1
|
Zhang Y, Wang Y, Zhang Z, Wang Z, Shao C, Hannig M, Zhou Z, Fu B. Intrafibrillar mineralization of type I collagen with calcium carbonate and strontium carbonate induced by polyelectrolyte-cation complexes. NANOSCALE ADVANCES 2024; 6:467-480. [PMID: 38235102 PMCID: PMC10791124 DOI: 10.1039/d3na00705g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024]
Abstract
Calcium carbonate (CaCO3), possessing excellent biocompatibility, bioactivity, osteoconductivity and superior biodegradability, may serve as an alternative to hydroxyapatite (HAp), the natural inorganic component of bone and dentin. Intrafibrillar mineralization of collagen with CaCO3 was achieved through the polymer-induced liquid precursor (PILP) process for at least 2 days. This study aims to propose a novel pathway for rapid intrafibrillar mineralization with CaCO3 by sequential application of the carbonate-bicarbonate buffer and polyaspartic acid (pAsp)-Ca suspension. Fourier transform infrared (FTIR) spectroscopy, zeta potential measurements, atomic force microscopy/Kelvin probe force microscopy (AFM/KPFM), and three-dimensional stochastic optical reconstruction microscopy (3D STORM) demonstrated that the carbonate-bicarbonate buffer significantly decreased the surface potential of collagen and CO32-/HCO3- ions could attach to collagen fibrils via hydrogen bonds. The electropositive pAsp-Ca complexes and free Ca2+ ions are attracted to and interact with CO32-/HCO3- ions through electrostatic attractions to form amorphous calcium carbonate that crystallizes gradually. Moreover, like CaCO3, strontium carbonate (SrCO3) can deposit inside the collagen fibrils through this pathway. The CaCO3-mineralized collagen gels exhibited better biocompatibility and cell proliferation ability than SrCO3. This study provides a feasible strategy for rapid collagen mineralization with CaCO3 and SrCO3, as well as elucidating the tissue engineering of CaCO3-based biomineralized materials.
Collapse
Affiliation(s)
- Yizhou Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province Hangzhou 310000
| | - Yiru Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province Hangzhou 310000
| | - Zhengyi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province Hangzhou 310000
| | - Zhe Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province Hangzhou 310000
| | - Changyu Shao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province Hangzhou 310000
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University 66421 Homburg Germany
| | - Zihuai Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province Hangzhou 310000
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province Hangzhou 310000
| |
Collapse
|
2
|
Cho E, Kim JE, Lee J, Park S, Lee S, Chung JH, Kim J, Seonwoo H. Development of 3D Printable Calcium Phosphate Cement Scaffolds with Cockle Shell Powders. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6154. [PMID: 37763431 PMCID: PMC10532504 DOI: 10.3390/ma16186154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Three-dimensional (3D) printed calcium phosphate cement (CPC) scaffolds are increasingly being used for bone tissue repair. Traditional materials used for CPC scaffolds, such as bovine and porcine bone, generally contain low amounts of calcium phosphate compounds, resulting in reduced production rates of CPC scaffolds. On the other hand, cockle shells contain more than 99% CaCO3 in the form of amorphous aragonite with excellent biocompatibility, which is expected to increase the CPC production rate. In this study, 3D-printed cockle shell powder-based CPC (CSP-CPC) scaffolds were developed by the material extrusion method. Lactic acid and hyaluronic acid were used to promote the printability. The characterization of CSP-CPC scaffolds was performed using Fourier transform infrared spectra, X-ray diffraction patterns, and scanning electron microscopy. The biocompatibility of CSP-CPC scaffolds was evaluated using cell viability, Live/Dead, and alkaline phosphatase assays. In addition, CSP-CPC scaffolds were implanted into the mouse calvarial defect model to confirm bone regeneration. This study provides an opportunity to create high value added in fishing villages by recycling natural products from marine waste.
