1
|
Liu X, Ren Y, Fu S, Chen X, Hu M, Wang F, Wang L, Li C. Toward morphologically relevant extracellular matrix: nanofiber-hydrogel composites for tumor cell culture. J Mater Chem B 2024; 12:3984-3995. [PMID: 38563496 DOI: 10.1039/d3tb02575f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The natural extracellular matrix (ECM) consists of a continuous integrated fibrin network and a negatively charged proteoglycan-based matrix. In this work, we report a novel three-dimensional nanofiber hydrogel composite that mimics the natural ECM structure, exhibiting both degradability and mechanical characteristics comparable to that of tumor tissue. The embedded nanofiber improves the hydrogel mechanical properties, and varying the fiber density can match the elastic modulus of different tumor tissues (1.51-10.77 kPa). The degradability of the scaffold gives sufficient space for tumor cells to secrete and remodel the ECM. The expression levels of cancer stem cell markers confirmed the development of aggressive and metastatic phenotypes of prostate cancer cells in the 3D scaffold. Similar results were obtained in terms of anticancer resistance of prostate cancer cells in 3D scaffolds showing stem cell-like properties, suggesting that the current bionic 3D scaffold tumor model has broad potential in the development of effective targeted agents.
Collapse
Affiliation(s)
- Xingxing Liu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Yueying Ren
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Sijia Fu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Xinan Chen
- Department of Urology, Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Mengbo Hu
- Department of Urology, Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Fujun Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Lu Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Chaojing Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Xiang C, Wang Z, Zhang Q, Guo Z, Li X, Chen W, Wei X, Li P. Tough physically crosslinked poly(vinyl alcohol)-based hydrogels loaded with collagen type I to promote bone regeneration in vitro and in vivo. Int J Biol Macromol 2024; 261:129847. [PMID: 38296142 DOI: 10.1016/j.ijbiomac.2024.129847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 03/09/2024]
Abstract
Poly(vinyl alcohol) (PVA) hydrogels exhibit great potential as ideal biomaterials for tissue engineering, owing to their non-toxicity, high water content, and strong biocompatibility. However, limited mechanical strength and low bioactivity have constrained their application in bone tissue engineering. In this study, we have developed a tough PVA-based hydrogel using a facile physical crosslinking method, comprising of PVA, tannic acid (TA), and hydroxyapatite (HA). Systematic experiments were conducted to examine the physicochemical properties of PVA/HA/TA hydrogels, including their compositions, microstructures, and mechanical and rheological properties. The results demonstrated that the PVA/HA/TA hydrogels possessed the porous microstructures and excellent mechanical properties. Furthermore, collagen type I (ColI) was used to further improve the biocompatibility and bioactivity of PVA/HA/TA hydrogels. In vitro experiments revealed that PVA/HA/TA/COL hydrogel could offer a suitable microenvironment for the growth of MC3T3-E1 cells and promote their osteogenic differentiation. Meanwhile, the PVA/HA/TA/COL hydrogel demonstrated the ability to promote bone regeneration and osteointegration in a rat femoral defect model. This study provides a potential strategy for the use of PVA-based hydrogels in bone tissue engineering.
Collapse
Affiliation(s)
- Changxin Xiang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Zehua Wang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qing Zhang
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zijian Guo
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaona Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China.
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China.
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| | - Pengcui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Choi C, Yun E, Cha C. Emerging Technology of Nanofiber-Composite Hydrogels for Biomedical Applications. Macromol Biosci 2023; 23:e2300222. [PMID: 37530431 DOI: 10.1002/mabi.202300222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Hydrogels and nanofibers have been firmly established as go-to materials for various biomedical applications. They have been mostly utilized separately, rarely together, because of their distinctive attributes and shortcomings. However, the potential benefits of integrating nanofibers with hydrogels to synergistically combine their functionalities while attenuating their drawbacks are increasingly recognized. Compared to other nanocomposite materials, incorporating nanofibers into hydrogel has the distinct advantage of emulating the hierarchical structure of natural extracellular environment needed for cell and tissue culture. The most important technological aspect of developing "nanofiber-composite hydrogel" is generating nanofibers made of various polymers that are cross-linked and short enough to maintain stable dispersion in hydrated environment. In this review, recent research efforts to develop nanofiber-composite hydrogels are presented, with added emphasis on nanofiber processing techniques. Several notable examples of implementing nanofiber-composite hydrogels for biomedical applications are also introduced.
