (LCST). In contrast, the ABA polymer assembly decomposed upon lowering the temperature below the LCST. Using this structural change, the reactivity of the aldehyde group toward primary amines of albumin and poly(allylamine) was investigated. When the ABA polymer assembly and reactant were mixed above the LCST, Schiff base formation was suppressed because of the aldehyde group being protected by the hydrophobic thermoresponsive core. In contrast, Schiff base formation between the ABA triblock copolymer and the primary amine moiety on the molecules was confirmed below the LCST. The reactivity of the aldehyde functional group can therefore be controlled by altering the structure of the thermoresponsive ABA polymer.
Collapse
Affiliation(s)
- Jun Akimoto
- Emergent
Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Nano
Medical Engineering Laboratory, RIKEN Center
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ryota Tamate
- Department
of Materials Engineering, Schools of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Center
for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Shingo Okazawa
- Department
of Materials Engineering, Schools of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Aya M. Akimoto
- Department
of Materials Engineering, Schools of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Michika Onoda
- Department
of Materials Engineering, Schools of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Ryo Yoshida
- Department
of Materials Engineering, Schools of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Yoshihiro Ito
- Emergent
Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Nano
Medical Engineering Laboratory, RIKEN Center
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
12
|
Patel M, Lee HJ, Son S, Kim H, Kim J, Jeong B. Iron Ion-Releasing Polypeptide Thermogel for Neuronal Differentiation of Mesenchymal Stem Cells. Biomacromolecules 2019; 21:143-151. [DOI: 10.1021/acs.biomac.9b01096] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Seungyi Son
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Heeju Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Jinheung Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| |
Collapse
|
13
|
Sponchioni M, Capasso Palmiero U, Moscatelli D. Thermo-responsive polymers: Applications of smart materials in drug delivery and tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:589-605. [PMID: 31147031 DOI: 10.1016/j.msec.2019.04.069] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/02/2019] [Accepted: 04/22/2019] [Indexed: 01/01/2023]
Abstract
Synthetic polymers are attracting great attention in the last decades for their use in the biomedical field as nanovectors for controlled drug delivery, hydrogels and scaffolds enabling cell growth. Among them, polymers able to respond to environmental stimuli have been recently under growing consideration to impart a "smart" behavior to the final product, which is highly desirable to provide it with a specific dynamic and an advanced function. In particular, thermo-responsive polymers, materials able to undergo a discontinuous phase transition or morphological change in response to a temperature variation, are among the most studied. The development of the so-called controlled radical polymerization techniques has paved the way to a high degree of engineering for the polymer architecture and properties, which in turn brought to a plethora of sophisticated behaviors for these polymers by simply switching the external temperature. These can be exploited in many different fields, from separation to advanced optics and biosensors. The aim of this review is to critically discuss the latest advances in the development of thermo-responsive materials for biomedical applications, including a highly controlled drug delivery, mediation of cell growth and bioseparation. The focus is on the structural and design aspects that are required to exploit such materials for cutting-edge applications in the biomedical field.
Collapse
Affiliation(s)
- Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland.
| | - Umberto Capasso Palmiero
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
14
|
Temperature-responsive biodegradable injectable polymer systems with conveniently controllable properties. Polym J 2019. [DOI: 10.1038/s41428-019-0217-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Nagahama K, Oyama N, Ono K, Hotta A, Kawauchi K, Nishikata T. Nanocomposite injectable gels capable of self-replenishing regenerative extracellular microenvironments for in vivo tissue engineering. Biomater Sci 2018; 6:550-561. [PMID: 29379910 DOI: 10.1039/c7bm01167a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Injectable hydrogels are biomaterials that have the potential to provide scaffolds to cells for in situ tissue regeneration with a minimally invasive implantation procedure. The success of in vivo tissue engineering utilizing injectable gels depends on providing cells with appropriate scaffolds that present an instructive extracellular microenvironment, which strongly influences the survival, proliferation, organization, and function of cells encapsulated within gels. One of the most important abilities of injectable gels to achieve this function is to adsorb and retain a wide variety of requisite bioactive molecules including nutrients, extracellular matrices, and growth/differentiation factors within gels. Previously, we developed nanocomposite injectable gels fabricated by simple combination of common biodegradable copolymers, poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-PEG-PLGA), and synthetic clay nanoparticles (LAPONITE®). We revealed that the nanocomposite injectable gels strongly adsorb ECM molecules including collagen and heparin within gels and retain them due to the ability of LAPONITE® in synchronization with the degradation of PLGA-PEG-PLGA and subsequent release of the degradation products. Human dermal fibroblast cells cultured on the nanocomposite gels showed enough high cell viability and proliferation for at least a week. Moreover, various kinds of human cells encapsulated within the nanocomposite gels exhibited significantly higher survival, proliferation, and three-dimensional organization in comparison with the PLGA-PEG-PLGA gel, LAPONITE® gel, and Matrigel. Furthermore, transplantation of mouse myoblast cells with the nanocomposite gels in model mice of skeletal muscle injury dramatically enhanced tissue regeneration and functional recovery, whereas cell transplantation with the PLGA-PEG-PLGA gel did not. Thus, the nanocomposite injectable gels possess unique abilities to self-replenish the regenerative extracellular microenvironment within the gels in the body, demonstrating the potential utility of the nanocomposite injectable gels for in vivo tissue engineering.
