1
|
Alemifar A, Burnette K, Jandres B, Hurt S, Tse HM, Robinson JL. Electrospun Fiber Surface Roughness Modulates Human Monocyte-Derived Macrophage Phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610568. [PMID: 39282362 PMCID: PMC11398424 DOI: 10.1101/2024.08.30.610568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Injuries to fibrous connective tissues have very little capacity for self-renewal and exhibit poor healing after injury. Phenotypic shifts in macrophages play a vital role in mediating the healing response, creating an opportunity to design immunomodulatory biomaterials which control macrophage polarization and promote regeneration. In this study, electrospun poly(-caprolactone) fibers with increasing surface roughness (SR) were produced by increasing relative humidity and inducing vapor-induced phase separation during the electrospinning process. The impact of surface roughness on macrophage phenotype was assessed using human monocyte-derived macrophages in vitro and in vivo using B6.Cg-Tg(Csf1r-EGFP)1Hume/J (MacGreen) mice. In vitro experiments showed that macrophages cultured on mesh with increasing SR exhibited decreased release of both pro- and anti-inflammatory cytokines potentially driven by increased protein adsorption and biophysical impacts on the cells. Further, increasing SR led to an increase in the expression of the pro-regenerative cell surface marker CD206 relative to the pro-inflammatory marker CD80. Mesh with increasing SR were implanted subcutaneously in MacGreen mice, again showing an increase in the ratio of cells expressing CD206 to those expressing CD80 visualized by immunofluorescence. SR on implanted biomaterials is sufficient to drive macrophage polarization, demonstrating a simple feature to include in biomaterial design to control innate immunity.
Collapse
Affiliation(s)
- Aidan Alemifar
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington
- Bioengineering Graduate Program, University of Kansas
| | - KaLia Burnette
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center
| | - Bryan Jandres
- Department of Biochemistry, University of Washington
| | - Samuel Hurt
- Department of Chemical and Petroleum Engineering, University of Kansas
| | - Hubert M Tse
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center
| | - Jennifer L Robinson
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington
- Department of Mechanical Engineering, University of Washington
| |
Collapse
|
2
|
Du Q, Dickinson A, Nakuleswaran P, Maghami S, Alagoda S, Hook AL, Ghaemmaghami AM. Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage. Int J Mol Sci 2024; 25:7278. [PMID: 39000385 PMCID: PMC11242417 DOI: 10.3390/ijms25137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Tissue regeneration and remodeling involve many complex stages. Macrophages are critical in maintaining micro-environmental homeostasis by regulating inflammation and orchestrating wound healing. They display high plasticity in response to various stimuli, showing a spectrum of functional phenotypes that vary from M1 (pro-inflammatory) to M2 (anti-inflammatory) macrophages. While transient inflammation is an essential trigger for tissue healing following an injury, sustained inflammation (e.g., in foreign body response to implants, diabetes or inflammatory diseases) can hinder tissue healing and cause tissue damage. Modulating macrophage polarization has emerged as an effective strategy for enhancing immune-mediated tissue regeneration and promoting better integration of implantable materials in the host. This article provides an overview of macrophages' functional properties followed by discussing different strategies for modulating macrophage polarization. Advances in the use of synthetic and natural biomaterials to fabricate immune-modulatory materials are highlighted. This reveals that the development and clinical application of more effective immunomodulatory systems targeting macrophage polarization under pathological conditions will be driven by a detailed understanding of the factors that regulate macrophage polarization and biological function in order to optimize existing methods and generate novel strategies to control cell phenotype.
Collapse
Affiliation(s)
- Qiran Du
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna Dickinson
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Pruthvi Nakuleswaran
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK;
| | - Savindu Alagoda
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Andrew L. Hook
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Amir M. Ghaemmaghami
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
3
|
Piatnitskaia S, Rafikova G, Bilyalov A, Chugunov S, Akhatov I, Pavlov V, Kzhyshkowska J. Modelling of macrophage responses to biomaterials in vitro: state-of-the-art and the need for the improvement. Front Immunol 2024; 15:1349461. [PMID: 38596667 PMCID: PMC11002093 DOI: 10.3389/fimmu.2024.1349461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/21/2024] [Indexed: 04/11/2024] Open
Abstract
The increasing use of medical implants in various areas of medicine, particularly in orthopedic surgery, oncology, cardiology and dentistry, displayed the limitations in long-term integration of available biomaterials. The effective functioning and successful integration of implants requires not only technical excellence of materials but also consideration of the dynamics of biomaterial interaction with the immune system throughout the entire duration of implant use. The acute as well as long-term decisions about the efficiency of implant integration are done by local resident tissue macrophages and monocyte-derived macrophages that start to be recruited during tissue damage, when implant is installed, and are continuously recruited during the healing phase. Our review summarized the knowledge about the currently used macrophages-based in vitro cells system that include murine and human cells lines and primary ex vivo differentiated macrophages. We provided the information about most frequently examined biomarkers for acute inflammation, chronic inflammation, foreign body response and fibrosis, indicating the benefits and limitations of the model systems. Particular attention is given to the scavenging function of macrophages that controls dynamic composition of peri-implant microenvironment and ensures timely clearance of microorganisms, cytokines, metabolites, extracellular matrix components, dying cells as well as implant debris. We outline the perspective for the application of 3D systems for modelling implant interaction with the immune system in human tissue-specific microenvironment avoiding animal experimentation.
Collapse
Affiliation(s)
- Svetlana Piatnitskaia
- Cell Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Guzel Rafikova
- Additive Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
- Laboratory of Immunology, Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, Russia
| | - Azat Bilyalov
- Additive Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Svyatoslav Chugunov
- Additive Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Iskander Akhatov
- Laboratory of Mathematical modeling, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Department of Urology, Bashkir State Medical University, Ufa, Russia
| | - Julia Kzhyshkowska
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, Mannheim, Germany
| |
Collapse
|
4
|
Wilson HM. Modulation of macrophages by biophysical cues in health and beyond. DISCOVERY IMMUNOLOGY 2023; 2:kyad013. [PMID: 38567062 PMCID: PMC10917218 DOI: 10.1093/discim/kyad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 08/09/2023] [Indexed: 04/04/2024]
Abstract
Macrophages play a key role in tissue development and homeostasis, innate immune defence against microbes or tumours, and restoring homeostasis through tissue regeneration following infection or injury. The ability to adopt such diverse functions is due to their heterogeneous nature, which is driven largely by their developmental origin and their response to signals they encounter from the microenvironment. The most well-characterized signals driving macrophage phenotype and function are biochemical and metabolic. However, the way macrophages sense and respond to their extracellular biophysical environment is becoming increasingly recognized in the field of mechano-immunology. These biophysical cues can be signals from tissue components, such as the composition and charge of extracellular matrix or topography, elasticity, and stiffness of the tissue surrounding cells; and mechanical forces such as shear stress or stretch. Macrophages are important in determining whether a disease resolves or becomes chronic. Ageing and diseases such as cancer or fibrotic disorders are associated with significant changes in the tissue biophysical environment, and this provides signals that integrate with those from biochemical and metabolic stimuli to ultimately dictate the overall function of macrophages. This review provides a brief overview of macrophage polarization, followed by a selection of commonly recognized physiological and applied biophysical stimuli impacting macrophage activity, and the potential signalling mechanisms driving downstream responses. The effects of biophysical cues on macrophages' function in homeostasis and disease and the associated clinical implications are also highlighted.
