1
|
Li X, Zhu L, Che Z, Liu T, Yang C, Huang L. Progress of research on the surface functionalization of tantalum and porous tantalum in bone tissue engineering. Biomed Mater 2024; 19:042009. [PMID: 38838694 DOI: 10.1088/1748-605x/ad5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Tantalum and porous tantalum are ideal materials for making orthopedic implants due to their stable chemical properties and excellent biocompatibility. However, their utilization is still affected by loosening, infection, and peripheral inflammatory reactions, which sometimes ultimately lead to implant removal. An ideal bone implant should have exceptional biological activity, which can improve the surrounding biological microenvironment to enhance bone repair. Recent advances in surface functionalization have produced various strategies for developing compatibility between either of the two materials and their respective microenvironments. This review provides a systematic overview of state-of-the-art strategies for conferring biological functions to tantalum and porous tantalum implants. Furthermore, the review describes methods for preparing active surfaces and different bioactive substances that are used, summarizing their functions. Finally, this review discusses current challenges in the development of optimal bone implant materials.
Collapse
Affiliation(s)
- Xudong Li
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Liwei Zhu
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Zhenjia Che
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Tengyue Liu
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chengzhe Yang
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Lanfeng Huang
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
2
|
Xi X, Gao Y, Wang J, Zheng N. Strontium chloride improves bone mass by affecting the gut microbiota in young male rats. Front Endocrinol (Lausanne) 2023; 14:1198475. [PMID: 37795367 PMCID: PMC10545847 DOI: 10.3389/fendo.2023.1198475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Bone mass accumulated in early adulthood is an important determinant of bone mass throughout the lifespan, and inadequate bone deposition may lead to associated skeletal diseases. Recent studies suggest that gut bacteria may be potential factors in boosting bone mass. Strontium (Sr) as a key bioactive element has been shown to improve bone quality, but the precise way that maintains the equilibrium of the gut microbiome and bone health is still not well understood. Methods We explored the capacity of SrCl2 solutions of varying concentrations (0, 100, 200 and 400 mg/kg BW) on bone quality in 7-week-old male Wistar rats and attempted to elucidate the mechanism through gut microbes. Results The results showed that in a Wistar rat model under normal growth conditions, serum Ca levels increased after Sr-treatment and showed a dose-dependent increase with Sr concentration. Three-point mechanics and Micro-CT results showed that Sr exposure enhanced bone biomechanical properties and improved bone microarchitecture. In addition, the osteoblast gene markers BMP, BGP, RUNX2, OPG and ALP mRNA levels were significantly increased to varying degrees after Sr treatment, and the osteoclast markers RANKL and TRAP were accompanied by varying degrees of reduction. These experimental results show that Sr improves bones from multiple angles. Further investigation of the microbial population revealed that the composition of the gut microbiome was changed due to Sr, with the abundance of 6 of the bacteria showing a different dose dependence with Sr concentration than the control group. To investigate whether alterations in bacterial flora were responsible for the effects of Sr on bone remodeling, a further pearson correlation analysis was done, 4 types of bacteria (Ruminococcaceae_UCG-014, Lachnospiraceae_NK4A136_group, Alistipes and Weissella) were deduced to be the primary contributors to Sr-relieved bone loss. Of these, we focused our analysis on the most firmly associated Ruminococcaceae_UCG-014. Discussion To summarize, our current research explores changes in bone mass following Sr intervention in young individuals, and the connection between Sr-altered intestinal flora and potentially beneficial bacteria in the attenuation of bone loss. These discoveries underscore the importance of the "gut-bone" axis, contributing to an understanding of how Sr affects bone quality, and providing a fresh idea for bone mass accumulation in young individuals and thereby preventing disease due to acquired bone mass deficiency.
Collapse
Affiliation(s)
- Xueyao Xi
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Lázár I, Čelko L, Menelaou M. Aerogel-Based Materials in Bone and Cartilage Tissue Engineering-A Review with Future Implications. Gels 2023; 9:746. [PMID: 37754427 PMCID: PMC10530393 DOI: 10.3390/gels9090746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Aerogels are fascinating solid materials known for their highly porous nanostructure and exceptional physical, chemical, and mechanical properties. They show great promise in various technological and biomedical applications, including tissue engineering, and bone and cartilage substitution. To evaluate the bioactivity of bone substitutes, researchers typically conduct in vitro tests using simulated body fluids and specific cell lines, while in vivo testing involves the study of materials in different animal species. In this context, our primary focus is to investigate the applications of different types of aerogels, considering their specific materials, microstructure, and porosity in the field of bone and cartilage tissue engineering. From clinically approved materials to experimental aerogels, we present a comprehensive list and summary of various aerogel building blocks and their biological activities. Additionally, we explore how the complexity of aerogel scaffolds influences their in vivo performance, ranging from simple single-component or hybrid aerogels to more intricate and organized structures. We also discuss commonly used formulation and drying methods in aerogel chemistry, including molding, freeze casting, supercritical foaming, freeze drying, subcritical, and supercritical drying techniques. These techniques play a crucial role in shaping aerogels for specific applications. Alongside the progress made, we acknowledge the challenges ahead and assess the near and far future of aerogel-based hard tissue engineering materials, as well as their potential connection with emerging healing techniques.