Collapse
Affiliation(s)
- Cholong Choi
- Center for Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Eunhye Yun
- Center for Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Chaenyung Cha
- Center for Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| |
Collapse
|
4
|
Kasi PB, Azar MG, Dodda JM, Bělský P, Kovářík T, Šlouf M, Dobrá JK, Babuška V. Chitosan and cellulose-based composite hydrogels with embedded titanium dioxide nanoparticles as candidates for biomedical applications. Int J Biol Macromol 2023:125334. [PMID: 37307974 DOI: 10.1016/j.ijbiomac.2023.125334] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Hydrogel based matrices and titanium dioxide (TiO2) nanoparticles (NPs) are well established materials in bone tissue engineering. Nevertheless, there is still a challenge to design appropriate composites with enhanced mechanical properties and improved cell growth. Progressing in this direction, we synthesized nanocomposite hydrogels by impregnating TiO2 NPs in a chitosan and cellulose-based hydrogel matrix containing polyvinyl alcohol (PVA), to enhance the mechanical stability and swelling capacity. Although, TiO2 has been incorporated into single and double component matrix systems, it has rarely been combined with a tri-component hydrogel matrix system. The doping of NPs was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy and small- and wide-angle X-ray scattering. Our results showed that incorporation of TiO2 NPs improved the tensile properties of the hydrogels significantly. Furthermore, we performed biological evaluation of scaffolds, swelling degree, bioactivity assessment, and hemolytic tests to prove that all types of hydrogels were safe for use in the human body. The culturing of human osteoblast-like cells MG-63 on hydrogels showed better adhesion of cells in the presence of TiO2 and showed increasing proliferation with increasing amount of TiO2. Our results showed that the sample with the highest TiO2 concentration, CS/MC/PVA/TiO2 (1 %) had the best biological properties.
Collapse
Affiliation(s)
- Phanindra Babu Kasi
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarská 48, 301 66 Pilsen, Czech Republic
| | - Mina Ghafouri Azar
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic
| | - Jagan Mohan Dodda
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| | - Petr Bělský
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic
| | - Tomáš Kovářík
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Jana Kolaja Dobrá
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarská 48, 301 66 Pilsen, Czech Republic
| | - Václav Babuška
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarská 48, 301 66 Pilsen, Czech Republic
| |
Collapse
|
5
|
Mahmoud DB, Schulz‐Siegmund M. Utilizing 4D Printing to Design Smart Gastroretentive, Esophageal, and Intravesical Drug Delivery Systems. Adv Healthc Mater 2023; 12:e2202631. [PMID: 36571721 PMCID: PMC11468531 DOI: 10.1002/adhm.202202631] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Indexed: 12/27/2022]
Abstract
The breakthrough of 3D printing in biomedical research has paved the way for the next evolutionary step referred to as four dimensional (4D) printing. This new concept utilizes the time as the fourth dimension in addition to the x, y, and z axes with the idea to change the configuration of a printed construct with time usually in response to an external stimulus. This can be attained through the incorporation of smart materials or through a preset smart design. The 4D printed constructs may be designed to exhibit expandability, flexibility, self-folding, self-repair or deformability. This review focuses on 4D printed devices for gastroretentive, esophageal, and intravesical delivery. The currently unmet needs and challenges for these application sites are tried to be defined and reported on published solution concepts involving 4D printing. In addition, other promising application sites that may similarly benefit from 4D printing approaches such as tracheal and intrauterine drug delivery are proposed.
Collapse
Affiliation(s)
- Dina B. Mahmoud
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
- Department of PharmaceuticsEgyptian Drug Authority12311GizaEgypt
| | - Michaela Schulz‐Siegmund
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
| |
Collapse
|
6
|
Li W, Guan Q, Li M, Saiz E, Hou X. Nature's strategy to construct tough responsive hydrogel actuators and their applications. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
7
|
Boon-In S, Theerasilp M, Crespy D. Marrying the incompatible for better: Incorporation of hydrophobic payloads in superhydrophilic hydrogels. J Colloid Interface Sci 2022; 622:75-86. [PMID: 35489103 DOI: 10.1016/j.jcis.2022.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 01/31/2023]
Abstract
HYPOTHESIS The entrapment of lyophobic in superhydrophilic hydrogels is challenging because of the intrinsic incompatibility between hydrophobic and hydrophilic molecules. To achieve such entrapment without affecting the hydrogel's formation, the electrospinning of nanodroplets or nanoparticles with a water-soluble polymer could reduce the incompatibility through the reduction of interfacial tension and the formation of a barrier film preventing coalescence or aggregation. EXPERIMENTS Nanodroplets or nanoparticles dispersion are electrospun in the presence of a hydrophilic polymer in hydrogel precursors. The dissolution of the hydrophilic nanofibers during electrospinning allows a redispersion of emulsion droplets and nanoparticles in the hydrogel's matrix. FINDINGS Superhydrophilic hydrogels with well-distributed hydrophobic nanodroplets or nanoparticles are obtained without detrimentally imparting the viscosity of hydrogel's precursors and the mechanical properties of the hydrogels. Compared with the incorporation of droplets without electrospinning, higher loadings of hydrophobic payload are achieved without premature leakage. This concept can be used to entrap hydrophobic agrochemicals, drugs, or antibacterial agents in simple hydrogels formulation.