Collapse
Affiliation(s)
- Heather M Wilson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
5
|
Zhou P, Yan B, Wei B, Fu L, Wang Y, Wang W, Zhang L, Mao Y. Quercetin-solid lipid nanoparticle-embedded hyaluronic acid functionalized hydrogel for immunomodulation to promote bone reconstruction. Regen Biomater 2023; 10:rbad025. [PMID: 37077623 PMCID: PMC10110271 DOI: 10.1093/rb/rbad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 04/21/2023] Open
Abstract
Bone defects are a persistent challenge in clinical practice. Although repair therapies based on tissue-engineered materials, which are known to have a crucial role in defective bone regeneration, have gathered increased attention, the current treatments for massive bone defects have several limitations. In the present study, based on the immunomodulatory inflammatory microenvironment properties of quercetin, we encapsulated quercetin-solid lipid nanoparticles (SLNs) in a hydrogel. Temperature-responsive poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide) modifications were coupled to the main chain of hyaluronic acid hydrogel, constructing a novel, injectable bone immunomodulatory hydrogel scaffold. Extensive in vitro and in vivo data showed that this bone immunomodulatory scaffold forms an anti-inflammatory microenvironment by decreasing M1 polarization, while elevating the M2 polarization. Synergistic effects on angiogenesis and anti-osteoclastic differentiation were observed. These findings further proved that administering quercetin SLNs encapsulated in a hydrogel can aid bone defect reconstruction in rats, providing new insights for large-scale bone defect repair.
Collapse
Affiliation(s)
- Pinghui Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233030, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Bomin Yan
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Bangguo Wei
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Liangmin Fu
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Ying Wang
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Wenrui Wang
- School of Life Science, Bengbu Medical College, Bengbu 233030, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Anhui 233030, China
| | - Li Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233030, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Yingji Mao
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- School of Life Science, Bengbu Medical College, Bengbu 233030, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233030, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| |
Collapse
|
6
|
Zhu M, Duan B, Hou K, Mao L, Wang X. A comparative in vitro and in vivo study of porcine- and bovine-derived non-cross-linked collagen membranes. J Biomed Mater Res B Appl Biomater 2023; 111:568-578. [PMID: 36214252 DOI: 10.1002/jbm.b.35174] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 01/21/2023]
Abstract
The porcine-derived non-cross-linked collagen membrane Bio-gide® (BG) and the bovine-derived non-cross-linked collagen membrane Heal-all® (HA) were compared to better understand their in vitro biophysical characteristics and in vivo degradation patterns as a reference for clinical applications. It was showed that the porosity, specific surface area, pore volume and pore diameter of BG were larger than those of HA (64.5 ± 5.2% vs. 48.6 ± 6.1%; 18.6 ± 2.8 m2 /g vs. 2.3 ± 0.6 m2 /g; 0.114 ± 0.002 cm3 /g vs. 0.003 ± 0.001 cm3 /g; 24.4 ± 3.5 nm vs. 7.3 ± 1.7 nm, respectively); the average swelling ratio of BG was higher than that of HA (412.6 ± 41.2% vs. 270.0 ± 2.7%); the tensile strength of both dry and wet HA was higher than those of BG (18.26 ± 3.27 MPa vs. 4.02 ± 1.35 MPa; 2.24 ± 0.21 MPa vs. 0.16 ± 0.02 MPa, respectively); 73% of HA remained after 72 h in collagenase solution, whereas only 8.2% of BG remained. A subcutaneous rat implantation model revealed that, at 3, 7, 14, 28, and 56 days postmembrane implantation, there were more total inflammatory cells, especially more M1 and M2 polarized macrophages and higher M2/M1 ratio in BG than in HA; in addition, the fibrous capsule around BG was also thicker than that around HA. Moreover, concentrations of dozens of cytokines including interleukin-2(IL-2), IL-7, IL-10 and so forth. in BG were higher than those in HA. It is suggested that BG and HA might be suitable for different clinical applications according to their different characteristics.
Collapse
Affiliation(s)
- Mengdi Zhu
- Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| | - Beibei Duan
- Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| | - Kegui Hou
- Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| | - Lisha Mao
- Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| | - Xuejiu Wang
- Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| |
Collapse
|
7
|
Topographical cues of PLGA membranes modulate the behavior of hMSCs, myoblasts and neuronal cells. Colloids Surf B Biointerfaces 2023; 222:113070. [PMID: 36495697 DOI: 10.1016/j.colsurfb.2022.113070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Biomaterial surface modification through the introduction of defined and repeated patterns of topography helps study cell behavior in response to defined geometrical cues. The lithographic molding technique is widely used for conferring biomaterial surface microscale cues and enhancing the performance of biomedical devices. In this work, different master molds made by UV mask lithography were used to prepare poly (D,L-lactide-co-glycolide) - PLGA micropatterned membranes to present different features of topography at the cellular interface: channels, circular pillars, rectangular pillars, and pits. The effects of geometrical cues were investigated on different cell sources, such as neuronal cells, myoblasts, and stem cells. Morphological evaluation revealed a peculiar cell arrangement in response to a specific topographical stimulus sensed over the membrane surface. Cells seeded on linear-grooved membranes showed that this cue promoted elongated cell morphology. Rectangular and circular pillars act instead as discontinuous cues at the cell-membrane interface, inducing cell growth in multiple directions. The array of pits over the surface also highlighted the precise spatiotemporal organization of the cell; they grew between the interconnected membrane space within the pits, avoiding the microscale hole. The overall approach allowed the evaluation of the responses of different cell types adhered to various surface patterns, build-up on the same polymeric membrane, and disclosing the effect of specific topographical features. We explored how various microtopographic signals play distinct roles in different cells, thus affecting cell adhesion, migration, differentiation, cell-cell interactions, and other metabolic activities.
Collapse
|
8
|
Kalashnikov N, Moraes C. Engineering physical microenvironments to study innate immune cell biophysics. APL Bioeng 2022; 6:031504. [PMID: 36156981 PMCID: PMC9492295 DOI: 10.1063/5.0098578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Innate immunity forms the core of the human body's defense system against infection, injury, and foreign objects. It aims to maintain homeostasis by promoting inflammation and then initiating tissue repair, but it can also lead to disease when dysregulated. Although innate immune cells respond to their physical microenvironment and carry out intrinsically mechanical actions such as migration and phagocytosis, we still do not have a complete biophysical description of innate immunity. Here, we review how engineering tools can be used to study innate immune cell biophysics. We first provide an overview of innate immunity from a biophysical perspective, review the biophysical factors that affect the innate immune system, and then explore innate immune cell biophysics in the context of migration, phagocytosis, and phenotype polarization. Throughout the review, we highlight how physical microenvironments can be designed to probe the innate immune system, discuss how biophysical insight gained from these studies can be used to generate a more comprehensive description of innate immunity, and briefly comment on how this insight could be used to develop mechanical immune biomarkers and immunomodulatory therapies.
Collapse
Affiliation(s)
- Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
9
|
Xu N, Yuan Y, Ding L, Li J, Jia J, Li Z, He D, Yu Y. Multifunctional chitosan/gelatin@tannic acid cryogels decorated with in situ reduced silver nanoparticles for wound healing. BURNS & TRAUMA 2022; 10:tkac019. [PMID: 35910193 PMCID: PMC9327735 DOI: 10.1093/burnst/tkac019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/06/2022] [Indexed: 11/12/2022]
Abstract
Background Most traditional wound dressings only partially meet the needs of wound healing because of their single function. Patients usually suffer from the increasing cost of treatment and pain resulting from the frequent changing of wound dressings. Herein, we have developed a mutifunctional cryogel to promote bacterial infected wound healing based on a biocompatible polysaccharide. Methods The multifunctional cryogel is made up of a compositive scaffold of chitosan (CS), gelatin (Gel) and tannic acid (TA) and in situ formed silver nanoparticles (Ag NPs). A liver bleeding rat model was used to evaluate the dynamic hemostasis performance of the various cryogels. In order to evaluate the antibacterial properties of the prepared cryogels, gram-positive bacterium Staphylococcus aureus (S. aureus) and gram-negative bacterium Escherichia coli (E. coli) were cultured with the cryogels for 12 h. Meanwhile, S. aureus was introduced to cause bacterial infection in vivo. After treatment for 2 days, the exudates from wound sites were dipped for bacterial colony culture. Subsequently, the anti-inflammatory effect of the various cryogels was evaluated by western blotting and enzyme-linked immunosorbent assay. Finally, full-thickness skin defect models on the back of SD rats were established to assess the wound healing performances of the cryogels. Results Due to its porous structure, the multifunctional cryogel showed fast liver hemostasis. The introduced Ag NPs endowed the cryogel with an antibacterial efficiency of >99.9% against both S. aureus and E. coli. Benefited from the polyphenol groups of TA, the cryogel could inhibit nuclear factor-κB nuclear translocation and down-regulate inflammatory cytokines for an anti-inflammatory effect. Meanwhile, excessive reactive oxygen species could also be scavenged effectively. Despite the presence of Ag NPs, the cryogel did not show cytotoxicity and hemolysis. Moreover, in vivo experiments demonstrated that the biocompatible cryogel displayed effective bacterial disinfection and accelerated wound healing. Conclusions The multifunctional cryogel, with fast hemostasis, antibacterial and anti-inflammation properties and the ability to promote cell proliferation could be widely applied as a wound dressing for bacterial infected wound healing.