Collapse
Affiliation(s)
- Koji Nagahama
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe 650-0047, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Yoshida Y, Takai H, Kawahara K, Mitsumune S, Takata K, Kuzuya A, Ohya Y. Biodegradable injectable polymer systems exhibiting a longer and controllable duration time of the gel state. Biomater Sci 2018; 5:1304-1314. [PMID: 28594018 DOI: 10.1039/c7bm00357a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here, we report biodegradable temperature-triggered covalent gelation systems exhibiting a longer and controllable duration time of the gel state by a "mixing strategy" utilizing a thiol-ene reaction. We synthesized a tri-block copolymer of poly(caprolactone-co-glycolic acid) and PEG (tri-PCG) as a temperature-responsive injectable polymer (IP) and attached acryloyl groups on both termini (tri-PCG-Acryl). A tri-PCG micelle solution containing hydrophobic hexa-functional polythiol (Solution-A) and a tri-PCG-Acryl micelle solution (Solution-B) were mixed together. After mixing, the solution was still in the sol state at r.t., but exhibited an irreversible sol-to-gel transition in response to temperature. The duration time of the gel state while soaking in PBS could be altered from 1 day to 93 days by changing the mixing ratio of Solution-A/B. The physical strengths of the hydrogels were also controllable by changing the mixing ratio. The IP system showed good biocompatibility and a long duration time of the gel state after subcutaneous implantation.
Collapse
Affiliation(s)
- Yasuyuki Yoshida
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Takata K, Takai H, Yoshizaki Y, Nagata T, Kawahara K, Yoshida Y, Kuzuya A, Ohya Y. Peptide Drug Release Behavior from Biodegradable Temperature-Responsive Injectable Hydrogels Exhibiting Irreversible Gelation. Gels 2017; 3:E38. [PMID: 30920533 PMCID: PMC6318690 DOI: 10.3390/gels3040038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 01/05/2023] Open
Abstract
We investigated the release behavior of glucagon-like peptide-1 (GLP-1) from a biodegradable injectable polymer (IP) hydrogel. This hydrogel shows temperature-responsive irreversible gelation due to the covalent bond formation through a thiol-ene reaction. In vitro sustained release of GLP-1 from an irreversible IP formulation (F(P1/D+PA40)) was observed compared with a reversible (physical gelation) IP formulation (F(P1)). Moreover, pharmaceutically active levels of GLP-1 were maintained in blood after subcutaneous injection of the irreversible IP formulation into rats. This system should be useful for the minimally invasive sustained drug release of peptide drugs and other water-soluble bioactive reagents.
Collapse
Affiliation(s)
- Kazuyuki Takata
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Hiroki Takai
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Yuta Yoshizaki
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, Suita, Osaka 564-8680, Japan.
| | - Takuya Nagata
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Keisuke Kawahara
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Yasuyuki Yoshida
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
- Research Fellow of Japan Society for the promotion of Science, Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.
| | - Akinori Kuzuya
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, Suita, Osaka 564-8680, Japan.