Collapse
Affiliation(s)
- Supissra Boon-In
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Man Theerasilp
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
8
|
Droplet-based bioprinting enables the fabrication of cell–hydrogel–microfibre composite tissue precursors. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00192-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractComposites offer the option of coupling the individual benefits of their constituents to achieve unique material properties, which can be of extra value in many tissue engineering applications. Strategies combining hydrogels with fibre-based scaffolds can create tissue constructs with enhanced biological and structural functionality. However, developing efficient and scalable approaches to manufacture such composites is challenging. Here, we use a droplet-based bioprinting system called reactive jet impingement (ReJI) to integrate a cell-laden hydrogel with a microfibrous mesh. This system uses microvalves connected to different bioink reservoirs and directed to continuously jet bioink droplets at one another in mid-air, where the droplets react and form a hydrogel that lands on a microfibrous mesh. Cell–hydrogel–fibre composites are produced by embedding human dermal fibroblasts at two different concentrations (5 × 106 and 30 × 106 cells/mL) in a collagen–alginate–fibrin hydrogel matrix and bioprinted onto a fibre-based substrate. Our results show that both types of cell–hydrogel–microfibre composite maintain high cell viability and promote cell–cell and cell–biomaterial interactions. The lower fibroblast density triggers cell proliferation, whereas the higher fibroblast density facilitates faster cellular organisation and infiltration into the microfibres. Additionally, the fibrous component of the composite is characterised by high swelling properties and the quick release of calcium ions. The data indicate that the created composite constructs offer an efficient way to create highly functional tissue precursors for laminar tissue engineering, particularly for wound healing and skin tissue engineering applications.
Graphic abstract
Collapse
|
9
|
Formisano N, van der Putten C, Grant R, Sahin G, Truckenmüller RK, Bouten CVC, Kurniawan NA, Giselbrecht S. Mechanical Properties of Bioengineered Corneal Stroma. Adv Healthc Mater 2021; 10:e2100972. [PMID: 34369098 PMCID: PMC11468718 DOI: 10.1002/adhm.202100972] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/15/2021] [Indexed: 12/26/2022]
Abstract
For the majority of patients with severe corneal injury or disease, corneal transplantation is the only suitable treatment option. Unfortunately, the demand for donor corneas greatly exceeds the availability. To overcome shortage issues, a myriad of bioengineered constructs have been developed as mimetics of the corneal stroma over the last few decades. Despite the sheer number of bioengineered stromas developed , these implants fail clinical trials exhibiting poor tissue integration and adverse effects in vivo. Such shortcomings can partially be ascribed to poor biomechanical performance. In this review, existing approaches for bioengineering corneal stromal constructs and their mechanical properties are described. The information collected in this review can be used to critically analyze the biomechanical properties of future stromal constructs, which are often overlooked, but can determine the failure or success of corresponding implants.
Collapse
Affiliation(s)
- Nello Formisano
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Cas van der Putten
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 APThe Netherlands
| | - Rhiannon Grant
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Gozde Sahin
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Carlijn V. C. Bouten
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 APThe Netherlands
| | - Nicholas A. Kurniawan
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 APThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| |
Collapse
|
10
|
Whelan IT, Moeendarbary E, Hoey DA, Kelly DJ. Biofabrication of vasculature in microphysiological models of bone. Biofabrication 2021; 13. [PMID: 34034238 DOI: 10.1088/1758-5090/ac04f7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 05/25/2021] [Indexed: 11/12/2022]
Abstract
Bone contains a dense network of blood vessels that are essential to its homoeostasis, endocrine function, mineral metabolism and regenerative functions. In addition, bone vasculature is implicated in a number of prominent skeletal diseases, and bone has high affinity for metastatic cancers. Despite vasculature being an integral part of bone physiology and pathophysiology, it is often ignored or oversimplified inin vitrobone models. However, 3D physiologically relevant vasculature can now be engineeredin vitro, with microphysiological systems (MPS) increasingly being used as platforms for engineering this physiologically relevant vasculature. In recent years, vascularised models of bone in MPSs systems have been reported in the literature, representing the beginning of a possible technological step change in how bone is modelledin vitro. Vascularised bone MPSs is a subfield of bone research in its nascency, however given the impact of MPSs has had inin vitroorgan modelling, and the crucial role of vasculature to bone physiology, these systems stand to have a substantial impact on bone research. However, engineering vasculature within the specific design restraints of the bone niche is significantly challenging given the different requirements for engineering bone and vasculature. With this in mind, this paper aims to serve as technical guidance for the biofabrication of vascularised bone tissue within MPS devices. We first discuss the key engineering and biological considerations for engineering more physiologically relevant vasculaturein vitrowithin the specific design constraints of the bone niche. We next explore emerging applications of vascularised bone MPSs, and conclude with a discussion on the current status of vascularised bone MPS biofabrication and suggest directions for development of next generation vascularised bone MPSs.