Collapse
Affiliation(s)
- István Lázár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Ladislav Čelko
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic;
| | - Melita Menelaou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Arch. Kyprianos Str., Limassol 3036, Cyprus
| |
Collapse
|
4
|
Dayanandan AP, Cho WJ, Kang H, Bello AB, Kim BJ, Arai Y, Lee SH. Emerging nano-scale delivery systems for the treatment of osteoporosis. Biomater Res 2023; 27:68. [PMID: 37443121 DOI: 10.1186/s40824-023-00413-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023] Open
Abstract
Osteoporosis is a pathological condition characterized by an accelerated bone resorption rate, resulting in decreased bone density and increased susceptibility to fractures, particularly among the elderly population. While conventional treatments for osteoporosis have shown efficacy, they are associated with certain limitations, including limited drug bioavailability, non-specific administration, and the occurrence of adverse effects. In recent years, nanoparticle-based drug delivery systems have emerged as a promising approach for managing osteoporosis. Nanoparticles possess unique physicochemical properties, such as a small size, large surface area-to-volume ratio, and tunable surface characteristics, which enable them to overcome the limitations of conventional therapies. These nanoparticles offer several advantages, including enhanced drug stability, controlled release kinetics, targeted bone tissue delivery, and improved drug bioavailability. This comprehensive review aims to provide insights into the recent advancements in nanoparticle-based therapy for osteoporosis. It elucidates the various types of nanoparticles employed in this context, including silica, polymeric, solid lipid, and metallic nanoparticles, along with their specific processing techniques and inherent properties that render them suitable as potential drug carriers for osteoporosis treatment. Furthermore, this review discusses the challenges and future suggestions associated with the development and translation of nanoparticle drug delivery systems for clinical use. These challenges encompass issues such as scalability, safety assessment, and regulatory considerations. However, despite these challenges, the utilization of nanoparticle-based drug delivery systems holds immense promise in revolutionizing the field of osteoporosis management by enabling more effective and targeted therapies, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
| | - Woong Jin Cho
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hyemin Kang
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | | | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
5
|
Souto-Lopes M, Fernandes MH, Monteiro FJ, Salgado CL. Bioengineering Composite Aerogel-Based Scaffolds That Influence Porous Microstructure, Mechanical Properties and In Vivo Regeneration for Bone Tissue Application. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4483. [PMID: 37374666 PMCID: PMC10305395 DOI: 10.3390/ma16124483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Tissue regeneration of large bone defects is still a clinical challenge. Bone tissue engineering employs biomimetic strategies to produce graft composite scaffolds that resemble the bone extracellular matrix to guide and promote osteogenic differentiation of the host precursor cells. Aerogel-based bone scaffold preparation methods have been increasingly improved to overcome the difficulties in balancing the need for an open highly porous and hierarchically organized microstructure with compression resistance to withstand bone physiological loads, especially in wet conditions. Moreover, these improved aerogel scaffolds have been implanted in vivo in critical bone defects, in order to test their bone regeneration potential. This review addresses recently published studies on aerogel composite (organic/inorganic)-based scaffolds, having in mind the various cutting-edge technologies and raw biomaterials used, as well as the improvements that are still a challenge in terms of their relevant properties. Finally, the lack of 3D in vitro models of bone tissue for regeneration studies is emphasized, as well as the need for further developments to overcome and minimize the requirement for studies using in vivo animal models.
Collapse
Affiliation(s)
- Mariana Souto-Lopes
- i3S—Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal; (M.S.-L.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
| | - Maria Helena Fernandes
- Bonelab–Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária da Universidade do Porto, 4200-393 Porto, Portugal
- LAQV/REQUIMTE—Laboratório Associado para a Química Verde/Rede de Química e Tecnologia, 4169-007 Porto, Portugal
| | - Fernando Jorge Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal; (M.S.-L.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200–072 Porto, Portugal
| | - Christiane Laranjo Salgado
- i3S—Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal; (M.S.-L.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
6
|
Feng Z, Su X, Wang T, Sun X, Yang H, Guo S. The Role of Microsphere Structures in Bottom-Up Bone Tissue Engineering. Pharmaceutics 2023; 15:pharmaceutics15020321. [PMID: 36839645 PMCID: PMC9964570 DOI: 10.3390/pharmaceutics15020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Bone defects have caused immense healthcare concerns and economic burdens throughout the world. Traditional autologous allogeneic bone grafts have many drawbacks, so the emergence of bone tissue engineering brings new hope. Bone tissue engineering is an interdisciplinary biomedical engineering method that involves scaffold materials, seed cells, and "growth factors". However, the traditional construction approach is not flexible and is unable to adapt to the specific shape of the defect, causing the cells inside the bone to be unable to receive adequate nourishment. Therefore, a simple but effective solution using the "bottom-up" method is proposed. Microspheres are structures with diameters ranging from 1 to 1000 µm that can be used as supports for cell growth, either in the form of a scaffold or in the form of a drug delivery system. Herein, we address a variety of strategies for the production of microspheres, the classification of raw materials, and drug loading, as well as analyze new strategies for the use of microspheres in bone tissue engineering. We also consider new perspectives and possible directions for future development.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Xin Su
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Ting Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No. 77, Puhe Road, Shenyang 110122, China
- Correspondence: (X.S.); (S.G.)