Collapse
Affiliation(s)
- Eunbee Cho
- Department of Agricultural Machinery Engineering, College of Life Sciences and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea;
- Korea Testing & Research Institute, Suncheon 58023, Republic of Korea
| | - Jae Eun Kim
- CHA Advanced Research Institute, CHA University, Seongnam 13488, Republic of Korea;
| | - Juo Lee
- Department of Animal Science & Technology, College of Life Sciences and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea;
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sangbae Park
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea;
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sungmin Lee
- Department of Mechanical Engineering, College of Engineering, Sunchon National University, Suncheon 57922, Republic of Korea;
| | - Jong Hoon Chung
- ELBIO Inc., Seoul 08812, Republic of Korea;
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jungsil Kim
- Department of Bio-Industrial Machinery Engineering, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Convergent Biosystems Engineering, College of Life Sciences and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hoon Seonwoo
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Republic of Korea
- Department of Convergent Biosystems Engineering, College of Life Sciences and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
3
|
Canciani E, Straticò P, Varasano V, Dellavia C, Sciarrini C, Petrizzi L, Rimondini L, Varoni EM. Polylevolysine and Fibronectin-Loaded Nano-Hydroxyapatite/PGLA/Dextran-Based Scaffolds for Improving Bone Regeneration: A Histomorphometric in Animal Study. Int J Mol Sci 2023; 24:ijms24098137. [PMID: 37175849 PMCID: PMC10179305 DOI: 10.3390/ijms24098137] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The regeneration of large bone defects is still demanding, requiring biocompatible scaffolds, with osteoconductive and osteoinductive properties. This study aimed to assess the pre-clinical efficacy of a nano-hydroxyapatite (nano-HA)/PGLA/dextran-based scaffold loaded with Polylevolysine (PLL) and fibronectin (FN), intended for bone regeneration of a critical-size tibial defect, using an ovine model. After physicochemical characterization, the scaffolds were implanted in vivo, producing two monocortical defects on both tibiae of ten adult sheep, randomly divided into two groups to be euthanized at three and six months after surgery. The proximal left and right defects were filled, respectively, with the test scaffold (nano-HA/PGLA/dextran-based scaffold loaded with PLL and FN) and the control scaffold (nano-HA/PGLA/dextran-based scaffold not loaded with PLL and FN); the distal defects were considered negative control sites, not receiving any scaffold. Histological and histomorphometric analyses were performed to quantify the bone ingrowth and residual material 3 and 6 months after surgery. In both scaffolds, the morphological analyses, at the SEM, revealed the presence of submicrometric crystals on the surfaces and within the scaffolds, while optical microscopy showed a macroscopic 3D porous architecture. XRD confirmed the presence of nano-HA with a high level of crystallinity degree. At the histological and histomorphometric evaluation, new bone formation and residual biomaterial were detectable inside the defects 3 months after intervention, without differences between the scaffolds. At 6 months, the regenerated bone was significantly higher in the defects filled with the test scaffold (loaded with PLL and FN) than in those filled with the control scaffold, while the residual material was higher in correspondence to the control scaffold. Nano-HA/PGLA/dextran-based scaffolds loaded with PLL and FN appear promising in promoting bone regeneration in critical-size defects, showing balanced regenerative and resorbable properties to support new bone deposition.
Collapse
Affiliation(s)
- Elena Canciani
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Paola Straticò
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Vincenzo Varasano
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Claudia Dellavia
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20142 Milan, Italy
| | - Chiara Sciarrini
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Lucio Petrizzi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Lia Rimondini
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Elena M Varoni
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20142 Milan, Italy
| |
Collapse
|
4
|
Su D, Swearson S, Krongbaramee T, Sun H, Hong L, Amendt BA. Exploring microRNAs in craniofacial regenerative medicine. Biochem Soc Trans 2023; 51:841-854. [PMID: 37073783 PMCID: PMC11244734 DOI: 10.1042/bst20221448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/20/2023]
Abstract
microRNAs (miRs) have been reported over the decades as important regulators in bone development and bone regeneration. They play important roles in maintaining the stem cell signature as well as regulating stem cell fate decisions. Thus, delivering miRs and miR inhibitors to the defect site is a potential treatment towards craniofacial bone defects. However, there are challenges in translation of basic research to clinics, including the efficiency, specificity, and efficacy of miR manipulation methods and the safety of miR delivery systems. In this review, we will compare miR oligonucleotides, mimics and antagomirs as therapeutic reagents to treat disease and regenerate tissues. Newer technology will be discussed as well as the efficiency and efficacy of using these technologies to express or inhibit miRs in treating and repairing oral tissues. Delivery of these molecules using extracellular vesicles and nanoparticles can achieve different results and depending on their composition will elicit specific effects. We will highlight the specificity, toxicity, stability, and effectiveness of several miR systems in regenerative medicine.