Collapse
Affiliation(s)
- Na Xu
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yucheng Yuan
- School of Materials science and Engineering, Xihua University, No.999, Jinzhou Road, Jinniu District, Chengdu City, Sichuan Province, Chengdu, 610039, China
| | - Liangping Ding
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiangfeng Li
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiezhi Jia
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zheng Li
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Dengfeng He
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yunlong Yu
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
10
|
Cao H, Qiao S, Qin H, Jandt KD. Antibacterial Designs for Implantable Medical Devices: Evolutions and Challenges. J Funct Biomater 2022; 13:jfb13030086. [PMID: 35893454 PMCID: PMC9326756 DOI: 10.3390/jfb13030086] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022] Open
Abstract
The uses of implantable medical devices are safer and more common since sterilization methods and techniques were established a century ago; however, device-associated infections (DAIs) are still frequent and becoming a leading complication as the number of medical device implantations keeps increasing. This urges the world to develop instructive prevention and treatment strategies for DAIs, boosting the studies on the design of antibacterial surfaces. Every year, studies associated with DAIs yield thousands of publications, which here are categorized into four groups, i.e., antibacterial surfaces with long-term efficacy, cell-selective capability, tailored responsiveness, and immune-instructive actions. These innovations are promising in advancing the solution to DAIs; whereas most of these are normally quite preliminary “proof of concept” studies lacking exact clinical scopes. To help identify the flaws of our current antibacterial designs, clinical features of DAIs are highlighted. These include unpredictable onset, site-specific incidence, and possibly involving multiple and resistant pathogenic strains. The key point we delivered is antibacterial designs should meet the specific requirements of the primary functions defined by the “intended use” of an implantable medical device. This review intends to help comprehend the complex relationship between the device, pathogens, and the host, and figure out future directions for improving the quality of antibacterial designs and promoting clinical translations.
Collapse
Affiliation(s)
- Huiliang Cao
- Interfacial Electrochemistry and Biomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science & Technology, Shanghai 200237, China
- Chair of Materials Science, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Shichong Qiao
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Hui Qin
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Klaus D. Jandt
- Chair of Materials Science, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| |
Collapse
|
11
|
Suvannapruk W, Edney MK, Kim DH, Scurr DJ, Ghaemmaghami AM, Alexander MR. Single-Cell Metabolic Profiling of Macrophages Using 3D OrbiSIMS: Correlations with Phenotype. Anal Chem 2022; 94:9389-9398. [PMID: 35713879 PMCID: PMC9260720 DOI: 10.1021/acs.analchem.2c01375] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Macrophages are important
immune cells that respond to environmental
cues acquiring a range of activation statuses represented by pro-inflammatory
(M1) and anti-inflammatory (M2) phenotypes at each end of their spectrum.
Characterizing the metabolic signature (metabolic profiling) of different
macrophage subsets is a powerful tool to understand the response of
the human immune system to different stimuli. Here, the recently developed
3D OrbiSIMS instrument is applied to yield useful insight into the
metabolome from individual cells after in vitro differentiation of
macrophages into naïve, M1, and M2 phenotypes using different
cytokines. This analysis strategy not only requires more than 6 orders
of magnitude less sample than traditional mass spectrometry approaches
but also allows the study of cell-to-cell variance. Characteristic
metabolites in macrophage subsets are identified using a targeted
lipid and data-driven multivariate approach highlighting amino acids
and other small molecules. The diamino acids alanylasparagine and
lipid sphingomyelin SM(d18/16:0) are uniquely found in M1 macrophages,
while pyridine and pyrimidine are observed at increased intensity
in M2 macrophages, findings which link to known biological pathways.
The first demonstration of this capability illustrates the great potential
of direct cell analysis for in situ metabolite profiling with the
3D OrbiSIMS to probe functional phenotype at the single-cell level
using molecular signatures and to understand the response of the human
body to implanted devices and immune diseases.
Collapse
Affiliation(s)
- Waraporn Suvannapruk
- Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Max K Edney
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Dong-Hyun Kim
- Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - David J Scurr
- Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Amir M Ghaemmaghami
- Immunology & Immuno-bioengineering Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Morgan R Alexander
- Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
12
|
Mechanical Cues Regulate Histone Modifications and Cell Behavior. Stem Cells Int 2022; 2022:9179111. [PMID: 35599845 PMCID: PMC9117061 DOI: 10.1155/2022/9179111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/19/2022] [Indexed: 11/17/2022] Open
Abstract
Change of biophysical factors in tissue microenvironment is an important step in a chronic disease development process. A mechanical and biochemical factor from cell living microniche can regulate cell epigenetic decoration and, therefore, further induce change of gene expression. In this review, we will emphasize the mechanism that biophysical microenvironment manipulates cell behavior including gene expression and protein decoration, through modifying histone amino acid residue modification. The influence given by different mechanical forces, including mechanical stretch, substrate surface stiffness, and shear stress, on cell fate and behavior during chronic disease development including tumorigenesis will also be teased out. Overall, the recent work summarized in this review culminates on the hypothesis that a mechanical factor stimulates the modification on histone which could facilitate disease detection and potential therapeutic target.
Collapse
|
13
|
Che H, Selig M, Rolauffs B. Micro-patterned cell populations as advanced pharmaceutical drugs with precise functional control. Adv Drug Deliv Rev 2022; 184:114169. [PMID: 35217114 DOI: 10.1016/j.addr.2022.114169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Human cells are both advanced pharmaceutical drugs and 'drug deliverers'. However, functional control prior to or after cell implantation remains challenging. Micro-patterning cells through geometrically defined adhesion sites allows controlling morphogenesis, polarity, cellular mechanics, proliferation, migration, differentiation, stemness, cell-cell interactions, collective cell behavior, and likely immuno-modulatory properties. Consequently, generating micro-patterned therapeutic cells is a promising idea that has not yet been realized and few if any steps have been undertaken in this direction. This review highlights potential therapeutic applications, summarizes comprehensively the many cell functions that have been successfully controlled through micro-patterning, details the established micro-pattern designs, introduces the available fabrication technologies to the non-specialized reader, and suggests a quality evaluation score. Such a broad review is not yet available but would facilitate the manufacturing of therapeutically patterned cell populations using micro-patterned cell-instructive biomaterials for improved functional control as drug delivery systems in the context of cells as pharmaceutical products.
