1
|
Hwang JJ, Chen PY, Luo KH, Wang YC, Lai TY, Balitaan JNI, Lin SR, Yeh JM. Leaf on a Film: Mesoporous Silica-Based Epoxy Composites with Superhydrophobic Biomimetic Surface Structure as Anti-Corrosion and Anti-Biofilm Coatings. Polymers (Basel) 2024; 16:1673. [PMID: 38932022 PMCID: PMC11207373 DOI: 10.3390/polym16121673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, a series of amine-modified mesoporous silica (AMS)-based epoxy composites with superhydrophobic biomimetic structure surface of Xanthosoma sagittifolium leaves (XSLs) were prepared and applied as anti-corrosion and anti-biofilm coatings. Initially, the AMS was synthesized by the base-catalyzed sol-gel reaction of tetraethoxysilane (TEOS) and triethoxysilane (APTES) through a non-surfactant templating route. Subsequently, a series of AMS-based epoxy composites were prepared by performing the ring-opening polymerization of DGEBA with T-403 in the presence of AMS spheres, followed by characterization through FTIR, TEM, and CA. Furthermore, a nano-casting technique with polydimethylsiloxane (PDMS) as the soft template was utilized to transfer the surface pattern of natural XSLs to AMS-based epoxy composites, leading to the formation of AMS-based epoxy composites with biomimetic structure. From a hydrophilic CA of 69°, the surface of non-biomimetic epoxy significantly increased to 152° upon introducing XSL surface structure to the AMS-based epoxy composites. Based on the standard electrochemical anti-corrosion and anti-biofilm measurements, the superhydrophobic BEAMS3 composite was found to exhibit a remarkable anti-corrosion efficiency of ~99% and antimicrobial efficacy of 82% as compared to that of hydrophilic epoxy coatings.
Collapse
Affiliation(s)
- Jiunn-Jer Hwang
- Department of Health and Nutrition & Chemical Engineering, Army Academy, Chung Li 320316, Taiwan;
- Center for General Education, Chung Yuan Christian University, Chung Li 320314, Taiwan
| | - Pei-Yu Chen
- Department of Chemistry, Chung Yuan Christian University, Chung Li 320314, Taiwan
| | - Kun-Hao Luo
- Department of Chemistry, Chung Yuan Christian University, Chung Li 320314, Taiwan
| | - Yung-Chin Wang
- Department of Chemistry, Chung Yuan Christian University, Chung Li 320314, Taiwan
| | - Ting-Ying Lai
- Department of Chemistry, Chung Yuan Christian University, Chung Li 320314, Taiwan
| | - Jolleen Natalie I. Balitaan
- Department of Chemistry and Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Boulevard, Manila 1008, Philippines
| | - Shu-Rung Lin
- Department of Bioscience Technology, Chung Yuan Christian University, Chung Li 320314, Taiwan
| | - Jui-Ming Yeh
- Department of Chemistry, Chung Yuan Christian University, Chung Li 320314, Taiwan
| |
Collapse
|
2
|
Cho Y, Choi Y, Seong H. Nanoscale surface coatings and topographies for neural interfaces. Acta Biomater 2024; 175:55-75. [PMID: 38141934 DOI: 10.1016/j.actbio.2023.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
With the lack of minimally invasive tools for probing neuronal systems across spatiotemporal scales, understanding the working mechanism of the nervous system and limited assessments available are imperative to prevent or treat neurological disorders. In particular, nanoengineered neural interfaces can provide a solution to this technological barrier. This review covers recent surface engineering approaches, including nanoscale surface coatings, and a range of topographies from the microscale to the nanoscale, primarily focusing on neural-interfaced biosystems. Specifically, the immobilization of bioactive molecules to fertilize the neural cell lineage, topographical engineering to induce mechanotransduction in neural cells, and enhanced cell-chip coupling using three-dimensional structured surfaces are highlighted. Advances in neural interface design will help us understand the nervous system, thereby achieving the effective treatments for neurological disorders. STATEMENT OF SIGNIFICANCE: • This review focuses on designing bioactive neural interface with a nanoscale chemical modification and topographical engineering at multiscale perspective. • Versatile nanoscale surface coatings and topographies for neural interface are summarized. • Recent advances in bioactive materials applicable for neural cell culture, electrophysiological sensing, and neural implants are reviewed.