Collapse
Affiliation(s)
- Dan Su
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, U.S.A
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, U.S.A
| | - Samuel Swearson
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, U.S.A
| | - Tadkamol Krongbaramee
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, U.S.A
- Division of Endodontics, Department of Restorative Dentistry & Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Hongli Sun
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, U.S.A
| | - Liu Hong
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, U.S.A
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, U.S.A
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, U.S.A
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, U.S.A
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, U.S.A
| |
Collapse
|
5
|
Longkaew K, Tessanan W, Daniel P, Phinyocheep P, Gibaud A. Using sucrose to prepare submicrometric CaCO3 vaterite particles stable in natural rubber. ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2022.103924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Niu YQ, Liu JH, Aymonier C, Fermani S, Kralj D, Falini G, Zhou CH. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chem Soc Rev 2022; 51:7883-7943. [PMID: 35993776 DOI: 10.1039/d1cs00519g] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Collapse
Affiliation(s)
- Yu-Qin Niu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia-Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Cyril Aymonier
- Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS, F-33600 Pessac, France
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy. .,Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Damir Kralj
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P. O. Box 1016, HR-10001 Zagreb, Croatia
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy.
| | - Chun-Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
7
|
Huang C, Zhou J, Rao J, Zhao X, Tian X, He F, Shi H. Fabrication of strontium carbonate-based composite bioceramics as potential bone regenerative biomaterials. Colloids Surf B Biointerfaces 2022; 218:112755. [PMID: 35973237 DOI: 10.1016/j.colsurfb.2022.112755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022]
Abstract
Strontium carbonate (SrC) bioceramics are proposed as potential biomaterials to efficaciously repair the bone defects. However, the development of SrC bioceramics is restricted by their intrinsic low mechanical strength. In this study, SrC-based composite bioceramics (SrC-SrP) were fabricated by incorporating strontium-containing phosphate glass (SrP). The results indicated that aside from the main crystalline phase SrC, new compounds were generated in the SrC-SrP bioceramics. Incorporating 10 wt% SrP promoted densification, thus dramatically improving compressive strength of SrC-SrP bioceramics. The SrC-SrP bioceramics facilitated apatite precipitation on their surface, and sustainedly released strontium, phosphorus and sodium ions. Compared with the well-known β-tricalcium phosphate bioceramics, the SrC-SrP bioceramics with certain amounts of SrP enhanced proliferation, alkaline phosphatase activity and osteogenesis-related gene expressions of mouse bone mesenchymal stem cells. The SrC-SrP bioceramics with appropriate constituent can serve as novel bone regenerative biomaterials.
Collapse
Affiliation(s)
- Changgui Huang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Jielin Zhou
- School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jin Rao
- School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xinyi Zhao
- School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiumei Tian
- The School of Biomedical Engineering, and Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Haishan Shi
- School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China; Artificial Organs and Materials Engineering Research Center, Ministry of Education, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
8
|
Gu P, Xu Y, Liu Q, Wang Y, Li Z, Chen M, Mao R, Liang J, Zhang X, Fan Y, Sun Y. Tailorable 3DP Flexible Scaffolds with Porosification of Filaments Facilitate Cell Ingrowth and Biomineralized Deposition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32914-32926. [PMID: 35829709 DOI: 10.1021/acsami.2c07649] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Facilitating cell ingrowth and biomineralized deposition inside filaments of 3DP scaffolds are an ideal bone repair strategy. Here, 3D printed PLGA/HA scaffolds with hydroxyapatite content of 50% (P5H5) and 70% (P3H7) were prepared by optimizing 3D printing inks, which exhibited good tailorability and foldability to meet clinical maneuverability. The supercritical CO2 foaming technology further endowed the filaments of P5H5 with a richer interconnected pore structure (P5H5-C). The finite element and computational fluid dynamics simulation analysis indicated that the porosification could effectively reduce the stress concentration at the filament junction and improved the overall permeability of the scaffold. The results of in vitro experiments confirmed that P5H5-C promoted the adsorption of proteins on the surface and inside of filaments, accelerated the release of Ca and P ions, and significantly upregulated osteogenesis (Col I, ALP, and OPN)- and angiogenesis (VEGF)-related gene expression. Subcutaneous ectopic osteogenesis experiments in nude mice further verified that P5H5-C facilitated cell growth inside filaments and biomineralized deposition, as well as significantly upregulated the expression of osteogenesis- and angiogenesis-related genes (Col I, ALP, OCN, and VEGF) and protein secretion (ALP, RUNX2, and VEGF). The porosification of filaments by supercritical CO2 foaming provided a new strategy for accelerating osteogenesis of 3DP implants.