Collapse
Affiliation(s)
- Hui Che
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215006, China
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany.
| |
Collapse
|
14
|
Li K, Lv L, Shao D, Xie Y, Cao Y, Zheng X. Engineering Nanopatterned Structures to Orchestrate Macrophage Phenotype by Cell Shape. J Funct Biomater 2022; 13:jfb13010031. [PMID: 35323231 PMCID: PMC8949710 DOI: 10.3390/jfb13010031] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Physical features on the biomaterial surface are known to affect macrophage cell shape and phenotype, providing opportunities for the design of novel “immune-instructive” topographies to modulate foreign body response. The work presented here employed nanopatterned polydimethylsiloxane substrates with well-characterized nanopillars and nanopits to assess RAW264.7 macrophage response to feature size. Macrophages responded to the small nanopillars (SNPLs) substrates (450 nm in diameter with average 300 nm edge-edge spacing), resulting in larger and well-spread cell morphology. Increasing interpillar distance to 800 nm in the large nanopillars (LNPLs) led to macrophages exhibiting morphologies similar to being cultured on the flat control. Macrophages responded to the nanopits (NPTs with 150 nm deep and average 800 nm edge-edge spacing) by a significant increase in cell elongation. Elongation and well-spread cell shape led to expression of anti-inflammatory/pro-healing (M2) phenotypic markers and downregulated expression of inflammatory cytokines. SNPLs and NPTs with high availability of integrin binding region of fibronectin facilitated integrin β1 expression and thus stored focal adhesion formation. Increased integrin β1 expression in macrophages on the SNPLs and NTPs was required for activation of the PI3K/Akt pathway, which promoted macrophage cell spreading and negatively regulated NF-κB activation as evidenced by similar globular cell shape and higher level of NF-κB expression after PI3K blockade. These observations suggested that alterations in macrophage cell shape from surface nanotopographies may provide vital cues to orchestrate macrophage phenotype.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (K.L.); (L.L.); (D.S.); (Y.X.); (Y.C.)
| | - Lin Lv
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (K.L.); (L.L.); (D.S.); (Y.X.); (Y.C.)
| | - Dandan Shao
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (K.L.); (L.L.); (D.S.); (Y.X.); (Y.C.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (K.L.); (L.L.); (D.S.); (Y.X.); (Y.C.)
| | - Yunzhen Cao
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (K.L.); (L.L.); (D.S.); (Y.X.); (Y.C.)
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (K.L.); (L.L.); (D.S.); (Y.X.); (Y.C.)
- Correspondence:
| |
Collapse
|
15
|
Bu W, Wu Y, Ghaemmaghami AM, Sun H, Mata A. Rational design of hydrogels for immunomodulation. Regen Biomater 2022; 9:rbac009. [PMID: 35668923 PMCID: PMC9160883 DOI: 10.1093/rb/rbac009] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The immune system protects organisms against endogenous and exogenous harm and plays a key role in tissue development, repair, and regeneration. Traditional immunomodulatory biologics exhibit limitations including degradation by enzymes, short half-life, and lack of targeting ability. Encapsulating or binding these biologics within biomaterials is an effective way to address these problems. Hydrogels are promising immunomodulatory materials because of their prominent biocompatibility, tuneability, and versatility. However, to take advantage of these opportunities and optimize material performance, it is important to more specifically elucidate, and leverage on, how hydrogels affect and control the immune response. Here, we summarize how key physical and chemical properties of hydrogels affect the immune response. We first provide an overview of underlying steps of the host immune response upon exposure to biomaterials. Then, we discuss recent advances in immunomodulatory strategies where hydrogels play a key role through a) physical properties including dimensionality, stiffness, porosity, and topography; b) chemical properties including wettability, electric property, and molecular presentation; and c) the delivery of bioactive molecules via chemical or physical cues. Thus, this review aims to build a conceptual and practical toolkit for the design of immune-instructive hydrogels capable of modulating the host immune response.
Collapse
Affiliation(s)
- Wenhuan Bu
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang, 110001, China
- Department of Dental Materials, School of Stomatology, China Medical University, Shenyang, 110001, China
- Department of Center Laboratory, School of Stomatology, China Medical University, Shenyang, 110001, China
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Yuanhao Wu
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Amir M Ghaemmaghami
- Division of Immunology, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Hongchen Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang, 110001, China
| | - Alvaro Mata
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
16
|
Immunomodulation of Skin Repair: Cell-Based Therapeutic Strategies for Skin Replacement (A Comprehensive Review). Biomedicines 2022; 10:biomedicines10010118. [PMID: 35052797 PMCID: PMC8773777 DOI: 10.3390/biomedicines10010118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system has a crucial role in skin wound healing and the application of specific cell-laden immunomodulating biomaterials emerged as a possible treatment option to drive skin tissue regeneration. Cell-laden tissue-engineered skin substitutes have the ability to activate immune pathways, even in the absence of other immune-stimulating signals. In particular, mesenchymal stem cells with their immunomodulatory properties can create a specific immune microenvironment to reduce inflammation, scarring, and support skin regeneration. This review presents an overview of current wound care techniques including skin tissue engineering and biomaterials as a novel and promising approach. We highlight the plasticity and different roles of immune cells, in particular macrophages during various stages of skin wound healing. These aspects are pivotal to promote the regeneration of nonhealing wounds such as ulcers in diabetic patients. We believe that a better understanding of the intrinsic immunomodulatory features of stem cells in implantable skin substitutes will lead to new translational opportunities. This, in turn, will improve skin tissue engineering and regenerative medicine applications.
Collapse
|
17
|
Jiang J, Liu W, Xiong Z, Hu Y, Xiao J. Effects of biomimetic hydroxyapatite coatings on osteoimmunomodulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112640. [DOI: 10.1016/j.msec.2021.112640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022]
|
18
|
Filiz Y, Saglam-Metiner P, Ersoy S, Yesil-Celiktas O. Supercritical carbon dioxide dried double layer laponite XLS and alginate/polyacrylamide construct and immune response. Tissue Cell 2021; 74:101712. [PMID: 34920234 DOI: 10.1016/j.tice.2021.101712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022]
Abstract
Fabrication of immunocompatible tissue constructs for bone-cartilage defect regeneration is of prime importance. In this study, a double layer hydrogel was successfully synthesized, where alginate/polyacrylamide were formulated to represent cartilage layer (5-10 % (w/w) total polymer ratio) and laponite XLS (2-5-8% (w/w))/alginate/polyacrylamide formed bone layer. Hydrogels were dried by supercritical CO2 at 100 and 200 bar, 45 °C, 5 g/min CO2 flow rate for 2 h. Constructs were treated with collagen, then cellularized and embedded in cell-laden GelMA to mimic the cellular microenvironment. The optimum weight ratio of alginate/polyacrylamide:laponite XLS was 10:5 based on mechanical strength test results. The constructs yielded high porosity (91.50 m2/g) and mesoporous structure, owing to the diffusivity of CO2 at 200 bar (0.49 × 10-7 m2/s). Constructs were then treated with collagen to increase cell adhesion and ATDC5 cells were seeded in the cartilage layer, whereas hFOB cells to the bone layer. About 10-15 % higher cell viability was attained. The porous structure of the construct allowed infiltration of macrophages, promoted polarization and positively affected the behavior of macrophages, yielding a decrease in M1 markers, whereas an increase in M2 on day 4. The formulated tissue constructs would be of value in tissue engineering applications.
Collapse
Affiliation(s)
- Yagmur Filiz
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | - Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | - Seymanur Ersoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey.
| |
Collapse
|
19
|
Kharaziha M, Baidya A, Annabi N. Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100176. [PMID: 34251690 PMCID: PMC8489436 DOI: 10.1002/adma.202100176] [Citation(s) in RCA: 267] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/03/2021] [Indexed: 05/03/2023]
Abstract
With all the advances in tissue engineering for construction of fully functional skin tissue, complete regeneration of chronic wounds is still challenging. Since immune reaction to the tissue damage is critical in regulating both the quality and duration of chronic wound healing cascade, strategies to modulate the immune system are of importance. Generally, in response to an injury, macrophages switch from pro-inflammatory to an anti-inflammatory phenotype. Therefore, controlling macrophages' polarization has become an appealing approach in regenerative medicine. Recently, hydrogels-based constructs, incorporated with various cellular and molecular signals, have been developed and utilized to adjust immune cell functions in various stages of wound healing. Here, the current state of knowledge on immune cell functions during skin tissue regeneration is first discussed. Recent advanced technologies used to design immunomodulatory hydrogels for controlling macrophages' polarization are then summarized. Rational design of hydrogels for providing controlled immune stimulation via hydrogel chemistry and surface modification, as well as incorporation of cell and molecules, are also dicussed. In addition, the effects of hydrogels' properties on immunogenic features and the wound healing process are summarized. Finally, future directions and upcoming research strategies to control immune responses during chronic wound healing are highlighted.