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No. 77, Puhe Road, Shenyang 110122, China;
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
- Correspondence: (X.S.); (S.G.)
| |
Collapse
|
7
|
Dou Z, Tang H, Chen K, Li D, Ying Q, Mu Z, An C, Shao F, Zhang Y, Zhang Y, Bai H, Zheng G, Zhang L, Chen T, Wang H. Highly elastic and self-healing nanostructured gelatin/clay colloidal gels with osteogenic capacity for minimally invasive and customized bone regeneration. Biofabrication 2023; 15. [PMID: 36595285 DOI: 10.1088/1758-5090/acab36] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Extrusible biomaterials have recently attracted increasing attention due to the desirable injectability and printability to allow minimally invasive administration and precise construction of tissue mimics. Specifically, self-healing colloidal gels are a novel class of candidate materials as injectables or printable inks considering their fascinating viscoelastic behavior and high degree of freedom on tailoring their compositional and mechanical properties. Herein, we developed a novel class of adaptable and osteogenic composite colloidal gels via electrostatic assembly of gelatin nanoparticles and nanoclay particles. These composite gels exhibited excellent injectability and printability, and remarkable mechanical properties reflected by the maximal elastic modulus reaching ∼150 kPa combined with high self-healing efficiency, outperforming most previously reported self-healing hydrogels. Moreover, the cytocompatibility and the osteogenic capacity of the colloidal gels were demonstrated by inductive culture of MC3T3 cells seeded on the three-dimensional (3D)-printed colloidal scaffolds. Besides, the biocompatibility and biodegradability of the colloidal gels was provedin vivoby subcutaneous implantation of the 3D-printed scaffolds. Furthermore, we investigated the therapeutic capacity of the colloidal gels, either in form of injectable gels or 3D-printed bone substitutes, using rat sinus bone augmentation model or critical-sized cranial defect model. The results confirmed that the composite gels were able to adapt to the local complexity including irregular or customized defect shapes and continuous on-site mechanical stimuli, but also to realize osteointegrity with the surrounding bone tissues and eventually be replaced by newly formed bones.
Collapse
Affiliation(s)
- Zhenzhen Dou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Han Tang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Kaiwen Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Dize Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Qiwei Ying
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Zhixiang Mu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Chuanfeng An
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, People's Republic of China.,Central Laboratory, Longgang District People's Hospital of Shenzhen & The Third Affiliated Hospital (Provisional) of The Chinese University of Hong Kong, Shenzhen 518172, People's Republic of China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Fei Shao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yang Zhang
- Department of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518037, People's Republic of China
| | - Yonggang Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Haoliang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Guoshuang Zheng
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian 116001, People's Republic of China
| | - Lijun Zhang
- Liyun Zhang. Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian 116024, People's Republic of China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Huanan Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
8
|
Wang P, Wang X. Mimicking the native bone regenerative microenvironment for in situ repair of large physiological and pathological bone defects. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
9
|
Li S, Cui Y, Liu H, Tian Y, Wang G, Fan Y, Wang J, Wu D, Wang Y. Application of bioactive metal ions in the treatment of bone defects. J Mater Chem B 2022; 10:9369-9388. [PMID: 36378123 DOI: 10.1039/d2tb01684b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The treatment of bone defects is an important problem in clinical practice. The rapid development of bone tissue engineering (BTE) may provide a new method for bone defect treatment. Metal ions have been widely studied in BTE and demonstrated a significant effect in promoting bone tissue growth. Different metal ions can be used to treat bone defects according to specific conditions, including promoting osteogenic activity, inhibiting osteoclast activity, promoting vascular growth, and exerting certain antibacterial effects. Multiple studies have confirmed that metal ions-modified composite scaffolds can effectively promote bone defect healing. By studying current extensive research on metal ions in the treatment of bone defects, this paper reviews the mechanism of metal ions in promoting bone tissue growth, analyzes the loading mode of metal ions, and lists some specific applications of metal ions in different types of bone defects. Finally, this paper summarizes the advantages and disadvantages of metal ions and analyzes the future research trend of metal ions in BTE. This article can provide some new strategies and methods for future research and applications of metal ions in the treatment of bone defects.
Collapse
Affiliation(s)
- Shaorong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Gan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yi Fan
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Jingwei Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yanbing Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| |
Collapse
|
10
|
Kern C, Pauli A, Rohnke M. Determination of Sr 2+ mobility in viscous bovine bone marrow by cryo-time-of-flight secondary ion mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9300. [PMID: 35312121 DOI: 10.1002/rcm.9300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE In osteoporosis research, strontium ions (Sr2+ ) have emerged as promising therapeutic agent in modified bone cements for better fracture healing. Modeling of Sr2+ dispersion in bone could be used as a predictive tool for the evaluation of functionalized biomaterials in future. Therefore, determination of experimental parameters for Sr2+ transport in bone is essential. In this study, we focus on the determination of Sr2+ diffusion in viscous bovine bone marrow by time-of-flight secondary ion mass spectrometry (ToF-SIMS). METHODS For this comparatively fast diffusion (FD) experiment, a specific experimental protocol of ToF-SIMS depth profiling under cryogenic conditions was developed. The validity of our experimental approach is proven by a time-dependent experimental series. Furthermore, 2D and 3D mass spectrometric imaging analysis was used to study Sr2+ surface and bulk distribution within bovine bone marrow. RESULTS Detailed 2D and 3D mass spectrometric imaging analysis revealed that Sr2+ diffusion is slower in bone marrow areas with high intensity of lipid and fatty acid signals than in areas with less lipid content. The Sr2+ transport within this passive model can be described by Fickian diffusion. Average diffusion coefficients of Sr2+ in bovine bone marrow were obtained from diffusion profiles in FD areas (Dbovine,FD = [2.09 ± 2.39]·10-9 cm2 s-1 ), slow diffusion areas (Dbovine,SD = [1.52 ± 1.80]·10-10 cm2 s-1 ), and total area diffusion (Dbovine,TA = [1.94 ± 2.40]·10-9 cm2 s-1 ). CONCLUSIONS We were able to show that cryo-ToF-SIMS is a useful tool for the characterization of rapid diffusion in water-containing highly viscous media. To the best of our knowledge, this is the first reported experimental approach for the investigation of the distribution of low concentrated therapeutic agents in bone marrow. Overall, our results provide important insights about Sr2+ diffusion in bovine bone marrow.