Collapse
Affiliation(s)
- Peiyang Gu
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Yang Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Quanying Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Yuxiang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Zhulian Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Manyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Ruiqi Mao
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
9
|
Mulyawan I, Danudiningrat CP, Soesilawati P, Aulanni'am A, Yuliati A, Suroto H, Bramantoro T, Rizqiawan A, Moon SY. The Characteristics of Demineralized Dentin Material Sponge as Guided Bone Regeneration Based on the FTIR and SEM-EDX Tests. Eur J Dent 2022; 16:880-885. [PMID: 35279821 PMCID: PMC9683878 DOI: 10.1055/s-0042-1743147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Objective
The objective of this study was to determine the characteristics of demineralized dentin material sponge (DDMS).
Material and Methods
An observational study was conducted on DDMS and BPCM. Fourier transform infrared (FTIR) test was performed to determine the characterizations of the materials. Scanning electron microscope-electron dispersive X-ray spectroscopy (SEM-EDX) test was performed to observe the elements contained in the materials.
Results
The infrared spectrum of the DDMS and BPCM functional groups showed the same pattern in each variation, and no significant differences were found. According to SEM analysis, the cavities that make up the membrane were spotted on the surface. Besides, according to the SEM-EDX analysis, DDMS contained chlorine, carbon, and calcium, while BPCM contained carbon, oxygen, and sulfur.
Conclusion
DDMS has the potential to be a biomaterial for bone tissue engineering in terms of the characteristics. DDMS had a structure that almost resembles BPCM as seen from the results of the FTIR graph between DDMS and BPCM. The morphological structure of the two materials in the SEM test appeared to have porosity with various sizes.
Collapse
Affiliation(s)
- Indra Mulyawan
- Departement of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Airlangga, Surabaya, Indonesia
| | - Coen Pramono Danudiningrat
- Departement of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Airlangga, Surabaya, Indonesia
| | - Pratiwi Soesilawati
- Departement of Biology Oral, Faculty of Dentistry, Universitas Airlangga, Surabaya, Indonesia
| | - Aulanni'am Aulanni'am
- Departement of Chemistry, Faculty of Science, Universitas Brawijaya, Malang, Indonesia
| | - Anita Yuliati
- Departement of Dental Material, Faculty of Dentistry, Universitas Airlangga, Surabaya, Indonesia
| | - Heri Suroto
- Departement of Orthopaedic and Traumatology Surgery, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Taufan Bramantoro
- Departement of Dental Public Health, Faculty of Dentistry, Universitas Airlangga, Surabaya, Indonesia
| | - Andra Rizqiawan
- Departement of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Airlangga, Surabaya, Indonesia
| | - Seong-Yong Moon
- Departement of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chosun University, Gwangju, South Korea
| |
Collapse
|
10
|
Praziquantel-loaded calcite crystals: Synthesis, physicochemical characterization, and biopharmaceutical properties of inorganic biomaterials for drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Vasiliu AL, Zaharia MM, Bazarghideanu MM, Rosca I, Peptanariu D, Mihai M. Hydrophobic Composites Designed by a Nonwoven Cellulose-Based Material and Polymer/CaCO 3 Patterns with Biomedical Applications. Biomacromolecules 2021; 23:89-99. [PMID: 34965089 DOI: 10.1021/acs.biomac.1c01036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report a simple method to obtain hydrophobic surfaces by surface modification with calcium carbonate via diffusion-controlled crystallization using a cheap, versatile, and super-hydrophilic cellulose-based nonwoven material (NWM) as the substrate. To control the CaCO3 crystal growth, the ammonium carbonate diffusion method was applied in the presence of polyanions [poly(acid acrylic), poly(2-acrylamido-2-methylpropanesulfonic acid), and a copolymer which contains 55 mol % 2-acrylamido-2-methylpropanesulfonic acid and 45 mol % acrylic acid] or nonstoichiometric polyelectrolyte complexes with polycations [poly(allylamine hydrochloride) and chitosan] on a pristine NWM and on polycation-treated surfaces. The surface morphology obtained by calcite growth under surface or environmental functional groups' influence and the hydrophilic/hydrophobic character of the composite materials were followed and compared to that of the starting material. The obtained composite materials become hydrophobic, having a contact angle in the range of 110-135°. The capacity of tetracycline sorption and release by selected modified surfaces were followed and compared to the untreated NWM. Also, the biological properties were evaluated in terms of biocompatibility, antibacterial activity, and antifouling capability.