Collapse
Affiliation(s)
- Younghak Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yunyoung Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyejeong Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea.
| |
Collapse
|
3
|
Monteiro N, Fangueiro J, Reis R, Neves N. Replication of natural surface topographies to generate advanced cell culture substrates. Bioact Mater 2023; 28:337-347. [PMID: 37519922 PMCID: PMC10382971 DOI: 10.1016/j.bioactmat.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/29/2023] [Accepted: 06/04/2023] [Indexed: 08/01/2023] Open
Abstract
Surface topographies of cell culture substrates can be used to generate in vitro cell culture environments similar to the in vivo cell niches. In vivo, the physical properties of the extracellular matrix (ECM), such as its topography, provide physical cues that play an important role in modulating cell function. Mimicking these properties remains a challenge to provide in vitro realistic environments for cells. Artificially generated substrates' topographies were used extensively to explore this important surface cue. More recently, the replication of natural surface topographies has been enabling to exploration of characteristics such as hierarchy and size scales relevant for cells as advanced biomimetic substrates. These substrates offer more realistic and mimetic environments regarding the topographies found in vivo. This review will highlight the use of natural surface topographies as a template to generate substrates for in-vitro cell culture. This review starts with an analysis of the main cell functions that can be regulated by the substrate's surface topography through cell-substrate interactions. Then, we will discuss research works wherein substrates for cell biology decorated with natural surface topographies were used and investigated regarding their influence on cellular performance. At the end of this review, we will highlight the advantages and challenges of the use of natural surface topographies as a template for the generation of advanced substrates for cell culture.
Collapse
Affiliation(s)
- N.O. Monteiro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - J.F. Fangueiro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - R.L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - N.M. Neves
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
4
|
Zhang Y, Habibovic P. Delivering Mechanical Stimulation to Cells: State of the Art in Materials and Devices Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110267. [PMID: 35385176 DOI: 10.1002/adma.202110267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Biochemical signals, such as growth factors, cytokines, and transcription factors are known to play a crucial role in regulating a variety of cellular activities as well as maintaining the normal function of different tissues and organs. If the biochemical signals are assumed to be one side of the coin, the other side comprises biophysical cues. There is growing evidence showing that biophysical signals, and in particular mechanical cues, also play an important role in different stages of human life ranging from morphogenesis during embryonic development to maturation and maintenance of tissue and organ function throughout life. In order to investigate how mechanical signals influence cell and tissue function, tremendous efforts have been devoted to fabricating various materials and devices for delivering mechanical stimuli to cells and tissues. Here, an overview of the current state of the art in the design and development of such materials and devices is provided, with a focus on their design principles, and challenges and perspectives for future research directions are highlighted.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
5
|
Luo KH, Chen RD, Hsu CH, Li WT, Yan M, Chin TY, Yeh JM. Effect of Sulfonation Group on Polyaniline Copolymer Scaffolds for Tissue Engineering with Laminin Treatment under Electrical Stimulation. ACS APPLIED BIO MATERIALS 2022; 5:3778-3787. [PMID: 35831781 DOI: 10.1021/acsabm.2c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfonated copolyanilines (SPANs), SPAN-40 and SPAN-75, were prepared and applied in this tissue engineering study. SPAN scaffolds (SPANs) and control group polyaniline (PANI) were synthesized by performing oxidative polymerization. To further research the effects of neuron regeneration, PC12 cells were cultured on as-prepared PANI and SPANs with laminin (La) treatment under electrical stimulation. The effects on PC12 cell differentiation were investigated by controlling the amount of sulfonated groups (-SO3H) in the SPAN chain, the electrical stimulation voltage, and the presence or absence of La coating. The adhesion and proliferation of cells increased with the degree of sulfonation; La and electrical stimulation further promoted neuronal cell differentiation as increased neurite length was demonstrated in the micrograph analyses. In summary, the sulfonated copolyaniline coated with La had the best effect on neuronal differentiation under electrical stimulation, suggesting its potential as a substrate for nerve tissue engineering.