Collapse
|
11
|
Huang Y, Li X, Lu Z, Zhang H, Huang J, Yan K, Wang D. Nanofiber-reinforced bulk hydrogel: preparation and structural, mechanical, and biological properties. J Mater Chem B 2021; 8:9794-9803. [PMID: 33030182 DOI: 10.1039/d0tb01948h] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alginate-based hydrogels are increasingly being used as biomaterials for tissue engineering, drug carriers, and wound dressing; however, their poor mechanical strength limits their applications. Nanofiber reinforcement is an effective method for increasing the mechanical strength of hydrogels. However, the macro preparation of nanofiber-reinforced hydrogels with a bulk structure is challenging. Herein, we describe the fabrication of nanofiber-reinforced bulk alginate hydrogel composites. The mechanical properties of hydrogels were significantly improved, and the reinforcement law of nanofiber was systematically studied. The maximum tensile stress (0.76 MPa) was obtained with 30% nanofiber content, which was 87% higher than that of pure alginate hydrogel. The compressive stress of the composite hydrogel exhibited "J-curve" behavior with gradually increasing nanofiber content, which indicated that the composited hydrogels were suitable as biomaterials. Furthermore, in 2 h, the hydrogels killed more than 90% of the bacteria that were present, and the bacteriostatic rate reached 100% after 12 h of treatment. More importantly, the sterile environment continued to be maintained, and the composited hydrogel also had satisfactory cytocompatibility and cell adhesion. Compared with pure alginate hydrogel, the roughness of the composited hydrogel surface was increased, which resulted in stronger cell adhesion. Therefore, the composite hydrogel demonstrated improved mechanical and biological properties, and exhibited the potential for clinical application.
Collapse
Affiliation(s)
- Yu Huang
- Hubei Key Laboratory of Advanced Textile Materials and Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials and Application, Wuhan Textile University, Wuhan 430200, China.
| | - Xiufang Li
- Hubei Key Laboratory of Advanced Textile Materials and Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials and Application, Wuhan Textile University, Wuhan 430200, China.
| | - Zhentan Lu
- Hubei Key Laboratory of Advanced Textile Materials and Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials and Application, Wuhan Textile University, Wuhan 430200, China.
| | - Huan Zhang
- Hubei Key Laboratory of Advanced Textile Materials and Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials and Application, Wuhan Textile University, Wuhan 430200, China.
| | - Jiangxi Huang
- Hubei Key Laboratory of Advanced Textile Materials and Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials and Application, Wuhan Textile University, Wuhan 430200, China.
| | - Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials and Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials and Application, Wuhan Textile University, Wuhan 430200, China.
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials and Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials and Application, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
12
|
Teixeira MO, Antunes JC, Felgueiras HP. Recent Advances in Fiber-Hydrogel Composites for Wound Healing and Drug Delivery Systems. Antibiotics (Basel) 2021; 10:248. [PMID: 33801438 PMCID: PMC8001440 DOI: 10.3390/antibiotics10030248] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
In the last decades, much research has been done to fasten wound healing and target-direct drug delivery. Hydrogel-based scaffolds have been a recurrent solution in both cases, with some reaching already the market, even though their mechanical stability remains a challenge. To overcome this limitation, reinforcement of hydrogels with fibers has been explored. The structural resemblance of fiber-hydrogel composites to natural tissues has been a driving force for the optimization and exploration of these systems in biomedicine. Indeed, the combination of hydrogel-forming techniques and fiber spinning approaches has been crucial in the development of scaffolding systems with improved mechanical strength and medicinal properties. In this review, a comprehensive overview of the recently developed fiber-hydrogel composite strategies for wound healing and drug delivery is provided. The methodologies employed in fiber and hydrogel formation are also highlighted, together with the most compatible polymer combinations, as well as drug incorporation approaches creating stimuli-sensitive and triggered drug release towards an enhanced host response.