Collapse
Affiliation(s)
- Ana-Lavinia Vasiliu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Marius-Mihai Zaharia
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | | | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Dragos Peptanariu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Marcela Mihai
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
12
|
Alcala-Orozco CR, Cui X, Hooper GJ, Lim KS, Woodfield TB. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration. Acta Biomater 2021; 132:188-216. [PMID: 33713862 DOI: 10.1016/j.actbio.2021.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/02/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
The evolution of additive manufacturing (AM) technologies, biomaterial development and our increasing understanding of cell biology has created enormous potential for the development of personalized regenerative therapies. In the context of skeletal tissue engineering, physical and biological demands play key roles towards successful construct implantation and the achievement of bone, cartilage and blood vessel tissue formation. Nevertheless, meeting such physical and biological demands to mimic the complexity of human tissues and their functionality is still a significant ongoing challenge. Recent studies have demonstrated that combination of AM technologies and advanced biomaterials has great potential towards skeletal tissue engineering. This review aims to analyze how the most prominent technologies and discoveries in the field converge towards the development of advanced constructs for skeletal regeneration. Particular attention is placed on hybrid biofabrication strategies, combining bioinks for cell delivery with biomaterial inks providing physical support. Hybrid biofabrication has been the focus of recent emerging strategies, however there has been limited review and analysis of these techniques and the challenges involved. Furthermore, we have identified that there are multiple hybrid fabrication strategies, here we present a category system where each strategy is reviewed highlighting their distinct advantages, challenges and potential applications. In addition, bioinks and biomaterial inks are the main components of the hybrid biofabrication strategies, where it is recognized that such platforms still lack optimal physical and biological functionality. Thus, this review also explores the development of composite materials specifically targeting the enhancement of physical and biological functionality towards improved skeletal tissue engineering. STATEMENT OF SIGNIFICANCE: Biofabrication strategies capable of recreating the complexity of native tissues could open new clinical possibilities towards patient-specific regenerative therapies and disease models. Several reviews target the existing additive manufacturing (AM) technologies that may be utilised for biomedical purposes. However, this work presents a unique perspective, describing how such AM technologies have been recently translated towards hybrid fabrication strategies, targeting the fabrication of constructs with converging physical and biological properties. Furthermore, we address composite bioinks and biomaterial inks that have been engineered to overcome traditional limitations, and might be applied to the hybrid fabrication strategies outlined. This work offers ample perspectives and insights into the current and future challenges for the fabrication of skeletal tissues aiming towards clinical and biomedical applications.
Collapse
|
13
|
Hong L, Sun H, Amendt BA. MicroRNA function in craniofacial bone formation, regeneration and repair. Bone 2021; 144:115789. [PMID: 33309989 PMCID: PMC7869528 DOI: 10.1016/j.bone.2020.115789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Bone formation in the craniofacial complex is regulated by cranial neural crest (CNC) and mesoderm-derived cells. Different elements of the developing skull, face, mandible, maxilla (jaws) and nasal bones are regulated by an array of transcription factors, signaling molecules and microRNAs (miRs). miRs are molecular modulators of these factors and act to restrict their expression in a temporal-spatial mechanism. miRs control the different genetic pathways that form the craniofacial complex. By understanding how miRs function in vivo during development they can be adapted to regenerate and repair craniofacial genetic anomalies as well as bone diseases and defects due to traumatic injuries. This review will highlight some of the new miR technologies and functions that form new bone or inhibit bone regeneration.