Collapse
Affiliation(s)
- Christine Kern
- Institute of Physical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Anna Pauli
- Institute of Physical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Marcus Rohnke
- Institute of Physical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
11
|
Schrade S, Ritschl L, Süss R, Schilling P, Seidenstuecker M. Gelatin Nanoparticles for Targeted Dual Drug Release out of Alginate-di-Aldehyde-Gelatin Gels. Gels 2022; 8:365. [PMID: 35735709 PMCID: PMC9222291 DOI: 10.3390/gels8060365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022] Open
Abstract
The aim of the present work was to develop a dual staged drug release of an antibiotic (clindamycin) and a growth factor: bone morphogenetic protein-2 (BMP-2) from a biodegradable system consisting of hydrogel and gelatin nanoparticles (GNP). Two-step de-solvation allowed us to prepare GNPs (~100 nm) as drug carriers. Fluorescein isothiocyanate (FITC)-conjugated protein A was used as a model substance for BMP-2. A 28-day release experiment was performed to determine the release kinetics from GNP for both FITC-protein A and BMP-2, and for clindamycin (CLI) from the hydrogel. The size, structure, and overall morphology of GNP samples (empty, loaded with FITC-protein A and BMP-2) were examined using an environmental scanning electron microscope (ESEM). Cell culture assays (Live/dead; cell proliferation; cytotoxicity) were performed with MG-63 cells and BMP-2-loaded GNPs. Drug release experiments using clindamycin-loaded alginate-di-aldehyde (ADA) gelatin gels containing the drug-loaded GNPs were performed for 28 days. The resulting GNPs showed an empty size of 117 ± 29 nm, 176 ± 15 nm and 216 ± 36 nm when containing 2% FITC-protein A and 1% BMP-2, respectively. No negative effects of BMP-2-loaded GNPs on MG-63 cells were observed in live/dead staining. In the proliferation assay, an increase in cell proliferation was observed for both GNPs (GNP + BMP-2 and controls). The cytotoxicity assay continuously showed very low cytotoxicity for GNPs (empty; loaded). Clindamycin release showed a concentration of 25-fold higher than the minimum inhibitory concentration (MIC) against Staphylococcus aureus throughout the 28 day period. BMP-2 showed a reduced burst release and a steady release (~2 µg/mL) over a 28 day period.
Collapse
Affiliation(s)
- Sophie Schrade
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center—Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (S.S.); (L.R.); (P.S.)
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany;
| | - Lucas Ritschl
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center—Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (S.S.); (L.R.); (P.S.)
| | - Regine Süss
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany;
| | - Pia Schilling
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center—Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (S.S.); (L.R.); (P.S.)
| | - Michael Seidenstuecker
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center—Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (S.S.); (L.R.); (P.S.)
| |
Collapse
|
12
|
Ding S, Xing S, Zhang Z, Sun Z, Dou X, He YS, Tang H, Weng W. The Effect of Bone Morphogenetic Protein 2 (BMP-2)/Estrogen Composite Nanoparticles on the Differentiation Function of Osteoporotic Bone Marrow Mesenchymal Stem Cells (BMSCs). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The menopausal hormone abnormal changes such as estrogen deficiency and increased FSH secretion in female patients in old age may cause osteoporosis which is plagued by patients. The pathogenesis of osteoporosis is not yet fully understood. BMP in the transforming growth factor-β
superfamily is a key member in the process of bone growth and development, among which BMP-2 exerts critical roles. Impaired osteogenic differentiation of bone marrow mesenchymal stem cells (BMSC) contributes to the progress of osteoporosis. BMSC plays an indispensable role in treating osteoporosis
and can develop into different directions through induction. As the regenerative medicine nanotechnology has become a new medical method, it is believed that BMSC can be used to treat osteoporosis and other related diseases. Our study analyzed the effects of BMP-2/estrogen composite nanoparticles
on the proliferation and differentiation of osteoporotic BMSC cells to provide a reliable reference for the future treatment. Our results showed that BMP-2/estrogen composite nanoparticles promoted BMSC cell proliferation, increased ALP activity, decreased apoptosis rate, increased the expression
of Col-1, Runx2 and Osterix, upregulated the osteogenic marker BMP-2. As confirmed by Alizarin Red staining, it could differentiate into osteoblasts and the content of Trap was decreased. In conclusion, our study confirms that BMP-2/estrogen composite nanoparticles can promote BMSC cell proliferation,
osteogenic differentiation, and inhibit osteoclast differentiation, thereby providing new treatments and theoretical reference basis for treating osteoporosis.