Collapse
Affiliation(s)
- Kun-Hao Luo
- Department of Chemistry, R & D Center for Membrane Technology at Chung Yuan Christian University, Chung Li, Taiwan 32023, Republic of China
| | - Rui-Da Chen
- Department of Chemistry, R & D Center for Membrane Technology at Chung Yuan Christian University, Chung Li, Taiwan 32023, Republic of China
| | - Chien-Hua Hsu
- Department of Chemistry, R & D Center for Membrane Technology at Chung Yuan Christian University, Chung Li, Taiwan 32023, Republic of China
| | - Wen-Tyng Li
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung Li, Taiwan 32023, Republic of China
| | - Minsi Yan
- Department of Chemistry, R & D Center for Membrane Technology at Chung Yuan Christian University, Chung Li, Taiwan 32023, Republic of China
| | - Ting-Yu Chin
- Department of Bioscience Technology, Chung Yuan Christian University, Chung Li, Taiwan 32023, Republic of China
| | - Jui-Ming Yeh
- Department of Chemistry, R & D Center for Membrane Technology at Chung Yuan Christian University, Chung Li, Taiwan 32023, Republic of China
| |
Collapse
|
6
|
Yadav S, Majumder A. Biomimicked large-area anisotropic grooves from Dracaena sanderianaleaf enhances cellular alignment and subsequent differentiation. BIOINSPIRATION & BIOMIMETICS 2022; 17:056002. [PMID: 35728757 DOI: 10.1088/1748-3190/ac7afe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Cellular alignment is important for the proper functioning of different tissues such as muscles or blood vessel walls. Hence, in tissue engineering, sufficient effort has been made to control cellular orientation and alignment. It has been shown that micro-and nanoscale anisotropic topological features on cell culture substrates can control cellular orientation. Such substrates are fabricated using various lithography techniques such as photolithography and soft lithography. Although such techniques are suitable for creating patterns in small areas to establish a proof-of-concept, patterning large areas with intricate features is an unsolved problem. In this work, we report that a replica of the groove-like anisotropic patterns of the abaxial side of aDracaena sanderiana(bamboo) leaf can be used for large-area patterning of cells. We imprinted the leaf on polydimethylsiloxane (PDMS) and characterised its surface topography using scanning electron microscopy. We further cultured bone marrow human mesenchymal cells (BM-hMSCs), skeletal muscle cells (C2C12), and neuroblastoma cells (SHSY5Y) on the patterned PDMS on which the cells orient along the direction of the grooved pattern. Further, we observed enhanced neuronal differentiation of SHSY5Y cells on biomimicked pattern compared to flat PDMS as measured by percentage of cells with neurites, neurite length and the expression of neuronal differentiation marker beta-III tubulin (TUJ1). This process is simple, frugal, and can be adopted by laboratories with resource constraints. This one-step technique to fabricate large-area anisotropic surface patterns from bamboo leaves can be used as a platform to study cellular alignment and its effect on various cellular functions, including differentiation.
Collapse
Affiliation(s)
- Shital Yadav
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
7
|
Yadav S, Majumder A. Biomimicked hierarchical 2D and 3D structures from natural templates: applications in cell biology. Biomed Mater 2021; 16. [PMID: 34438385 DOI: 10.1088/1748-605x/ac21a7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 08/26/2021] [Indexed: 11/11/2022]
Abstract
Intricate structures of natural surfaces and materials have amazed people over the ages. The unique properties of various surfaces also created interest and curiosity in researchers. In the recent past, with the advent of superior microscopy techniques, we have started to understand how these complex structures provide superior properties. With that knowledge, scientists have developed various biomimicked and bio-inspired surfaces for different non-biological applications. In the last two decades, we have also started to learn how structures of the tissue microenvironment influence cell function and behaviour, both in physiological and pathological conditions. Hence, it became essential to decipher the role and importance of structural hierarchy in the cellular context. With advances in microfabricated techniques, such complex structures were made by superimposing features of different dimensions. However, the fabricated topographies are far from matching the complexities presentin vivo. Hence, the need of biomimicking the natural surfaces for cellular applications was felt. In this review, we discuss a few examples of hierarchical surfaces found in plants, insects, and vertebrates. Such structures have been widely biomimicked for various applications but rarely studied for cell-substrate interaction and cellular response. Here, we discuss the research work wherein 2D hierarchical substrates were prepared using biomimicking to understand cellular functions such as adhesion, orientation, differentiation, and formation of spheroids. Further, we also present the status of ongoing research in mimicking 3D tissue architecture using de-cellularized plant-based and tissue/organ-based scaffolds. We will also discuss 3D printing for fabricating 2D and 3D hierarchical structures. The review will end by highlighting the various advantages and research challenges in this approach. The biomimickedin-vivolike substrate can be used to better understand cellular physiology, and for tissue engineering.