Collapse
Affiliation(s)
| | | | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.O.T.); (J.C.A.)
| |
Collapse
|
13
|
Chen X, Ranjan VD, Liu S, Liang YN, Lim JSK, Chen H, Hu X, Zhang Y. In Situ Formation of 3D Conductive and Cell-Laden Graphene Hydrogel for Electrically Regulating Cellular Behavior. Macromol Biosci 2021; 21:e2000374. [PMID: 33620138 DOI: 10.1002/mabi.202000374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/18/2020] [Indexed: 12/22/2022]
Abstract
Electroconductive and injectable hydrogels are attracting increasing attention owing to the needs of electrically induced regulation of cell behavior, tissue engineering of electroactive tissues, and achieving minimum invasiveness during tissue repair. In this study, a novel in situ formed 3D conductive and cell-laden hydrogel is developed, which can be broadly used in bioprinting, tissue engineering, neuroengineering etc. An instantaneous, uniform spatial distribution and encapsulation of cells can be achieved as a result of hydrogen bonding induced hydrogel formation. Particularly, the cell-laden hydrogel can be easily obtained by simply mixing and shaking the polydopamine (PDA) functionalized rGO (rGO-PDA) with polyvinyl alcohol (PVA) solution containing cells. Graphene oxide is reduced and functionalized by dopamine to restore the electrical conductivity, while simultaneously enhancing both hydrophilicity and biocompatibility of reduced graphene oxide. In vitro culture of PC12 cells within the cell-laden hydrogel demonstrates its biocompatibility, noncytotoxicity as well as the ability to support long-term cell growth and proliferation. Enhanced neuronal differentiation is also observed, both with and without electrical stimulation. Overall, this 3D conductive, cell-laden hydrogel holds great promise as potential platform for tissue engineering of electroactive tissues.
Collapse
Affiliation(s)
- Xuelong Chen
- School of Material Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798, Singapore
| | - Vivek Damodar Ranjan
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, 639798, Singapore
| | - Sijun Liu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yen Nan Liang
- Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Jacob Song Kiat Lim
- Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Hui Chen
- Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Xiao Hu
- School of Material Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798, Singapore.,Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore.,Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Yilei Zhang
- Department of mechanical engineering, University of Canterbury, Christchurch, 8041, New Zealand
| |
Collapse
|
14
|
Beckett LE, Lewis JT, Tonge TK, Korley LTJ. Enhancement of the Mechanical Properties of Hydrogels with Continuous Fibrous Reinforcement. ACS Biomater Sci Eng 2020; 6:5453-5473. [PMID: 33320571 DOI: 10.1021/acsbiomaterials.0c00911] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Reinforcing mechanically weak hydrogels with fibers is a promising route to obtain strong and tough materials for biomedical applications while retaining a favorable cell environment. The resulting hierarchical structure recreates structural elements of natural tissues such as articular cartilage, with fiber diameters ranging from the nano- to microscale. Through control of properties such as the fiber diameter, orientation, and porosity, it is possible to design materials which display the nonlinear, synergistic mechanical behavior observed in natural tissues. In order to fully exploit these advantages, it is necessary to understand the structure-property relationships in fiber-reinforced hydrogels. However, there are currently limited models which capture their complex mechanical properties. The majority of reported fiber-reinforced hydrogels contain fibers obtained by electrospinning, which allows for limited spatial control over the fiber scaffold and limits the scope for systematic mechanical testing studies. Nevertheless, new manufacturing techniques such as melt electrowriting and bioprinting have emerged, which allow for increased control over fiber deposition and the potential for future investigations on the effect of specific structural features on mechanical properties. In this review, we therefore explore the mechanics of fiber-reinforced hydrogels, and the evolution of their design and manufacture from replicating specific features of biological tissues to more complex structures, by taking advantage of design principles from both tough hydrogels and fiber-reinforced composites. By highlighting the overlap between these fields, it is possible to identify the remaining challenges and opportunities for the development of effective biomedical devices.