Collapse
Affiliation(s)
- Shengdi Ding
- Department of Gynecology, Huzhou Cent Hosp, Affiliated Cent Hosp HuZhou University, Huzhou, Zhejiang Province, 313000, China
| | - Shitong Xing
- Department of Orthopedics, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, 313000, China
| | - Zhanfeng Zhang
- Department of Orthopedics, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, 313000, China
| | - Zhenguo Sun
- Department of Orthopedics, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, 313000, China
| | - Xiaojie Dou
- Department of Orthopedics, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, 313000, China
| | - Yu shou He
- Department of Orthopedics, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, 313000, China
| | - Huibin Tang
- Department of Orthopedics, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, 313000, China
| | - Wei Weng
- Department of Orthopedics, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, 313000, China
| |
Collapse
|
13
|
Li D, Chen K, Tang H, Hu S, Xin L, Jing X, He Q, Wang S, Song J, Mei L, Cannon RD, Ji P, Wang H, Chen T. A Logic-Based Diagnostic and Therapeutic Hydrogel with Multistimuli Responsiveness to Orchestrate Diabetic Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108430. [PMID: 34921569 DOI: 10.1002/adma.202108430] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The regeneration of diabetic bone defects remains challenging as the innate healing process is impaired by glucose fluctuation, reactive oxygen species (ROS), and overexpression of proteinases (such as matrix metalloproteinases, MMPs). A "diagnostic" and therapeutic dual-logic-based hydrogel for diabetic bone regeneration is therefore developed through the design of a double-network hydrogel consisting of phenylboronic-acid-crosslinked poly(vinyl alcohol) and gelatin colloids. It exhibits a "diagnostic" logic to interpret pathological cues (glucose fluctuation, ROS, MMPs) and determines when to release drug in a diabetic microenvironment and a therapeutic logic to program different cargo release to match immune-osteo cascade for better tissue regeneration. The hydrogel is also shown to be mechanically adaptable to the local complexity at the bone defect. Furthermore, the underlying therapeutic mechanism is elucidated, whereby the logic-based cargo release enables the regulation of macrophage polarization by remodeling the mitochondria-related antioxidative system, resulting in enhanced osteogenesis in diabetic bone defects. This study provides critical insight into the design and biological mechanism of dual-logic-based tissue-engineering strategies for diabetic bone regeneration.
Collapse
Affiliation(s)
- Dize Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Kaiwen Chen
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116023, P. R. China
| | - Han Tang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Shanshan Hu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Liangjing Xin
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Xuan Jing
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Qingqing He
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Si Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Li Mei
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, 9054, New Zealand
| | - Richard D Cannon
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, 9054, New Zealand
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Huanan Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116023, P. R. China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| |
Collapse
|
14
|
Kern C, Jamous R, El Khassawna T, Rohnke M. Characterisation of Sr 2+ mobility in osteoporotic rat bone marrow by cryo-ToF-SIMS and cryo-OrbiSIMS. Analyst 2022; 147:4141-4157. [DOI: 10.1039/d2an00913g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mass spectrometric imaging approach for ex vivo monitoring of drug transport in bone sections. Cryo-ToF-SIMS depth profiling and high-resolution imaging as well as OrbiSIMS analysis revealed inhomogeneous Sr2+ transport in rat bone marrow.
Collapse
Affiliation(s)
- Christine Kern
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Reem Jamous
- Experimental Trauma Surgery, Faculty of Medicine, Justus Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Thaqif El Khassawna
- Experimental Trauma Surgery, Faculty of Medicine, Justus Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Marcus Rohnke
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
15
|
Ferreira-Gonçalves T, Constantin C, Neagu M, Reis CP, Sabri F, Simón-Vázquez R. Safety and efficacy assessment of aerogels for biomedical applications. Biomed Pharmacother 2021; 144:112356. [PMID: 34710839 DOI: 10.1016/j.biopha.2021.112356] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
The unique physicochemical properties of aerogels have made them an attractive class of materials for biomedical applications such as drug delivery, regenerative medicine, and wound healing. Their low density, high porosity, and ability to regulate the pore structure makes aerogels ideal nano/micro-structures for loading of drugs and active biomolecules. As a result of this, the number of in vitro and in vivo studies on the therapeutic efficacy of these porous materials has increased substantially in recent years and continues to be an area of great interest. However, data about their in vivo performance and safety is limited. Studies have shown that polymer-based, silica-based and some hybrid aerogels are generally regarded as safe but given that studies on the acute, subacute, and chronic toxicity for the majority of aerogel types is missing, more work is still needed. This review presents a comprehensive summary of different biomedical applications of aerogels proposed to date as well as new and innovative applications of aerogels in other areas such as decontamination. We have also reviewed their biological effect on cells and living organisms with a focus on therapeutic efficacy and overall safety (in vivo and in vitro).
Collapse
Affiliation(s)
- Tânia Ferreira-Gonçalves
- Research Institute for Medicines, iMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, Bucharest 050096, Romania; Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania.
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, Bucharest 050096, Romania; Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania.