Collapse
Affiliation(s)
- Shital Yadav
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
8
|
Peressotti S, Koehl GE, Goding JA, Green RA. Self-Assembling Hydrogel Structures for Neural Tissue Repair. ACS Biomater Sci Eng 2021; 7:4136-4163. [PMID: 33780230 PMCID: PMC8441975 DOI: 10.1021/acsbiomaterials.1c00030] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Hydrogel materials have been employed as biological scaffolds for tissue regeneration across a wide range of applications. Their versatility and biomimetic properties make them an optimal choice for treating the complex and delicate milieu of neural tissue damage. Aside from finely tailored hydrogel properties, which aim to mimic healthy physiological tissue, a minimally invasive delivery method is essential to prevent off-target and surgery-related complications. The specific class of injectable hydrogels termed self-assembling peptides (SAPs), provide an ideal combination of in situ polymerization combined with versatility for biofunctionlization, tunable physicochemical properties, and high cytocompatibility. This review identifies design criteria for neural scaffolds based upon key cellular interactions with the neural extracellular matrix (ECM), with emphasis on aspects that are reproducible in a biomaterial environment. Examples of the most recent SAPs and modification methods are presented, with a focus on biological, mechanical, and topographical cues. Furthermore, SAP electrical properties and methods to provide appropriate electrical and electrochemical cues are widely discussed, in light of the endogenous electrical activity of neural tissue as well as the clinical effectiveness of stimulation treatments. Recent applications of SAP materials in neural repair and electrical stimulation therapies are highlighted, identifying research gaps in the field of hydrogels for neural regeneration.
Collapse
Affiliation(s)
- Sofia Peressotti
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Gillian E. Koehl
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Josef A. Goding
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Rylie A. Green
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| |
Collapse
|
9
|
Joseph G, Orme RP, Kyriacou T, Fricker RA, Roach P. Effects of Surface Chemistry Interaction on Primary Neural Stem Cell Neurosphere Responses. ACS OMEGA 2021; 6:19901-19910. [PMID: 34368577 PMCID: PMC8340405 DOI: 10.1021/acsomega.1c02796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
The characteristics of a material's surface are extremely important when considering their interactions with biological species. Despite surface chemistry playing a critical role in mediating the responses of cells, there remains no single rule which dictates absolute performance; this is particularly challenging when considering the response of differing cell types to a range of materials. Here, we highlight the functional behavior of neural stem cells presented as neurospheres, with respect to a range of alkane-based self-assembled monolayers presenting different functional groups: OH, CO2H, NH2, phenyl, CH3, SH, and laminin. The influence of chemical cues was examined in terms of neurosphere spreading on each of these defined surfaces (cell adhesion and migration capacity) and neuronal versus glial marker expression. Measurements were made over a time series of 3, 5, and 7 days, showing a dynamic nature to the initial responses observed after seeding. While OH surfaces presented an excellent platform for glial migration, larger proportions of cells expressing neuronal β3-tubulin were found on SH- and laminin-coated surfaces. Axonal elongation was found to be initially similar on all surfaces with neurite lengths having a wider spread predominantly on NH2- and laminin-presenting surfaces. A generalized trend could not be found to correlate cellular responses with surface wettability, lipophilicity (log P), or charge/ionizability (pK a). These results highlight the potential for chemical cues to direct primary neural stem cell responses in contact with the defined materials. New biomaterials which control specific cell culture characteristics in vitro will streamline the up-scale manufacture of cellular therapies, with the enrichment of the required populations resulting from a defined material interaction.
Collapse
Affiliation(s)
- Georghios Joseph
- Institute
for Science and Technology in Medicine, and School of Medicine, Keele University, Keele, Staffs ST5 5BG, U.K.
| | - Rowan P. Orme
- Institute
for Science and Technology in Medicine, and School of Medicine, Keele University, Keele, Staffs ST5 5BG, U.K.
| | - Theocharis Kyriacou
- School
of Computing and Mathematics, Keele University, Keele, Staffs ST5 5BG, U.K.
| | - Rosemary A. Fricker
- Institute
for Science and Technology in Medicine, and School of Medicine, Keele University, Keele, Staffs ST5 5BG, U.K.
| | - Paul Roach
- Department
of Chemistry, School of Science, Loughborough
University, Loughborough, Leicestershire LE11 3TU, U.K.