| | - Yuichi Ohya
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
18
|
Takata K, Kawahara K, Yoshida Y, Kuzuya A, Ohya Y. Analysis of the sol-to-gel transition behavior of temperature-responsive injectable polymer systems by fluorescence resonance energy transfer. Polym J 2017. [DOI: 10.1038/pj.2017.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Yoshida Y, Takata K, Takai H, Kawahara K, Kuzuya A, Ohya Y. Extemporaneously preparative biodegradable injectable polymer systems exhibiting temperature-responsive irreversible gelation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1427-1443. [PMID: 28494698 DOI: 10.1080/09205063.2017.1330114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
On clinical application of biodegradable injectable polymer (IP) systems, quick extemporaneous preparation of IP formulations and longer duration time gel state after injection into the body are the important targets to be developed. Previously, we had reported temperature-responsive covalent gelation systems via bio-orthogonal thiol-ene reaction by 'mixing strategy' of amphiphilic biodegradable tri-block copolymer (tri-PCG) attaching acryloyl groups on both termini (tri-PCG-Acryl) with reactive polythiol. In other previous works, we found 'freeze-dry with PEG/dispersion' method as quick extemporaneous preparation method of biodegradable IP formulations. In this study, we applied this quick preparative method to the temperature-triggered covalent gelation system. The instant formulation (D-sample) could be prepared by 'freeze-dry with PEG/dispersion' just mixing of tri-PCG-Acryl micelle dispersion and tri-PCG/DPMP micelle dispersion with PEG, that can be prepared in 30 s from the dried samples. The obtained D-sample showed irreversible gelation and long duration time of gel state, which was basically the same as the formulations prepared by the usual heating dissolution method (S-sample). Interestingly, the D-sample could maintain its sol state for a longer time (24 h) after preparing the formulation at r.t. compared with the S-sample, which became a gel in 3 h after preparing. The IP system showed good biocompatibility and long duration time of the gel state after subcutaneous implantation. These characteristics of D-samples, quick extemporaneous preparation and high stability in the sol state before injection, would be very convenient in a clinical setting.
Collapse
Affiliation(s)
- Yasuyuki Yoshida
- a Faculty of Chemistry, Materials and Bioengineering, Department of Chemistry and Materials Engineering , Kansai University , Suita , Japan.,b Research Fellow of Japan Society for the Promotion of Science , Chiyoda, Tokyo , Japan
| | - Kazuyuki Takata
- a Faculty of Chemistry, Materials and Bioengineering, Department of Chemistry and Materials Engineering , Kansai University , Suita , Japan
| | - Hiroki Takai
- a Faculty of Chemistry, Materials and Bioengineering, Department of Chemistry and Materials Engineering , Kansai University , Suita , Japan
| | - Keisuke Kawahara
- a Faculty of Chemistry, Materials and Bioengineering, Department of Chemistry and Materials Engineering , Kansai University , Suita , Japan
| | - Akinori Kuzuya
- a Faculty of Chemistry, Materials and Bioengineering, Department of Chemistry and Materials Engineering , Kansai University , Suita , Japan.,c Organization for Research and Development of Innovative Science and Technology (ORDIST) , Kansai University , Suita , Japan.,d PREST, Japan Science and Technology Agency , Kawaguchi , Japan
| | - Yuichi Ohya
- a Faculty of Chemistry, Materials and Bioengineering, Department of Chemistry and Materials Engineering , Kansai University , Suita , Japan.,c Organization for Research and Development of Innovative Science and Technology (ORDIST) , Kansai University , Suita , Japan
| |
Collapse
|
20
|
Yoshida Y, Kawahara K, Mitsumune S, Kuzuya A, Ohya Y. Injectable and biodegradable temperature-responsive mixed polymer systems providing variable gel-forming pH regions. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1158-1171. [PMID: 28271953 DOI: 10.1080/09205063.2017.1304170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Aqueous solutions of biodegradable polymers exhibiting sol-to-gel transitions in response to external stimuli such as temperature and pH are expected to be used as injectable polymers (IPs) for biomedical applications. In this study, we prepared novel biodegradable temperature-responsive IP systems providing variable gel-forming pH regions. We synthesized PCGA-b-PEG-b-PCGA (tri-PCG) and attached carboxylic acid or primary amine groups on both termini, tri-PCG-COOH and tri-PCG-NH2, and investigated the temperature-responsive sol-to-gel transition behavior of the mixtures of these two copolymers at various pHs. We found that the gel-forming pH region of the mixed system could be easily controlled by simply changing the mixing ratios of these polymers.
Collapse
Affiliation(s)
- Yasuyuki Yoshida
- a Faculty of Chemistry, Materials and Bioengineering, Department of Chemistry and Materials Engineering , Kansai University , Suita , Japan.,b Japan Society for the Promotion of Science , Tokyo , Japan
| | - Keisuke Kawahara
- a Faculty of Chemistry, Materials and Bioengineering, Department of Chemistry and Materials Engineering , Kansai University , Suita , Japan
| | - Shintaro Mitsumune
- a Faculty of Chemistry, Materials and Bioengineering, Department of Chemistry and Materials Engineering , Kansai University , Suita , Japan
| | - Akinori Kuzuya
- a Faculty of Chemistry, Materials and Bioengineering, Department of Chemistry and Materials Engineering , Kansai University , Suita , Japan.,c Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University , Suita , Japan.,d PREST, Japan Science and Technology Agency , Kawaguchi , Japan
| | - Yuichi Ohya
- a Faculty of Chemistry, Materials and Bioengineering, Department of Chemistry and Materials Engineering , Kansai University , Suita , Japan.,c Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University , Suita , Japan
| |
Collapse
|