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica, IBEB, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Firouzeh Sabri
- Department of Physics and Materials Science, University of Memphis, Memphis 38152, TN, United States.
| | - Rosana Simón-Vázquez
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Spain.
| |
Collapse
|
16
|
Király G, Egu JC, Hargitai Z, Kovács I, Fábián I, Kalmár J, Szemán-Nagy G. Mesoporous Aerogel Microparticles Injected into the Abdominal Cavity of Mice Accumulate in Parathymic Lymph Nodes. Int J Mol Sci 2021; 22:9756. [PMID: 34575919 PMCID: PMC8465913 DOI: 10.3390/ijms22189756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Mesoporous aerogel microparticles are promising drug delivery systems. However, their in vivo biodistribution pathways and health effects are unknown. Suspensions of fluorescein-labeled silica-gelatin hybrid aerogel microparticles were injected into the peritoneum (abdominal cavity) of healthy mice in concentrations of 52 and 104 mg kg-1 in a 3-week-long acute toxicity experiment. No physiological dysfunctions were detected, and all mice were healthy. An autopsy revealed that the aerogel microparticles were not present at the site of injection in the abdominal cavity at the end of the experiment. The histological study of the liver, spleen, kidneys, thymus and lymphatic tissues showed no signs of toxicity. The localization of the aerogel microparticles in the organs was studied by fluorescence microscopy. Aerogel microparticles were not detected in any of the abdominal organs, but they were clearly visible in the cortical part of the parathymic lymph nodes, where they accumulated. The accumulation of aerogel microparticles in parathymic lymph nodes in combination with their absence in the reticuloendothelial system organs, such as the liver or spleen, suggests that the microparticles entered the lymphatic circulation. This biodistribution pathway could be exploited to design passive targeting drug delivery systems for flooding metastatic pathways of abdominal cancers that spread via the lymphatic circulation.
Collapse
Affiliation(s)
- Gábor Király
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.K.); (G.S.-N.)
| | - John Chinonso Egu
- MTA-DE ELKH Homogeneous Catalysis and Reaction Mechanisms Research Group, Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (J.C.E.); (I.F.)
| | - Zoltán Hargitai
- Department of Pathology, Kenézy University Hospital, University of Debrecen, 2-28 Bartók Béla Street, H-4031 Debrecen, Hungary; (Z.H.); (I.K.)
| | - Ilona Kovács
- Department of Pathology, Kenézy University Hospital, University of Debrecen, 2-28 Bartók Béla Street, H-4031 Debrecen, Hungary; (Z.H.); (I.K.)
| | - István Fábián
- MTA-DE ELKH Homogeneous Catalysis and Reaction Mechanisms Research Group, Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (J.C.E.); (I.F.)
| | - József Kalmár
- MTA-DE ELKH Homogeneous Catalysis and Reaction Mechanisms Research Group, Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (J.C.E.); (I.F.)
| | - Gábor Szemán-Nagy
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.K.); (G.S.-N.)
| |
Collapse
|
17
|
Wang X, Ning B, Pei X. Tantalum and its derivatives in orthopedic and dental implants: Osteogenesis and antibacterial properties. Colloids Surf B Biointerfaces 2021; 208:112055. [PMID: 34438295 DOI: 10.1016/j.colsurfb.2021.112055] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/11/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Implant-associated infections and aseptic loosening are some of the main reasons for implant failure. Therefore, there is an urgent need to improve the osseointegration and antibacterial capabilities of implant materials. In recent years, a large number of breakthroughs in the biological application of tantalum and its derivatives have been achieved. Owing to their corrosion resistance, biocompatibility, osseointegration ability, and antibacterial properties, they have shown considerable potential in orthopedic and dental implant applications. In this review, we provide the latest progress and achievements in the research on osseointegration and antibacterial properties of tantalum as well as its derivatives, and summarize the surface modification methods to enhance their osseointegration and antibacterial properties.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Boyu Ning
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
18
|
Lee NH, Kang MS, Kim TH, Yoon DS, Mandakhbayar N, Jo SB, Kim HS, Knowles JC, Lee JH, Kim HW. Dual actions of osteoclastic-inhibition and osteogenic-stimulation through strontium-releasing bioactive nanoscale cement imply biomaterial-enabled osteoporosis therapy. Biomaterials 2021; 276:121025. [PMID: 34298444 DOI: 10.1016/j.biomaterials.2021.121025] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 02/06/2023]
Abstract
Repair of defective hard-tissues in osteoporotic patients faces significantly challenges with limited therapeutic options. Although biomedical cements are considered promising materials for healthy bone repair, their uses for healing osteoporotic fracture are clinically limited. Herein, strontium-releasing-nanoscale cement was introduced to provide dual therapeutic-actions (pro-osteogenesis and anti-osteoclastogenesis), eventually for the regeneration of osteoporotic bone defect. The Sr-nanocement hardened from the Sr-doped nanoscale-glass particles was shown to release multiple ions including silicate, calcium and strontium at doses therapeutically relevant over time. When the Sr-nanocement was treated to pre-osteoblastic cells, the osteogenic mRNA level (Runx2, Opn, Bsp, Ocn), alkaline phosphatase activity, calcium deposition, and target luciferase reporter were stimulated with respect to the case