Collapse
Affiliation(s)
- Liu Hong
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, USA
| | - Hongli Sun
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, USA
| | - Brad A Amendt
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, USA; The University of Iowa, Department of Anatomy and Cell Biology, Iowa City, IA, USA; Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
14
|
Zia I, Jolly R, Mirza S, Umar MS, Owais M, Shakir M. Hydroxyapatite Nanoparticles Fortified Xanthan Gum-Chitosan Based Polyelectrolyte Complex Scaffolds for Supporting the Osteo-Friendly Environment. ACS APPLIED BIO MATERIALS 2020; 3:7133-7146. [PMID: 35019373 DOI: 10.1021/acsabm.0c00948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanoparticle-reinforced polymer-based scaffolding matrices as artificial bone-implant materials are potential suitors for bone regenerative medicine as they simulate the native bone. In the present work, a series of bioinspired, osteoconductive tricomposite scaffolds made up of nano-hydroxyapatite (NHA) embedded xanthan gum-chitosan (XAN-CHI) polyelectrolyte complex (PEC) are explored for their bone-regeneration potential. The Fourier transform infrared spectroscopy studies confirmed complex formation between XAN and CHI and showed strong interactions between the NHA and PEC matrix. The X-ray diffraction studies indicated regulation of the nanocomposite (NC) scaffold crystallinity by the physical cues of the PEC matrix. Further results exhibited that the XAN-CHI/NHA5 scaffold, with a 50/50 (polymer/NHA) ratio, has optimized porous structure, appropriate compressive properties, and sufficient swelling ability with slower degradation rates, which are far better than those of CHI/NHA and other XAN-CHI/NHA NC scaffolds. The simulated body fluid studies showed XAN-CHI/NHA5 generated apatite-like surface structures of a Ca/P ratio ∼1.66. Also, the in vitro cell-material interaction studies with MG-63 cells revealed that relative to the CHI/NHA NC scaffold, the cellular viability, attachment, and proliferation were better on XAN-CHI/NHA scaffold surfaces, with XAN-CHI/NHA5 specimens exhibiting an effective increment in cell spreading capacity compared to XAN-CHI/NHA4 and XAN-CHI/NHA6 specimens. The presence of an osteo-friendly environment is also indicated by enhanced alkaline phosphatase expression and protein adsorption ability. The higher expression of extracellular matrix proteins, such as osteocalcin and osteopontin, finally validated the induction of differentiation of MG-63 cells by tricomposite scaffolds. In summary, this study demonstrates that the formation of PEC between XAN and CHI and incorporation of NHA in XAN-CHI PEC developed tricomposite scaffolds with robust potential for use in bone regeneration applications.
Collapse
Affiliation(s)
- Iram Zia
- Inorganic Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Reshma Jolly
- Inorganic Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Sumbul Mirza
- Inorganic Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Saad Umar
- Molecular Immunology Group Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Owais
- Molecular Immunology Group Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Shakir
- Inorganic Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
15
|
Mirza S, Jolly R, Zia I, Saad Umar M, Owais M, Shakir M. Bioactive Gum Arabic/κ-Carrageenan-Incorporated Nano-Hydroxyapatite Nanocomposites and Their Relative Biological Functionalities in Bone Tissue Engineering. ACS OMEGA 2020; 5:11279-11290. [PMID: 32478215 PMCID: PMC7254512 DOI: 10.1021/acsomega.9b03761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/03/2020] [Indexed: 06/01/2023]
Abstract
The present frontiers of bone tissue engineering are being pushed by novel biomaterials that exhibit phenomenal biocompatibility and adequate mechanical strength. In this work, we fabricated a ternary system incorporating nano-hydroxyapatite (n-HA)/gum arabic (GA)/κ-carrageenan (κ-CG) with varying concentrations, i.e., 60/30/10 (CHG1), 60/20/20 (CHG2), and 60/10/30 (CHG3). A binary system with n-HA and GA was also prepared with a ratio of 60/40 (HG) and compared with the ternary system. A rapid mineralization of the apatite layer was observed for the ternary systems after incubation in simulated body fluid (SBF) for 15 days as corroborated by scanning electron microscopy (SEM). CHG2 exhibited the maximum apatite layer deposition. Further, the nanocomposites were physicochemically analyzed by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and mechanical testing. Their results revealed a substantial interaction among the components, appropriate crystallinity, and significantly enhanced compressive strength and modulus for the ternary nanocomposites. The greatest mechanical strength was achieved by the scaffold containing equal amounts of GA and κ-CG. The cytotoxicity was evaluated by culturing osteoblast-like MG63 cells, which exhibited the highest cell viability for the CHG2 nanocomposite system. It was further supported by confocal microscopy, which revealed the maximum cell proliferation for the CHG2 scaffold. In addition, enhanced antibacterial activity, protein adsorption, biodegradability, and osteogenic differentiation were observed for the ternary nanocomposites. Osteogenic gene markers, such as osteocalcin (OCN), osteonectin (ON), and osteopontin (OPN), were present in higher quantities in the CHG2 and CHG3 nanocomposites as confirmed by western blotting. These results substantiated the pertinence of n-HA-, GA-, and κ-CG-incorporated ternary systems to bone implant materials.