Collapse
Affiliation(s)
- Laura E Beckett
- University of Delaware, Department of Materials Science and Engineering, 127 The Green, Newark, Delaware 19716, United States
| | - Jackson T Lewis
- W. L. Gore & Associates, Inc., 501 Vieves Way, Elkton, Maryland 21921, United States
| | - Theresa K Tonge
- W. L. Gore & Associates, Inc., 501 Vieves Way, Elkton, Maryland 21921, United States
| | - LaShanda T J Korley
- University of Delaware, Department of Materials Science and Engineering, 127 The Green, Newark, Delaware 19716, United States.,University of Delaware, Department of Chemical and Biomolecular Engineering, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
15
|
Fuchs S, Shariati K, Ma M. Specialty Tough Hydrogels and Their Biomedical Applications. Adv Healthc Mater 2020; 9:e1901396. [PMID: 31846228 PMCID: PMC7586320 DOI: 10.1002/adhm.201901396] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Hydrogels have long been explored as attractive materials for biomedical applications given their outstanding biocompatibility, high water content, and versatile fabrication platforms into materials with different physiochemical properties and geometries. Nonetheless, conventional hydrogels suffer from weak mechanical properties, restricting their use in persistent load-bearing applications often required of materials used in medical settings. Thus, the fabrication of mechanically robust hydrogels that can prolong the lifetime of clinically suitable materials under uncompromising in vivo conditions is of great interest. This review focuses on design considerations and strategies to construct such tough hydrogels. Several promising advances in the proposed use of specialty tough hydrogels for soft actuators, drug delivery vehicles, adhesives, coatings, and in tissue engineering settings are highlighted. While challenges remain before these specialty tough hydrogels will be deemed translationally acceptable for clinical applications, promising preliminary results undoubtedly spur great hope in the potential impact this embryonic research field can have on the biomedical community.
Collapse
Affiliation(s)
- Stephanie Fuchs
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| |
Collapse
|
16
|
Mantha S, Pillai S, Khayambashi P, Upadhyay A, Zhang Y, Tao O, Pham HM, Tran SD. Smart Hydrogels in Tissue Engineering and Regenerative Medicine. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3323. [PMID: 31614735 PMCID: PMC6829293 DOI: 10.3390/ma12203323] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023]
Abstract
The field of regenerative medicine has tremendous potential for improved treatment outcomes and has been stimulated by advances made in bioengineering over the last few decades. The strategies of engineering tissues and assembling functional constructs that are capable of restoring, retaining, and revitalizing lost tissues and organs have impacted the whole spectrum of medicine and health care. Techniques to combine biomimetic materials, cells, and bioactive molecules play a decisive role in promoting the regeneration of damaged tissues or as therapeutic systems. Hydrogels have been used as one of the most common tissue engineering scaffolds over the past two decades due to their ability to maintain a distinct 3D structure, to provide mechanical support for the cells in the engineered tissues, and to simulate the native extracellular matrix. The high water content of hydrogels can provide an ideal environment for cell survival, and structure which mimics the native tissues. Hydrogel systems have been serving as a supportive matrix for cell immobilization and growth factor delivery. This review outlines a brief description of the properties, structure, synthesis and fabrication methods, applications, and future perspectives of smart hydrogels in tissue engineering.
Collapse
Affiliation(s)
- Somasundar Mantha
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Sangeeth Pillai
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Parisa Khayambashi
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Akshaya Upadhyay
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Yuli Zhang
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Owen Tao
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Hieu M Pham
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| |
Collapse
|
17
|
|
18
|
Yin X, Hewitt DRO, Preston AN, Heroux LA, Agamalian MM, Quah SP, Zheng B, Smith AJ, Laughlin ST, Grubbs RB, Bhatia SR. Hierarchical assembly in PLA-PEO-PLA hydrogels with crystalline domains and effect of block stereochemistry. Colloids Surf B Biointerfaces 2019; 180:102-109. [PMID: 31030021 DOI: 10.1016/j.colsurfb.2019.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 01/16/2023]
Abstract