with Sr-free-nanocement. When treated to pre-osteoclastic cells, the Sr-nanocement substantially reduced the osteoclastogenesis, such as osteoclastic mRNA level (Casr, Nfatc1, c-fos, Acp, Ctsk, Mmp-9), tartrate-resistant acid trap activity, and bone resorption capacity. In particular, the osteoclastic inhibition resulted in part from the interactive effect of osteoblasts which were activated by the Sr-nanocement, i.e., blockage of RANKL (receptor activator of nuclear factor-κB ligand) binding by enhanced osteoprotegerin and the deactivated Nfatc1. The Sr-nanocement, administered to an ovariectomized tibia defect (osteoporotic model) in rats, exhibited profound bone regenerative potential in cortical and surrounding trabecular area, including increased bone volume and density, enhanced production of osteopromotive proteins, and more populated osteoblasts, together with reduced signs of osteoclastic bone resorption. These results demonstrate that Sr-nanocement, with its dual effects of osteoclastic inhibition and osteogenic-stimulation, can be considered an effective nanotherapeutic implantable biomaterial platform for the treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Min Sil Kang
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Tae-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dong Suk Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seung Bin Jo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan, 31116, Republic of Korea
| | - Jonathan C Knowles
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Grays Inn Road, London, WC1X 8LD, UK; The Discoveries Centre for Regenerative and Precision Medicine, UCL Campus, London, UK; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
19
|
Wang L, Nan X, Hou J, Xia Y, Guo Y, Meng K, Xu C, Lian J, Zhang Y, Wang X, Zhao B. Preparation and biological properties of silk fibroin/nano-hydroxyapatite/hyaluronic acid composite scaffold. Biomed Mater 2021; 16. [PMID: 34098538 DOI: 10.1088/1748-605x/ac08aa] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
In this study, the silk fibroin/nano-hydroxyapatite/hyaluronic acid (SF/nHAp/HA) composite scaffolds with different HA contents were developed by blending, cross-linking and freeze-drying, and their physicochemical properties and cell biocompatibilityin vitrowere subsequently studied. It was observed that the molecular conformation of the composite scaffolds was mainly composed of silk I and a small amount of theβ-sheets structure. On enhancing the HA content, the pore size of the scaffold decreased, while the porosity, water absorption, swelling ratio and mechanical properties were observed to increase. In particular, the SF/nHAp/HA scaffold with a 5.0 wt% ratio exhibited the highest water absorption and mechanical properties among the developed materials. In addition, thein vitrocytocompatibility analysis showed that the bone marrow mesenchymal stem cells exhibited excellent cell proliferation and osteogenic differentiation ability on the SF/nHAp/5.0 wt%HA scaffolds, as compared with the other scaffolds. It can be concluded that the developed composite scaffolds represent a promising class of materials for the bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| | - Xiaoru Nan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| | - Jiaxin Hou
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| | - Yijing Xia
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| | - Yanqin Guo
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| | - Kejing Meng
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| | - Changzhen Xu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| | - Jing Lian
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| | - Yufang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| | - Xiangyu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials,Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, People's Republic of China
| |
Collapse
|
20
|
Grabska-Zielińska S, Sionkowska A. How to Improve Physico-Chemical Properties of Silk Fibroin Materials for Biomedical Applications?-Blending and Cross-Linking of Silk Fibroin-A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1510. [PMID: 33808809 PMCID: PMC8003607 DOI: 10.3390/ma14061510] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
This review supplies a report on fresh advances in the field of silk fibroin (SF) biopolymer and its blends with biopolymers as new biomaterials. The review also includes a subsection about silk fibroin mixtures with synthetic polymers. Silk fibroin is commonly used to receive biomaterials. However, the materials based on pure polymer present low mechanical parameters, and high enzymatic degradation rate. These properties can be problematic for tissue engineering applications. An increased interest in two- and three-component mixtures and chemically cross-linked materials has been observed due to their improved physico-chemical properties. These materials can be attractive and desirable for both academic, and, industrial attention because they expose improvements in properties required in the biomedical field. The structure, forms, methods of preparation, and some physico-chemical properties of silk fibroin are discussed in this review. Detailed examples are also given from scientific reports and practical experiments. The most common biopolymers: collagen (Coll), chitosan (CTS), alginate (AL), and hyaluronic acid (HA) are discussed as components of silk fibroin-based mixtures. Examples of binary and ternary mixtures, composites with the addition of magnetic particles, hydroxyapatite or titanium dioxide are also included and given. Additionally, the advantages and disadvantages of chemical, physical, and enzymatic cross-linking were demonstrated.