| |
Collapse
|
10
|
Lemos HGD, Silva LMGD, Ambrosio FN, Lombello CB, Moreira JC, Venancio EC. Electroactive nanofibers mats based on poly(l-lactic acid)/poly(ortho-ethoxyaniline) blends for biological applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110045. [PMID: 31546378 DOI: 10.1016/j.msec.2019.110045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 11/20/2022]
Abstract
The combination of scaffolds with desirable topographic characteristics and the use of electrical stimulus consist of a strategy to repair and regenerate tissues. An interesting approach to obtain electroactive scaffolds with the aforementioned features comprises on the use of conducting polymers which can be blended with other biocompatible polymers. In this work, poly(l-lactic acid) (PLLA) and poly(ortho-ethoxyaniline) (POEA) were synthesized and PLLA/POEA mats were prepared for the first time by electrospinning technique. Topographic characterization of PLLA/POEA showed a tunable mean diameter of the nanofibers by changing the electrospinning parameters. The presence of POEA into the blend was confirmed by X-ray photoelectron and Fourier-transform infrared spectroscopy analyses. Differential scanning calorimetry curves of PLLA/POEA exhibited shift positions of Tc and absence of the exothermic peak related to the characteristic isomerization process of POEA at high temperatures. The thermal analysis results indicate a favored miscibility between the polymers which is likely resulted from the strong interaction between polymers functionalities. The homogenous distribution of POEA chains throughout the scaffold rendered redox reversibility property for the mats. Biocompatibility results showed non-cytotoxic features for PLLA/POEA, attesting this novel system as a promising candidate for biological applications.
Collapse
Affiliation(s)
- Hugo Gajardoni de Lemos
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Santo André, São Paulo 09210-580, Brazil
| | - Luis Marcelo Garcia da Silva
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Santo André, São Paulo 09210-580, Brazil
| | - Felipe Nogueira Ambrosio
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Santo André, São Paulo 09210-580, Brazil
| | - Christiane Bertachini Lombello
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Santo André, São Paulo 09210-580, Brazil; Nanomedicine Research Unit (NANOMED), Federal University of ABC (UFABC), Santo André, São Paulo 09210-580, Brazil
| | - José Carlos Moreira
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Santo André, São Paulo 09210-580, Brazil
| | - Everaldo Carlos Venancio
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Santo André, São Paulo 09210-580, Brazil.
| |
Collapse
|
11
|
Masciullo C, Dell'Anna R, Tonazzini I, Böettger R, Pepponi G, Cecchini M. Hierarchical thermoplastic rippled nanostructures regulate Schwann cell adhesion, morphology and spatial organization. NANOSCALE 2017; 9:14861-14874. [PMID: 28948996 DOI: 10.1039/c7nr02822a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Periodic ripples are a variety of anisotropic nanostructures that can be realized by ion beam irradiation on a wide range of solid surfaces. Only a few authors have investigated these surfaces for tuning the response of biological systems, probably because it is challenging to directly produce them in materials that well sustain long-term cellular cultures. Here, hierarchical rippled nanotopographies with a lateral periodicity of ∼300 nm are produced from a gold-irradiated germanium mold in polyethylene terephthalate (PET), a biocompatible polymer approved by the US Food and Drug Administration for clinical applications, by a novel three-step embossing process. The effects of nano-ripples on Schwann Cells (SCs) are studied in view of their possible use for nerve-repair applications. The data demonstrate that nano-ripples can enhance short-term SC adhesion and proliferation (3-24 h after seeding), drive their actin cytoskeleton spatial organization and sustain long-term cell growth. Notably, SCs are oriented perpendicularly with respect to the nanopattern lines. These results provide information about the possible use of hierarchical nano-rippled elements for nerve-regeneration protocols.
Collapse
Affiliation(s)
- Cecilia Masciullo
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Ye K, Sambanis A. Advanced Biomanufacturing: A Radical Manufacturing Paradigm Shift from Conventional, Centralized, Off-the-Shelf Production to On-Demand, Decentralized, Plug-and-Play Production of Cell- and Tissue-Based Products. ACS Biomater Sci Eng 2017; 3:1460-1461. [DOI: 10.1021/acsbiomaterials.7b00535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kaiming Ye
- Professor and Chair, Department
of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, United States
| | - Athanassios Sambanis
- Senior Program Director, W.M. Keck Foundation, 550 South Hope Street, Suite 2500, Los Angeles, California 90071, United States
| |
Collapse
|