Collapse
Affiliation(s)
- Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Avijit Baidya
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
20
|
Nouri-Goushki M, Isaakidou A, Eijkel BIM, Minneboo M, Liu Q, Boukany PE, Mirzaali MJ, Fratila-Apachitei LE, Zadpoor AA. 3D printed submicron patterns orchestrate the response of macrophages. NANOSCALE 2021; 13:14304-14315. [PMID: 34190291 PMCID: PMC8412028 DOI: 10.1039/d1nr01557e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/16/2021] [Indexed: 05/12/2023]
Abstract
The surface topography of engineered extracellular matrices is one of the most important physical cues regulating the phenotypic polarization of macrophages. However, not much is known about the ways through which submicron (i.e., 100-1000 nm) topographies modulate the polarization of macrophages. In the context of bone tissue regeneration, it is well established that this range of topographies stimulates the osteogenic differentiation of stem cells. Since the immune response affects the bone tissue regeneration process, the immunomodulatory consequences of submicron patterns should be studied prior to their clinical application. Here, we 3D printed submicron pillars (using two-photon polymerization technique) with different heights and interspacings to perform the first ever systematic study of such effects. Among the studied patterns, the highest degree of elongation was observed for the cells cultured on those with the tallest and densest pillars. After 3 days of culture with inflammatory stimuli (LPS/IFN-γ), sparsely decorated surfaces inhibited the expression of the pro-inflammatory cellular marker CCR7 as compared to day 1 and to the other patterns. Furthermore, sufficiently tall pillars polarized the M1 macrophages towards a pro-healing (M2) phenotype, as suggested by the expression of CD206 within the first 3 days. As some of the studied patterns are known to be osteogenic, the osteoimmunomodulatory capacity of the patterns should be further studied to optimize their bone tissue regeneration performance.
Collapse
Affiliation(s)
- M Nouri-Goushki
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - A Isaakidou
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - B I M Eijkel
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - M Minneboo
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - Q Liu
- Department of Chemical Engineering, Delft University of Technology (TU Delft), van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - P E Boukany
- Department of Chemical Engineering, Delft University of Technology (TU Delft), van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - M J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - L E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - A A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| |
Collapse
|
21
|
Zhou H, Xue Y, Dong L, Wang C. Biomaterial-based physical regulation of macrophage behaviour. J Mater Chem B 2021; 9:3608-3621. [PMID: 33908577 DOI: 10.1039/d1tb00107h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Macrophages play a critical role in regulating immune reactions induced by implanted biomaterials. They are highly plastic and in response to diverse stimuli in the microenvironment can exhibit a spectrum of phenotypes and functions. In addition to biochemical signals, the physical properties of biomaterials are becoming increasingly appreciated for their significant impact on macrophage behaviour, and the underlying mechanisms deserve more in-depth investigations. This review first summarises the effects of key physical cues - including stiffness, topography, physical confinement and applied force - on macrophage behaviour. Then, it reviews the current knowledge of cellular sensing and transduction of physical cues into intracellular signals. Finally, it discusses the major challenges in understanding mechanical regulation that could provide insights for biomaterial design.
Collapse
Affiliation(s)
- Huiqun Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Yizebang Xue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China. and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School & School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
22
|
Mohindra P, Desai TA. Micro- and nanoscale biophysical cues for cardiovascular disease therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 34:102365. [PMID: 33571682 PMCID: PMC8217090 DOI: 10.1016/j.nano.2021.102365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 11/19/2022]
Abstract
After cardiovascular injury, numerous pathological processes adversely impact the homeostatic function of cardiomyocyte, macrophage, fibroblast, endothelial cell, and vascular smooth muscle cell populations. Subsequent malfunctioning of these cells may further contribute to cardiovascular disease onset and progression. By modulating cellular responses after injury, it is possible to create local environments that promote wound healing and tissue repair mechanisms. The extracellular matrix continuously provides these mechanosensitive cell types with physical cues spanning the micro- and nanoscale to influence behaviors such as adhesion, morphology, and phenotype. It is therefore becoming increasingly compelling to harness these cell-substrate interactions to elicit more native cell behaviors that impede cardiovascular disease progression and enhance regenerative potential. This review discusses recent in vitro and preclinical work that have demonstrated the therapeutic implications of micro- and nanoscale biophysical cues on cell types adversely affected in cardiovascular diseases - cardiomyocytes, macrophages, fibroblasts, endothelial cells, and vascular smooth muscle cells.
Collapse
Affiliation(s)
- Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Tejal A Desai
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA.
| |
Collapse
|
23
|
Barthes J, Lagarrigue P, Riabov V, Lutzweiler G, Kirsch J, Muller C, Courtial EJ, Marquette C, Projetti F, Kzhyskowska J, Lavalle P, Vrana NE, Dupret-Bories A. Biofunctionalization of 3D-printed silicone implants with immunomodulatory hydrogels for controlling the innate immune response: An in vivo model of tracheal defect repair. Biomaterials 2020; 268:120549. [PMID: 33278685 DOI: 10.1016/j.biomaterials.2020.120549] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022]
Abstract
The recent advances in 3D-printed silicone (PDMS: polydimethylsiloxane) implants present prospects for personalized implants with highly accurate anatomical conformity. However, a potential adverse effect, such as granuloma formation due to immune reactions, still exists. One potential way to overcome this problem is to control the implant/host interface using immunomodulatory coatings. In this study, a new cytokine cocktail composed of interleukin-10 and prostaglandin-E2 was designed to decrease adverse immune reactions and promote tissue integration by fixing macrophages into M2 pro-healing phenotype for an extended period of time. In vitro, the cytokine cocktail maintained low levels of pro-inflammatory cytokine (TNF-α and IL-6) secretions and induced the secretion of IL-10 and the upregulation of multifunctional scavenging and sorting receptor stabilin-1, expressed by M2 macrophages. This cocktail was then loaded in a gelatine-based hydrogel to develop an immunomodulatory material that could be used as a coating for medical devices. The efficacy of this coating was demonstrated in an in vivo rat model during the reconstruction of a tracheal defect by 3D-printed silicone implants. The coating was stable on the silicone implants for over 2 weeks, and the controlled release of the cocktail components was achieved for at least 14 days. In vivo, only 33% of the animals with bare silicone implants survived, whereas 100% of the animals survived with the implant equipped with the immunomodulatory hydrogel. The presence of the hydrogel and the cytokine cocktail diminished the thickness of the inflammatory tissue, the intensity of both acute and chronic inflammation, the overall fibroblastic reaction, the presence of oedema and the formation of fibrinoid (assessed by histology) and led to a 100% survival rate. At the systemic level, the presence of immunomodulatory hydrogels significantly decreased pro-inflammatory cytokines such as TNF-α, IFN-γ, CXCL1 and MCP-1 levels at day 7 and significantly decreased IL-1α, IL-1β, CXCL1 and MCP-1 levels at day 21. The ability of this new immunomodulatory hydrogel to control the level of inflammation once applied to a 3D-printed silicone implant has been demonstrated. Such thin coatings can be applied to any implants or scaffolds used in tissue engineering to diminish the initial immune response, improve the integration and functionality of these materials and decrease potential complications related to their presence.
