1
|
Ma Y, Wang X, Huang X, He Y, Su T, Niu X, Gao J, Lu F, Chang Q. Radial Egg White Hydrogel Releasing Extracellular Vesicles for Cell Fate Guidance and Accelerated Diabetic Skin Regeneration. Adv Healthc Mater 2024; 13:e2400016. [PMID: 39285803 DOI: 10.1002/adhm.202400016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/01/2024] [Indexed: 12/18/2024]
Abstract
Topology and bioactive molecules are crucial for stimulating cellular and tissue functions. To regulate the chronic wound microenvironment, mono-assembly technology is employed to fabricate a radial egg white hydrogel loaded with lyophilized adipose tissue-extracellular vesicles (radial EWH@L-EVs). The radial architecture not only significantly modified the gene expression of functional cells, but also achieved directional and controlled release kinetics of L-EVs. Through the synergy of topographical and inherent bioactive cues, radial EWH@L-EVs effectively reduced intracellular oxidative stress and promoted the polarization of macrophages toward an anti-inflammatory phenotype during the inflammatory phase. Afterward, radial EWH@L-EVs facilitated the centripetal migration and proliferation of fibroblasts and endothelial cells as the wound transitioned to the proliferative phase. During the latter remodeling phase, radial EWH@L-EVs accelerated the regeneration of granulation tissue, angiogenesis, and collagen deposition, thereby promoting the reorganization chronic wound. Compared with the gold standard collagen scaffold, radial EWH@L-EVs actively accommodated the microenvironment via various functions throughout all stages of diabetic wound healing. This can be attributed to the orientation of topological structures and bioactive molecules, which should be considered of utmost importance in tissue engineering.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Xinhui Wang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Xiaoqi Huang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Yu He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Ting Su
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Xingtang Niu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
2
|
Kumar R, Gulia K. The convergence of nanotechnology‐stem cell, nanotopography‐mechanobiology, and biotic‐abiotic interfaces: Nanoscale tools for tackling the top killer, arteriosclerosis, strokes, and heart attacks. NANO SELECT 2021. [DOI: 10.1002/nano.202000192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Rajiv Kumar
- NIET National Institute of Medical Science Rajasthan India
| | - Kiran Gulia
- Materials and Manufacturing School of Engineering University of Wolverhampton Wolverhampton England, UK
| |
Collapse
|
3
|
Omidinia-Anarkoli A, Ephraim JW, Rimal R, De Laporte L. Hierarchical fibrous guiding cues at different scales influence linear neurite extension. Acta Biomater 2020; 113:350-359. [PMID: 32663661 DOI: 10.1016/j.actbio.2020.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022]
Abstract
Surface topographies at micro- and nanoscales can influence different cellular behavior, such as their growth rate and directionality. While different techniques have been established to fabricate 2-dimensional flat substrates with nano- and microscale topographies, most of them are prone to high costs and long preparation times. The 2.5-dimensional fiber platform presented here provides knowledge on the effect of the combination of fiber alignment, inter-fiber distance (IFD), and fiber surface topography on contact guidance to direct neurite behavior from dorsal root ganglia (DRGs) or dissociated primary neurons. For the first time, the interplay of the micro-/nanoscale topography and IFD is studied to induce linear nerve growth, while controlling branching. The results demonstrate that grooved fibers promote a higher percentage of aligned neurite extension, compensating the adverse effect of increased IFD. Accordingly, maximum neurite extension from primary neurons is achieved on grooved fibers separated by an IFD of 30 μm, with a higher percentage of aligned neurons on grooved fibers at a large IFD compared to porous fibers with the smallest IFD of 10 µm. We further demonstrate that the neurite "decision-making" behavior on whether to cross a fiber or grow along it is not only dependent on the IFD but also on the fiber surface topography. In addition, axons growing in between the fibers seem to have a memory after leaving grooved fibers, resulting in higher linear growth and higher IFDs lead to more branching. Such information is of great importance for new material development for several tissue engineering applications. STATEMENT OF SIGNIFICANCE: One of the key aspects of tissue engineering is controlling cell behavior using hierarchical structures. Compared to 2D surfaces, fibers are an important class of materials, which can emulate the native ECM architecture of tissues. Despite the importance of both fiber surface topography and alignment to direct growing neurons, the current state of the art did not yet study the synergy between both scales of guidance. To achieve this, we established a solvent assisted spinning process to combine these two crucial features and control neuron growth, alignment, and branching. Rational design of new platforms for various tissue engineering and drug discovery applications can benefit from such information as it allows for fabrication of functional materials, which selectively influence neurite behavior.
Collapse
|
4
|
Wang Z, Xia F, Labib M, Ahmadi M, Chen H, Das J, Ahmed SU, Angers S, Sargent EH, Kelley SO. Nanostructured Architectures Promote the Mesenchymal-Epithelial Transition for Invasive Cells. ACS NANO 2020; 14:5324-5336. [PMID: 32369335 DOI: 10.1021/acsnano.9b07350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dynamic modulation of cellular phenotypes between the epithelial and mesenchymal states-the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET)-plays an important role in cancer progression. Nanoscale topography of culture substrates is known to affect the migration and EMT of cancer cells. However, existing platforms heavily rely on simple geometries such as grooved lines or cylindrical post arrays, which may oversimplify the complex interaction between cells and nanotopography in vivo. Here, we use electrodeposition to construct finely controlled surfaces with biomimetic fractal nanostructures as a means of examining the roles of nanotopography during the EMT/MET process. We found that nanostructures in the size range of 100 to 500 nm significantly promote MET for invasive breast and prostate cancer cells. The "METed" cells acquired distinct expression of epithelial and mesenchymal markers, displayed perturbed morphologies, and exhibited diminished migration and invasion, even after the removal of a nanotopographical stimulus. The phosphorylation of GSK-3 was decreased, which further tuned the expression of Snail and modulated the EMT/MET process. Our findings suggest that invasive cancer cells respond to the geometries and dimensions of complex nanostructured architectures.
Collapse
Affiliation(s)
- Zongjie Wang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, M5S 3G4, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, M5S 3G9, Canada
| | - Fan Xia
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| | - Moloud Ahmadi
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| | - Haijie Chen
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, M5S 3G4, Canada
| | - Jagotamoy Das
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| | - Sharif U Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| | - Stéphane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, M5S 3G4, Canada
| | - Shana O Kelley
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, M5S 3G9, Canada
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada
| |
Collapse
|