Collapse
Affiliation(s)
- Sumbul Mirza
- Inorganic
Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Reshma Jolly
- Inorganic
Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Iram Zia
- Inorganic
Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Saad Umar
- Molecular
Immunology Group Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Owais
- Molecular
Immunology Group Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Shakir
- Inorganic
Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
16
|
Wysokowski M, Machałowski T, Petrenko I, Schimpf C, Rafaja D, Galli R, Ziętek J, Pantović S, Voronkina A, Kovalchuk V, Ivanenko VN, Hoeksema BW, Diaz C, Khrunyk Y, Stelling AL, Giovine M, Jesionowski T, Ehrlich H. 3D Chitin Scaffolds of Marine Demosponge Origin for Biomimetic Mollusk Hemolymph-Associated Biomineralization Ex-Vivo. Mar Drugs 2020; 18:E123. [PMID: 32092907 PMCID: PMC7074400 DOI: 10.3390/md18020123] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Structure-based tissue engineering requires large-scale 3D cell/tissue manufacture technologies, to produce biologically active scaffolds. Special attention is currently paid to naturally pre-designed scaffolds found in skeletons of marine sponges, which represent a renewable resource of biomaterials. Here, an innovative approach to the production of mineralized scaffolds of natural origin is proposed. For the first time, a method to obtain calcium carbonate deposition ex vivo, using living mollusks hemolymph and a marine-sponge-derived template, is specifically described. For this purpose, the marine sponge Aplysin aarcheri and the terrestrial snail Cornu aspersum were selected as appropriate 3D chitinous scaffold and as hemolymph donor, respectively. The formation of calcium-based phase on the surface of chitinous matrix after its immersion into hemolymph was confirmed by Alizarin Red staining. A direct role of mollusks hemocytes is proposed in the creation of fine-tuned microenvironment necessary for calcification ex vivo. The X-ray diffraction pattern of the sample showed a high CaCO3 amorphous content. Raman spectroscopy evidenced also a crystalline component, with spectra corresponding to biogenic calcite. This study resulted in the development of a new biomimetic product based on ex vivo synthetized ACC and calcite tightly bound to the surface of 3D sponge chitin structure.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Tomasz Machałowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Christian Schimpf
- Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - David Rafaja
- Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Jerzy Ziętek
- Faculty of Veterinary Medicine, Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Głęboka 30, 20612 Lublin, Poland;
| | - Snežana Pantović
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro;
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, 21018 Vinnitsa, Ukraine;
| | - Valentine Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, 21018 Vinnitsa, Ukraine;
| | - Viatcheslav N. Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Bert W. Hoeksema
- Taxonomy and Systematics Group, Naturalis Biodiversity Center, 2333CR Leiden, The Netherlands;
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747AG Groningen, The Netherlands
| | - Cristina Diaz
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 Old Dixie Hwy, Fort Pierce, FL 34946, USA;
| | - Yuliya Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia;
- The Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences, Akademicheskaya Str. 20, 620990 Ekaterinburg, Russia
| | - Allison L. Stelling
- Department of Biochemistry, Duke University Medical School, Durham, NC 27708, USA;
| | - Marco Giovine
- Department of Sciences of Earth, Environment and Life, University of Genoa, Corso Europa 26, 16132 Genova, Italy;
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|
17
|
Rößler S, Unbehau R, Gemming T, Kruppke B, Wiesmann HP, Hanke T. Calcite incorporated in silica/collagen xerogels mediates calcium release and enhances osteoblast proliferation and differentiation. Sci Rep 2020; 10:118. [PMID: 31924823 PMCID: PMC6954176 DOI: 10.1038/s41598-019-56023-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/05/2019] [Indexed: 11/13/2022] Open
Abstract
Multiphasic silica/collagen xerogels are biomaterials designed for bone regeneration. Biphasic silica/collagen xerogels (B30) and triphasic xerogels (B30H20 or B30CK20) additionally containing hydroxyapatite or calcite were demonstrated to exhibit several structural levels. On the first level, low fibrillar collagen serves as template for silica nanoparticle agglomerates. On second level, this silica-enriched matrix phase is fiber-reinforced by collagen fibrils. In case of hydroxyapatite incorporation in B30H20, resulting xerogels exhibit a hydroxyapatite-enriched phase consisting of hydroxyapatite particle agglomerates next to silica and low fibrillar collagen. Calcite in B30CK20 is incorporated as single non-agglomerated crystal into the silica/collagen matrix phase with embedded collagen fibrils. Both the structure of multiphasic xerogels and the manner of hydroxyapatite or calcite incorporation have an influence on the release of calcium from the xerogels. B30CK20 released a significantly higher amount of calcium into a calcium-free solution over a three-week period than B30H20. In calcium containing incubation media, all xerogels caused a decrease in calcium concentration as a result of their bioactivity, which was superimposed by the calcium release for B30CK20 and B30H20. Proliferation of human bone marrow stromal cells in direct contact to the materials was enhanced on B30CK20 compared to cells on both plain B30 and B30H20.