Understanding the development of microstructure (e.g., structures with length scales roughly 0.5-500 μm) in hydrogels is crucial for their use in several biomedical applications. We utilize ultra-small-angle neutron scattering (USANS) and confocal microscopy to explore microstructure of poly(lactide)-poly(ethylene oxide)-poly(lactide) (PLA-PEO-PLA) triblock copolymer hydrogels with varying l/d-lactide ratio. We have previously found that these polymers self-assemble on the nanoscale into micelles. Here, we observe large-scale structures with diverse morphologies, including highly porous self-similar networks with characteristic sizes spanning approximately 120 nm-200 μm. These structural features give rise to power-law scattering indicative of fractal structures in USANS. Mass fractal and surface fractal structures are found for gels with l/d ratios of 80/20 and 50/50, respectively. Confocal microscopy shows microscale water-filled channels and pores that are more clearly evident in gels with a higher fraction of l-lactide in the PLA block as compared to the 50/50 hydrogels. Tuning block stereochemistry may provide a means of controlling the self-assembly and structural evolution at both the nanoscale and microscale, impacting application of these materials in tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Xuechen Yin
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - David R O Hewitt
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Alyssa N Preston
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Luke A Heroux
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Michael M Agamalian
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Suan P Quah
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Bingqian Zheng
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Andrew J Smith
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Robert B Grubbs
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Surita R Bhatia
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
19
|
Wang J, Yu J, Yan Y, Yang D, Wang P, Xu Y, Zhu J, Xu G, He D, Huang G. Biodegradable polyester/modified mesoporous silica composites for effective bone repair with self‐reinforced properties. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jielin Wang
- Nanobiological Medicine and Technology Application LaboratoryNational Engineering Research Center for Nanotechnology Shanghai China
| | - Jianshu Yu
- School of Materials Science and EngineeringShanghai Jiao Tong University Shanghai China
| | - Yinan Yan
- Nanobiological Medicine and Technology Application LaboratoryNational Engineering Research Center for Nanotechnology Shanghai China
| | - Dicheng Yang
- Nanobiological Medicine and Technology Application LaboratoryNational Engineering Research Center for Nanotechnology Shanghai China
| | - Ping Wang
- Nanobiological Medicine and Technology Application LaboratoryNational Engineering Research Center for Nanotechnology Shanghai China
- Collaborative Research CenterShanghai University of Medicine & Health Sciences Shanghai China
| | - Yan Xu
- Nanobiological Medicine and Technology Application LaboratoryNational Engineering Research Center for Nanotechnology Shanghai China
- Collaborative Research CenterShanghai University of Medicine & Health Sciences Shanghai China
| | - Jun Zhu
- Nanobiological Medicine and Technology Application LaboratoryNational Engineering Research Center for Nanotechnology Shanghai China
- Collaborative Research CenterShanghai University of Medicine & Health Sciences Shanghai China
| | - Guohua Xu
- Department of Orthopedic Surgery, The Spine Surgical Center, Changzheng HospitalSecond Military Medical University Shanghai China
| | - Dannong He
- Nanobiological Medicine and Technology Application LaboratoryNational Engineering Research Center for Nanotechnology Shanghai China
- Collaborative Research CenterShanghai University of Medicine & Health Sciences Shanghai China
| | - Gang Huang
- Collaborative Research CenterShanghai University of Medicine & Health Sciences Shanghai China
| |
Collapse
|
20
|
Betsch M, Cristian C, Lin YY, Blaeser A, Schöneberg J, Vogt M, Buhl EM, Fischer H, Duarte Campos DF. Incorporating 4D into Bioprinting: Real-Time Magnetically Directed Collagen Fiber Alignment for Generating Complex Multilayered Tissues. Adv Healthc Mater 2018; 7:e1800894. [PMID: 30221829 DOI: 10.1002/adhm.201800894] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/20/2018] [Indexed: 12/15/2022]
Abstract
In vitro multilayered tissues with mimetic architectures resembling native tissues are valuable tools for application in medical research. In this study, an advanced bioprinting strategy is presented for aligning collagen fibers contained in functional bioinks. Streptavidin-coated iron nanoparticles are embedded in printable bioinks with varying concentrations of low gelling temperature agarose and type I collagen. By applying a straightforward magnetic-based mechanism in hydrogels during bioprinting, it is possible to align collagen fibers in less concentrated hydrogel blends with a maximum agarose concentration of 0.5 w/v%. Conversely, more elevated concentrations of agarose in printable blends show random collagen fiber distribution. Interestingly, hydrogel blends with unidirectionally aligned collagen fibers show significantly higher compression moduli compared to hydrogel blends including random fibers. Considering its application in the field of cartilage tissue engineering, bioprinted constructs with alternating layers of aligned and random fibers are fabricated. After 21 days of culture, cell-loaded constructs with alternating layers of aligned and random fibers express markedly more collagen II in comparison to solely randomly oriented fiber constructs. These encouraging results translate the importance of the structure and architecture of bioinks used in bioprinting in light of their use for tissue engineering and personalized medical applications.