Collapse
Affiliation(s)
- J Barthes
- Institut National de La Santé et de La Recherche Médicale, INSERM UMR1121 "Biomaterials and Bioengineering", 11 Rue Humann, 67085, Strasbourg, France.
| | - P Lagarrigue
- Institut National de La Santé et de La Recherche Médicale, INSERM UMR1121 "Biomaterials and Bioengineering", 11 Rue Humann, 67085, Strasbourg, France
| | - V Riabov
- Institute for Transfusion Medicine and Immunology, Medical, Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| | - G Lutzweiler
- Institut National de La Santé et de La Recherche Médicale, INSERM UMR1121 "Biomaterials and Bioengineering", 11 Rue Humann, 67085, Strasbourg, France
| | - J Kirsch
- Institute for Transfusion Medicine and Immunology, Medical, Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| | - C Muller
- Institut National de La Santé et de La Recherche Médicale, INSERM UMR1121 "Biomaterials and Bioengineering", 11 Rue Humann, 67085, Strasbourg, France
| | - E-J Courtial
- 3d.FAB, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| | - C Marquette
- 3d.FAB, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| | - F Projetti
- Department of Pathology, 18 rue du general Catroux, 87039, Limoges Cedex 1, France
| | - J Kzhyskowska
- Institute for Transfusion Medicine and Immunology, Medical, Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany; German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany; National Research Tomsk State University, Tomsk, 634050, Russia
| | - P Lavalle
- Institut National de La Santé et de La Recherche Médicale, INSERM UMR1121 "Biomaterials and Bioengineering", 11 Rue Humann, 67085, Strasbourg, France
| | - N E Vrana
- Institut National de La Santé et de La Recherche Médicale, INSERM UMR1121 "Biomaterials and Bioengineering", 11 Rue Humann, 67085, Strasbourg, France; Spartha Medical, 14B rue de La Canardière, 67100, Strasbourg, France
| | - A Dupret-Bories
- Department of Otorhinolaryngology, Head and Neck Surgery, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse Oncopole, 31009, Toulouse, France.
| |
Collapse
|
24
|
Wang J, Su Y, Xu L, Li D. Micro-patterned surface construction on BCP ceramics and the regulation on inflammation-involved osteogenic differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111220. [DOI: 10.1016/j.msec.2020.111220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
|
25
|
Luo J, He Y, Meng F, Yan N, Zhang Y, Song W. The Role of Autophagy in M2 Polarization of Macrophages Induced by Micro/Nano Topography. Int J Nanomedicine 2020; 15:7763-7774. [PMID: 33116499 PMCID: PMC7553265 DOI: 10.2147/ijn.s270100] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022] Open
Abstract
Background The proper topography of implant surface can induce macrophages polarization, whereas the regulation mechanism has not been fully deciphered. The study aimed to examine the regulation mechanism of macrophages M2 polarization by titanium (Ti) implant surface micro/nano topography. Results Firstly, the titanium implant micropits-nanotubular surface with ~30 nm diameters (MNT) can induce the M2 polarization of RAW264.7 spontaneously, as indicated by the spindle-like cell morphological alteration and specific molecular marker arginase-1 (Arg1) expression. Next, the autophagic vacuoles (AVs) number is significantly increased on MNT surface, as confirmed by the monodansylcadaverine (MDC) and CYTO-ID staining as well as the transmission electron microscope (TEM) observation. In addition, increasing or decreasing the autophagosomes number by rapamycin or 3-methyladenine (3-MA) will result in augmentation or attenuation of Arg1. Furthermore, blocking the fusion between autophagosomes and lysosomes by bafilomycin also significantly reduces Arg1, even in the presence of rapamycin. Finally, the ERK phosphorylation is selectively upregulated on MNT surface and the AVs number and Arg1 expression are significantly suppressed by U0126 treatment. Conclusion Our findings suggest that the ERK-Beclin-1-autophagy axis may play a pivotal role in the regulation of M2 polarization induced by nanotopography.
Collapse
Affiliation(s)
- Jing Luo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China.,Department of Stomatology, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, People's Republic of China
| | - Yide He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Fanhui Meng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China.,State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Department of Dental Materials, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Ning Yan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Yumei Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| |
Collapse
|
26
|
Amin Yavari S, Castenmiller SM, van Strijp JAG, Croes M. Combating Implant Infections: Shifting Focus from Bacteria to Host. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002962. [PMID: 32914481 DOI: 10.1002/adma.202002962] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/28/2020] [Indexed: 05/06/2023]
Abstract
The widespread use of biomaterials to support or replace body parts is increasingly threatened by the risk of implant-associated infections. In the quest for finding novel anti-infective biomaterials, there generally has been a one-sided focus on biomaterials with direct antibacterial properties, which leads to excessive use of antibacterial agents, compromised host responses, and unpredictable effectiveness in vivo. This review sheds light on how host immunomodulation, rather than only targeting bacteria, can endow biomaterials with improved anti-infective properties. How antibacterial surface treatments are at risk to be undermined by biomaterial features that dysregulate the protection normally provided by critical immune cell subsets, namely, neutrophils and macrophages, is discussed. Accordingly, how the precise modification of biomaterial surface biophysical cues, or the incorporation of immunomodulatory drug delivery systems, can render biomaterials with the necessary immune-compatible and immune-protective properties to potentiate the host defense mechanisms is reviewed. Within this context, the protective role of host defense peptides, metallic particles, quorum sensing inhibitors, and therapeutic adjuvants is discussed. The highlighted immunomodulatory strategies may lay a foundation to develop anti-infective biomaterials, while mitigating the increasing threat of antibacterial drug resistance.
Collapse
Affiliation(s)
- Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | - Suzanne M Castenmiller
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | - Michiel Croes
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| |
Collapse
|
27
|
Segan S, Jakobi M, Khokhani P, Klimosch S, Billing F, Schneider M, Martin D, Metzger U, Biesemeier A, Xiong X, Mukherjee A, Steuer H, Keller BM, Joos T, Schmolz M, Rothbauer U, Hartmann H, Burkhardt C, Lorenz G, Schneiderhan-Marra N, Shipp C. Systematic Investigation of Polyurethane Biomaterial Surface Roughness on Human Immune Responses in vitro. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3481549. [PMID: 32461979 PMCID: PMC7240656 DOI: 10.1155/2020/3481549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/29/2020] [Accepted: 03/04/2020] [Indexed: 01/06/2023]
Abstract
It has been widely shown that biomaterial surface topography can modulate host immune response, but a fundamental understanding of how different topographies contribute to pro-inflammatory or anti-inflammatory responses is still lacking. To investigate the impact of surface topography on immune response, we undertook a systematic approach by analyzing immune response to eight grades of medical grade polyurethane of increasing surface roughness in three in vitro models of the human immune system. Polyurethane specimens were produced with defined roughness values by injection molding according to the VDI 3400 industrial standard. Specimens ranged from 0.1 μm to 18 μm in average roughness (Ra), which was confirmed by confocal scanning microscopy. Immunological responses were assessed with THP-1-derived macrophages, human peripheral blood mononuclear cells (PBMCs), and whole blood following culture on polyurethane specimens. As shown by the release of pro-inflammatory and anti-inflammatory cytokines in all three models, a mild immune response to polyurethane was observed, however, this was not associated with the degree of surface roughness. Likewise, the cell morphology (cell spreading, circularity, and elongation) in THP-1-derived macrophages and the expression of CD molecules in the PBMC model on T cells (HLA-DR and CD16), NK cells (HLA-DR), and monocytes (HLA-DR, CD16, CD86, and CD163) showed no influence of surface roughness. In summary, this study shows that modifying surface roughness in the micrometer range on polyurethane has no impact on the pro-inflammatory immune response. Therefore, we propose that such modifications do not affect the immunocompatibility of polyurethane, thereby supporting the notion of polyurethane as a biocompatible material.