Collapse
Affiliation(s)
- S Rößler
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technical University Dresden, Budapester Str. 27, D-01069, Dresden, Germany.
| | - R Unbehau
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technical University Dresden, Budapester Str. 27, D-01069, Dresden, Germany
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Postfach 1160, D-21494, Geesthacht, Germany
| | - T Gemming
- IFW Dresden, P.O. Box 270116, D-01171, Dresden, Germany
| | - B Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technical University Dresden, Budapester Str. 27, D-01069, Dresden, Germany
| | - H-P Wiesmann
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technical University Dresden, Budapester Str. 27, D-01069, Dresden, Germany
| | - T Hanke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technical University Dresden, Budapester Str. 27, D-01069, Dresden, Germany
| |
Collapse
|
18
|
Zia I, Mirza S, Jolly R, Rehman A, Ullah R, Shakir M. Trigonella foenum graecum seed polysaccharide coupled nano hydroxyapatite-chitosan: A ternary nanocomposite for bone tissue engineering. Int J Biol Macromol 2019; 124:88-101. [DOI: 10.1016/j.ijbiomac.2018.11.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/23/2018] [Accepted: 11/11/2018] [Indexed: 12/23/2022]
|
19
|
Sangeetha R, Madheswari D, Priya G. Fabrication of poly (methyl methacrylate)/Ce/Cu substituted apatite/Egg white (Ovalbumin) biocomposite owning adjustable properties: Towards bone tissue rejuvenation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 187:162-169. [DOI: 10.1016/j.jphotobiol.2018.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 01/25/2023]
|
20
|
Hardy JG, Bertin A, Torres‐Rendon JG, Leal‐Egaña A, Humenik M, Bauer F, Walther A, Cölfen H, Schlaad H, Scheibel TR. Facile Photochemical Modification of Silk Protein–Based Biomaterials. Macromol Biosci 2018; 18:e1800216. [DOI: 10.1002/mabi.201800216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/25/2018] [Indexed: 12/24/2022]
Affiliation(s)
- John G. Hardy
- Biomaterials, Faculty of Engineering Science, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
- Department of ChemistryLancaster University Lancaster LA1 4YB UK
- Materials Science InstituteLancaster University Lancaster LA1 4YB UK
| | - Annabelle Bertin
- German Federal Institute for Materials Research and Testing (BAM) Unter den Eichen 87 12205 Berlin Germany
- Institute of Chemistry and BiochemistryFree University of Berlin Takustraße 3 14195 Berlin Germany
| | | | - Aldo Leal‐Egaña
- Biomaterials, Faculty of Engineering Science, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
- Institute of BiomaterialsUniversity of Erlangen‐Nuremberg Ulrich‐Schalk‐Straße 3 91056 Erlangen Germany
| | - Martin Humenik
- Biomaterials, Faculty of Engineering Science, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Felix Bauer
- Biomaterials, Faculty of Engineering Science, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Andreas Walther
- DWI Leibniz Institute for Interactive Materials Forckenbeckstraße 50 52056 Aachen Germany
- Institute for Macromolecular ChemistryUniversity of Freiburg Stefan‐Meier‐Straße 31 79104 Freiburg Germany
- Freiburg Materials Research CenterUniversity of Freiburg Stefan‐Meier‐Straße 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of Freiburg Georges‐Köhler‐Allee 105 79110 Freiburg Germany
| | - Helmut Cölfen
- Physical Chemistry GroupDepartment of ChemistryUniversity of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| | - Helmut Schlaad
- Institute of ChemistryUniversity of Potsdam Karl‐Liebknecht‐Straße 24‐25 14476 Potsdam Germany
| | - Thomas R. Scheibel
- Biomaterials, Faculty of Engineering Science, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG)Universität Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
- Bayerisches Polymerinstitut (BPI)Universität Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
- Bayreuther Zentrum für Bio‐Makromoleküle (Bio‐Mac)Universität Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB)Universität Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| |
Collapse
|