Collapse
Affiliation(s)
- Marcel Betsch
- Department of Orthopaedics; RWTH Aachen University Hospital; 52074 Aachen Germany
| | - Catalin Cristian
- Department of Dental Materials and Biomaterials Research; RWTH Aachen University Hospital; 52074 Aachen Germany
| | - Ying-Ying Lin
- Department of Dental Materials and Biomaterials Research; RWTH Aachen University Hospital; 52074 Aachen Germany
| | - Andreas Blaeser
- Department of Dental Materials and Biomaterials Research; RWTH Aachen University Hospital; 52074 Aachen Germany
| | - Jan Schöneberg
- Department of Dental Materials and Biomaterials Research; RWTH Aachen University Hospital; 52074 Aachen Germany
| | - Michael Vogt
- Interdisciplinary Center for Clinical Research; Two-Photon Imaging Facility; RWTH Aachen University Hospital; 52074 Aachen Germany
| | - Eva Miriam Buhl
- Institute of Pathology; Electron Microscopy Facility; RWTH Aachen University Hospital; 52074 Aachen Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research; RWTH Aachen University Hospital; 52074 Aachen Germany
| | | |
Collapse
|
21
|
Liu X, Zhao G, Chen Z, Panhwar F, He X. Dual Suppression Effect of Magnetic Induction Heating and Microencapsulation on Ice Crystallization Enables Low-Cryoprotectant Vitrification of Stem Cell-Alginate Hydrogel Constructs. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16822-16835. [PMID: 29688697 PMCID: PMC6054798 DOI: 10.1021/acsami.8b04496] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Stem cells microencapsulated in hydrogel as stem cell-hydrogel constructs have wide applications in the burgeoning cell-based medicine. Due to their short shelf life at ambient temperature, long-term storage or banking of the constructs is essential to the "off-the-shelf" ready availability needed for their widespread applications. As a high-efficiency, easy-to-operate, low-toxicity, and low-cost method for long-term storage of the constructs, low-cryoprotectant (CPA) vitrification has attracted tremendous attention recently. However, we found many cells in the stem cell-alginate constructs (∼500 μm in diameter) could not attach to the substrate post low-CPA vitrification with ∼2 M penetrating CPAs. To address this problem, we introduced nanowarming via magnetic induction heating (MIH) of Fe3O4 nanoparticles to minimize recrystallization and devitrification during the warming step of the low-CPA vitrification procedure. Our results indicate that high-quality stem cell-alginate hydrogel constructs with an intact microstructure, high immediate cell survival (>80%), and greatly improved attachment efficiency (by nearly three times, 68% versus 24%) of the encapsulated cells could be obtained post-cryopreservation with nanowarming. Moreover, the cells encapsulated in the cell-hydrogel constructs post-cryopreservation maintained normal proliferation under 3D culture and retained intact biological function of multilineage differentiation. This novel low-CPA vitrification approach for cell cryopreservation enabled by the combined use of alginate hydrogel microencapsulation and Fe3O4 nanoparticles-mediated nanowarming may be valuable in facilitating the widespread application of stem cells in the clinic.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Zhongrong Chen
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Fazil Panhwar
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
22
|
Wood AT, Everett D, Kumar S, Mishra MK, Thomas V. Fiber length and concentration: Synergistic effect on mechanical and cellular response in wet-laid poly(lactic acid) fibrous scaffolds. J Biomed Mater Res B Appl Biomater 2018; 107:332-341. [DOI: 10.1002/jbm.b.34125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/19/2018] [Accepted: 03/14/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Andrew T. Wood
- Department of Materials Science and Engineering; University of Alabama at Birmingham; Birmingham Alabama
| | - Dominique Everett
- Department of Materials Science and Engineering; University of Alabama at Birmingham; Birmingham Alabama
| | - Sanjay Kumar
- Department of Biological Sciences, Cancer Biology Research and Training Program; Alabama State University; Montgomery Alabama
| | - Manoj K. Mishra
- Department of Biological Sciences, Cancer Biology Research and Training Program; Alabama State University; Montgomery Alabama
| | - Vinoy Thomas
- Department of Materials Science and Engineering; University of Alabama at Birmingham; Birmingham Alabama
- Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham; Birmingham Alabama
| |
Collapse
|
23
|
Fu Q, Duan C, Yan Z, Li Y, Si Y, Liu L, Yu J, Ding B. Nanofiber-Based Hydrogels: Controllable Synthesis and Multifunctional Applications. Macromol Rapid Commun 2018; 39:e1800058. [DOI: 10.1002/marc.201800058] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/19/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Qiuxia Fu
- Key Laboratory of Textile Science & Technology; Ministry of Education; College of Textiles; Donghua University; Shanghai 201620 China
| | - Cheng Duan
- Key Laboratory of Textile Science & Technology; Ministry of Education; College of Textiles; Donghua University; Shanghai 201620 China
| | - Zishuo Yan
- Key Laboratory of Textile Science & Technology; Ministry of Education; College of Textiles; Donghua University; Shanghai 201620 China
| | - Yan Li
- Key Laboratory of Textile Science & Technology; Ministry of Education; College of Textiles; Donghua University; Shanghai 201620 China
| | - Yang Si
- Key Laboratory of Textile Science & Technology; Ministry of Education; College of Textiles; Donghua University; Shanghai 201620 China
| | - Lifang Liu
- Key Laboratory of Textile Science & Technology; Ministry of Education; College of Textiles; Donghua University; Shanghai 201620 China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology; Donghua University; Shanghai 200051 China
| | - Bin Ding
- Key Laboratory of Textile Science & Technology; Ministry of Education; College of Textiles; Donghua University; Shanghai 201620 China
- Innovation Center for Textile Science and Technology; Donghua University; Shanghai 200051 China
| |
Collapse
|