Collapse
Affiliation(s)
- Sören Segan
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Meike Jakobi
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Paree Khokhani
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Sascha Klimosch
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- HOT Screen GmbH, Aspenhaustraße 25, 72770 Reutlingen, Germany
| | - Florian Billing
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Markus Schneider
- University of Applied Sciences, Reutlingen, Alteburgstr. 150, 72762 Reutlingen, Germany
| | - Dagmar Martin
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Ute Metzger
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Antje Biesemeier
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Center for Ophthalmology, University Hospital Tübingen, Schleichstr. 12/1, 72076 Tübingen, Germany
| | - Xin Xiong
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Ashutosh Mukherjee
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Heiko Steuer
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | | | - Thomas Joos
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Manfred Schmolz
- HOT Screen GmbH, Aspenhaustraße 25, 72770 Reutlingen, Germany
| | - Ulrich Rothbauer
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- University of Tübingen, Geschwister-Scholl-Platz, 72074 Tübingen, Germany
| | - Hanna Hartmann
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Claus Burkhardt
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Günter Lorenz
- University of Applied Sciences, Reutlingen, Alteburgstr. 150, 72762 Reutlingen, Germany
| | - Nicole Schneiderhan-Marra
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Christopher Shipp
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| |
Collapse
|
28
|
Yang C, Zhao C, Wang X, Shi M, Zhu Y, Jing L, Wu C, Chang J. Stimulation of osteogenesis and angiogenesis by micro/nano hierarchical hydroxyapatite via macrophage immunomodulation. NANOSCALE 2019; 11:17699-17708. [PMID: 31545331 DOI: 10.1039/c9nr05730g] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Biomaterial topography-based strategies are regarded as an effective way to regulate the osteoimmune environment which plays an indispensable role in the bone regeneration process. The rapid development of manufacture techniques makes it possible to investigate the cell-topography interactions by preparing various micro and nano-topographical surfaces on biomaterials. Still, it is a challenge to prepare well-defined micro/nano hierarchical structures of bioceramics due to the inherent brittleness of ceramic materials. Also, the correlation between osteoimmunomodulation initiated by micro/nano hierarchical topographies and the tissue regeneration outcomes is unclear. In this study, we prepared well-defined micro/nano hierarchical structures on hydroxyapatite (HA) bioceramics through the combination of the photolithography and hydrothermal techniques. Three different microscale circular patterns (4 μm, 12 μm and 36 μm) and nanotopographies (nanoneedle, nanosheet and nanorod) were fabricated by changing the size of the mask and the condition of the hydrothermal reaction. The macrophage responses on the nanoneedle structures with different micropatterns were investigated and the micro/nano hierarchical structures with appropriate pattern sizes could either promote or alleviate the macrophage polarization, which further affected the outcomes of the osteogenic differentiation of human bone marrow stromal cells (hBMSCs) and angiogenic activity of human umbilical vein endothelial cells (HUVECs). Our study demonstrated that osteoimmunomodulation could be manipulated via tuning the micro/nano hierarchical structures, which could lead to a new strategy for the development of bone biomaterials with favorable osteoimmunomodulatory properties.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Meli VS, Veerasubramanian PK, Atcha H, Reitz Z, Downing TL, Liu WF. Biophysical regulation of macrophages in health and disease. J Leukoc Biol 2019; 106:283-299. [PMID: 30861205 PMCID: PMC7001617 DOI: 10.1002/jlb.mr0318-126r] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Macrophages perform critical functions for homeostasis and immune defense in tissues throughout the body. These innate immune cells are capable of recognizing and clearing dead cells and pathogens, and orchestrating inflammatory and healing processes that occur in response to injury. In addition, macrophages are involved in the progression of many inflammatory diseases including cardiovascular disease, fibrosis, and cancer. Although it has long been known that macrophages respond dynamically to biochemical signals in their microenvironment, the role of biophysical cues has only recently emerged. Furthermore, many diseases that involve macrophages are also characterized by changes to the tissue biophysical environment. This review will discuss current knowledge about the effects of biophysical cues including matrix stiffness, material topography, and applied mechanical forces, on macrophage behavior. We will also describe the role of molecules that are known to be important for mechanotransduction, including adhesion molecules, ion channels, as well as nuclear mediators such as transcription factors, scaffolding proteins, and epigenetic regulators. Together, this review will illustrate a developing role of biophysical cues in macrophage biology, and also speculate upon molecular targets that may potentially be exploited therapeutically to treat disease.
Collapse
Affiliation(s)
- Vijaykumar S. Meli
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
| | - Praveen K. Veerasubramanian
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
| | - Hamza Atcha
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
| | - Zachary Reitz
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
| | - Timothy L. Downing
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
- Department of Microbiology and Molecular Genetics, University of California Irvine, CA 92697
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
- Department of Chemical and Biomolecular Engineering, University of California Irvine, CA 92697
| |
Collapse
|
30
|
Macrophage in vitro Response on Hybrid Coatings Obtained by Matrix Assisted Pulsed Laser Evaporation. COATINGS 2019. [DOI: 10.3390/coatings9040236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The improvement in the research area of the implant by surface functionalization when correlated with the biological response is of major interest in the biomedical field. Based on the fact that the inflammatory response is directly involved in the ultimate response of the implant within the body, it is essential to study the macrophage-material interactions. Within this context, we have investigated the composite material-macrophage cell interactions and the inflammatory response to these composites with amorphous hydroxyapatite (HA), Lactoferrin (Lf), and polyethylene glycol-polycaprolactone (PEG-PCL) copolymer. All materials are obtained by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique and characterized by Atomic Force Microscopy and Scanning Electron Microscopy. Macrophage-differentiated THP-1 cells proliferation and metabolic activity were assessed by qualitative and quantitative methods. The secretion of tumor necrosis factor alpha (TNF-α) and interleukin 10 (IL-10) cytokine, in the presence and absence of the inflammatory stimuli (bacterial endotoxin; lipopolysaccharide (LPS)), was measured using an ELISA assay. Our results revealed that the cellular response depended on the physical-chemical characteristics of the coatings. Copolymer-HA-Lf coatings led to low level of pro-inflammatory TNF-α, the increased level of anti-inflammatory IL-10, and the polarization of THP-1 cells towards an M2 pro-reparative phenotype in the presence of LPS. These findings could have important potential for the development of composite coatings in implant applications.
Collapse
|
31
|
Sharifi F, Htwe SS, Righi M, Liu H, Pietralunga A, Yesil-Celiktas O, Maharjan S, Cha BH, Shin SR, Dokmeci MR, Vrana NE, Ghaemmaghami AM, Khademhosseini A, Zhang YS. A Foreign Body Response-on-a-Chip Platform. Adv Healthc Mater 2019; 8:e1801425. [PMID: 30694616 PMCID: PMC6398437 DOI: 10.1002/adhm.201801425] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/17/2018] [Indexed: 11/10/2022]
Abstract
Understanding the foreign body response (FBR) and desiging strategies to modulate such a response represent a grand challenge for implant devices and biomaterials. Here, the development of a microfluidic platform is reported, i.e., the FBR-on-a-chip (FBROC) for modeling the cascade of events during immune cell response to implants. The platform models the native implant microenvironment where the implants are interfaced directly with surrounding tissues, as well as vasculature with circulating immune cells. The study demonstrates that the release of cytokines such as monocyte chemoattractant protein 1 (MCP-1) from the extracellular matrix (ECM)-like hydrogels in the bottom tissue chamber induces trans-endothelial migration of circulating monocytes in the vascular channel toward the hydrogels, thus mimicking implant-induced inflammation. Data using patient-derived peripheral blood mononuclear cells further reveal inter-patient differences in FBR, highlighting the potential of this platform for monitoring FBR in a personalized manner. The prototype FBROC platform provides an enabling strategy to interrogate FBR on various implants, including biomaterials and engineered tissue constructs, in a physiologically relevant and individual-specific manner.
Collapse
Affiliation(s)
- Fatemeh Sharifi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- School of Mechanical Engineering, Sharif University of Technology, Tehran, 11155-8639, Iran
| | - Su Su Htwe
- Immunology and Immuno-bioengineering Group, School of Life Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Martina Righi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Hua Liu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Anna Pietralunga
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ozlem Yesil-Celiktas
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Department of Bioengineering, Faculty of Engineering Ege University, Bornova, 35100, Izmir, Turkey
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Byung-Hyun Cha
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Mehmet Remzi Dokmeci
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, Piaggio, 56025, Italy
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioindustrial Technologies, Konkuk University, Seoul, 05029, Republic of Korea
| | - Nihal Engin Vrana
- Biomatériaux et Bioingénierie, Institut National de la Santé et de la Recherche Médicale (INSERM), 67085, Strasbourg, France
- Protip Medical, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg, Fédération des Matériaux et Nanoscience d'Alsace (FMNA), Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Amir M Ghaemmaghami
- Immunology and Immuno-bioengineering Group, School of Life Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ali Khademhosseini
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, Piaggio, 56025, Italy
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310012, P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310012, P. R. China
- Research Institute for Bioscience and Biotechnology, Lalitpur, 44600, Nepal
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
32
|
Zhang Y, Cheng X, Jansen JA, Yang F, van den Beucken JJ. Titanium surfaces characteristics modulate macrophage polarization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 95:143-151. [DOI: 10.1016/j.msec.2018.10.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/24/2018] [Accepted: 10/17/2018] [Indexed: 12/16/2022]
|
33
|
Robotti F, Bottan S, Fraschetti F, Mallone A, Pellegrini G, Lindenblatt N, Starck C, Falk V, Poulikakos D, Ferrari A. A micron-scale surface topography design reducing cell adhesion to implanted materials. Sci Rep 2018; 8:10887. [PMID: 30022037 PMCID: PMC6052105 DOI: 10.1038/s41598-018-29167-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022] Open
Abstract
The micron-scale surface topography of implanted materials represents a complementary pathway, independent of the material biochemical properties, regulating the process of biological recognition by cells which mediate the inflammatory response to foreign bodies. Here we explore a rational design of surface modifications in micron range to optimize a topography comprised of a symmetrical array of hexagonal pits interfering with focal adhesion establishment and maturation. When implemented on silicones and hydrogels in vitro, the anti-adhesive topography significantly reduces the adhesion of macrophages and fibroblasts and their activation toward effectors of fibrosis. In addition, long-term interaction of the cells with anti-adhesive topographies markedly hampers cell proliferation, correlating the physical inhibition of adhesion and complete spreading with the natural progress of the cell cycle. This solution for reduction in cell adhesion can be directly integrated on the outer surface of silicone implants, as well as an additive protective conformal microstructured biocellulose layer for materials that cannot be directly microstructured. Moreover, the original geometry imposed during manufacturing of the microstructured biocellulose membranes are fully retained upon in vivo exposure, suggesting a long lasting performance of these topographical features after implantation.
Collapse
Affiliation(s)
- Francesco Robotti
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland
| | - Simone Bottan
- Wyss Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Federica Fraschetti
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland
| | - Anna Mallone
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Lindenblatt
- Department of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Christoph Starck
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland.
| |
Collapse
|
34
|
Coffel J, Nuxoll E. BioMEMS for biosensors and closed-loop drug delivery. Int J Pharm 2018; 544:335-349. [PMID: 29378239 DOI: 10.1016/j.ijpharm.2018.01.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 12/14/2022]
Abstract
The efficacy of pharmaceutical treatments can be greatly enhanced by physiological feedback from the patient using biosensors, though this is often invasive or infeasible. By adapting microelectromechanical systems (MEMS) technology to miniaturize such biosensors, previously inaccessible signals can be obtained, often from inside the patient. This is enabled by the device's extremely small footprint which minimizes both power consumption and implantation trauma, as well as the transport time for chemical analytes, in turn decreasing the sensor's response time. MEMS fabrication also allows mass production which can be easily scaled without sacrificing its high reproducibility and reliability, and allows seamless integration with control circuitry and telemetry which is already produced using the same materials and fabrication steps. By integrating these systems with drug delivery devices, many of which are also MEMS-based, closed loop drug delivery can be achieved. This paper surveys the types of signal transduction devices available for biosensing-primarily electrochemical, optical, and mechanical-looking at their implementation via MEMS technology. The impact of MEMS technology on the challenges of biosensor development, particularly safety, power consumption, degradation, fouling, and foreign body response, are also discussed.
Collapse
Affiliation(s)
- Joel Coffel
- Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Eric Nuxoll
- Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
35
|
Witherel CE, Yu T, Concannon M, Dampier W, Spiller KL. Immunomodulatory Effects of Human Cryopreserved Viable Amniotic Membrane in a Pro-Inflammatory Environment In Vitro. Cell Mol Bioeng 2017; 10:451-462. [PMID: 29225709 PMCID: PMC5720175 DOI: 10.1007/s12195-017-0494-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Chronic wounds remain a major clinical challenge. Human cryopreserved viable amniotic membrane (hCVAM) is among the most successful therapies, but the mechanisms of action remain loosely defined. Because proper regulation of macrophage behavior is critical for wound healing with biomaterial therapies, we hypothesized that hCVAM would positively regulate macrophage behavior in vitro, and that soluble factors released from the hCVAM would be important for this effect. MATERIALS AND METHODS Primary human pro-inflammatory (M1) macrophages were seeded directly onto intact hCVAM or cultured in separation via transwell inserts (Soluble Factors) in the presence of pro-inflammatory stimuli (interferon-γ and lipopolysaccharide) to simulate the chronic wound environment. Macrophages were characterized after 1 and 6 days using multiplex gene expression analysis of 37 macrophage phenotype- and angiogenesis-related genes via NanoString™, and protein content from conditioned media collected at days 1, 3 and 6 was analyzed via enzyme linked immunosorbent assays. RESULTS AND DISCUSSION Gene expression analysis showed that Soluble Factors promoted significant upregulation of pro-inflammatory marker IL1B on day 1 yet downregulation of TNF on day 6 compared to the M1 macrophage control. In contrast, intact hCVAM, which includes both extracellular matrix, viable cells, and soluble factors, promoted downregulation of pro-inflammatory markers TNF, CCL5 and CCR7 on day 1 and endothelial receptor TIE1 on day 6, and upregulation of the anti-inflammatory marker IL10 on day 6 compared to the M1 Control. Other genes related to inflammation and angiogenesis (MMP9, VEGF, SPP1, TGFB1, etc.) were differentially regulated between the Soluble Factors and intact hCVAM groups at both time points, though they were not expressed at significantly different levels compared to the M1 Control. Interestingly, Soluble Factors promoted increased secretion of the proinflammatory cytokine tumor necrosis factor-α (TNF-α), while direct contact with hCVAM inhibited secretion of TNF, relative to the M1 Control. Both Soluble Factors and intact hCVAM inhibited secretion of MMP9 and VEGF, pro-inflammatory proteins that are critical for angiogenesis and remodeling, compared to the M1 Control, with intact hCVAM having a stronger effect. CONCLUSIONS In a simulated pro-inflammatory environment, intact hCVAM has distinct anti-inflammatory effects on primary human macrophages, and direct macrophage contact with intact hCVAM is required for these effects. These findings are important for the design of next generation immunomodulatory biomaterials for wound repair and regenerative medicine that may include living cells, soluble factors, or a controlled drug delivery system.
Collapse
Affiliation(s)
- Claire E. Witherel
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 USA
| | - Tony Yu
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 USA
| | - Mark Concannon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 USA
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA USA
| | - Kara L. Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 USA
| |
Collapse
|