Collapse
Affiliation(s)
- Sylwia Grabska-Zielińska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Alina Sionkowska
- Department of Chemistry of Biomaterials and Cosmetics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| |
Collapse
|
21
|
Geng Z, Ji L, Li Z, Wang J, He H, Cui Z, Yang X, Liu C. Nano-needle strontium-substituted apatite coating enhances osteoporotic osseointegration through promoting osteogenesis and inhibiting osteoclastogenesis. Bioact Mater 2020; 6:905-915. [PMID: 33102935 PMCID: PMC7553892 DOI: 10.1016/j.bioactmat.2020.09.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 12/30/2022] Open
Abstract
Implant loosening remains a major clinical challenge for osteoporotic patients. This is because osteoclastic bone resorption rate is higher than osteoblastic bone formation rate in the case of osteoporosis, which results in poor bone repair. Strontium (Sr) has been widely accepted as an anti-osteoporosis element. In this study, we fabricated a series of apatite and Sr-substituted apatite coatings via electrochemical deposition under different acidic conditions. The results showed that Ca and Sr exhibited different mineralization behaviors. The main mineralization products for Ca were CaHPO4·2H2O and Ca3(PO4)2 with the structure changed from porous to spherical as the pH values increased. The main mineralization products for Sr were SrHPO4 and Sr5(PO4)3OH with the structure changed from flake to needle as the pH values increased. The in vitro experiment demonstrated that coatings fabricated at high pH condition with the presence of Sr were favorable to MSCs adhesion, spreading, proliferation, and osteogenic differentiation. In addition, Sr-substituted apatite coatings could evidently inhibit osteoclast differentiation and fusion. Moreover, the in vivo study indicated that nano-needle like Sr-substituted apatite coating could suppress osteoclastic activity, improve new bone formation, and enhance bone-implant integration. This study provided a new theoretical guidance for implant coating design and the fabricated Sr-substituted coating might have potential applications for osteoporotic patients. Ca2+ and Sr2+ showed different mineralization behaviors in acidic environments. Apatites fabricated at high pH conditions were beneficial to MSCs growth. Sr-substituted apatite exhibited superior anti-osteoclast activity ability. Sr-substituted apatite facilitated osteogenesis, bone growth, and osseointegration.
Collapse
Affiliation(s)
- Zhen Geng
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Luli Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhaoyang Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongyan He
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhenduo Cui
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xianjin Yang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
22
|
Zhang W, Shi W, Wu S, Kuss M, Jiang X, Untrauer JB, Reid SP, Duan B. 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration. Biofabrication 2020; 12:035020. [PMID: 32369796 PMCID: PMC8059098 DOI: 10.1088/1758-5090/ab906e] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Functional reconstruction of craniomaxillofacial defects is challenging, especially for the patients who suffer from traumatic injury, cranioplasty, and oncologic surgery. Three-dimensional (3D) printing/bioprinting technologies provide a promising tool to fabricate bone tissue engineering constructs with complex architectures and bioactive components. In this study, we implemented multi-material 3D printing to fabricate 3D printed PCL/hydrogel composite scaffolds loaded with dual bioactive small molecules (i.e. resveratrol and strontium ranelate). The incorporated small molecules are expected to target several types of bone cells. We systematically studied the scaffold morphologies and small molecule release profiles. We then investigated the effects of the released small molecules from the drug loaded scaffolds on the behavior and differentiation of mesenchymal stem cells (MSCs), monocyte-derived osteoclasts, and endothelial cells. The 3D printed scaffolds, with and without small molecules, were further implanted into a rat model with a critical-sized mandibular bone defect. We found that the bone scaffolds containing the dual small molecules had combinational advantages in enhancing angiogenesis and inhibiting osteoclast activities, and they synergistically promoted MSC osteogenic differentiation. The dual drug loaded scaffolds also significantly promoted in vivo mandibular bone formation after 8 week implantation. This work presents a 3D printing strategy to fabricate engineered bone constructs, which can likely be used as off-the-shelf products to promote craniomaxillofacial regeneration.
Collapse
Affiliation(s)
- Wenhai Zhang
- First Hip Department of Orthopedics, Tianjin Hospital, Tianjin, 300211, China
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shaohua Wu
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- College of Textiles & Clothing; Collaborative Innovation Center of Marine Biomass Fibers, Qingdao University, Qingdao, China
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiping Jiang
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- College of Medicine, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jason B Untrauer
- Division of Oral & Maxillofacial Surgery, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - St Patrick Reid
- College of Medicine, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Mechanical and Materials Engineering, University of Nebraska- Lincoln, Lincoln, NE, USA
| |
Collapse
|
23
|
Yang H, Wang Z, Wang M, Li C. Structure and properties of silk fibroin aerogels prepared by non-alkali degumming process. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Recent developments in strontium-based biocomposites for bone regeneration. J Artif Organs 2020; 23:191-202. [PMID: 32100147 DOI: 10.1007/s10047-020-01159-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/25/2020] [Indexed: 12/13/2022]
Abstract
Recent advances in biomaterial designing techniques offer immense support to tailor biomimetic scaffolds and to engineer the microstructure of biomaterials for triggering bone regeneration in challenging bone defects. The current review presents the different categories of recently explored strontium-integrated biomaterials, including calcium silicate, calcium phosphate, bioglasses and polymer-based synthetic implants along with their in vivo bone formation efficacies and/or in vitro cell responses. The role and significance of controlled drug release scaffold/carrier design in strontium-triggered osteogenesis was also comprehensively described. Furthermore, the effects of stem cells and growth factors on bone remodeling are also elucidated.
Collapse
|
25
|
Rocha JC, Sihn LM, Uchiyama MK, Ribeiro MA, Franco MP, Braga AAC, Silveira AT, Toma HE. On the Amazing Reactivity of the Ranelate Ion: New Applications of an Old Antiosporotic Drug. ChemistrySelect 2019. [DOI: 10.1002/slct.201904149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Julio C. Rocha
- Department of chemistryInstitute of ChemistryUniv. São Paulo 05508-000 São Paulo Brazil
| | - Luca M. Sihn
- Department of chemistryInstitute of ChemistryUniv. São Paulo 05508-000 São Paulo Brazil
| | - Mayara K. Uchiyama
- Department of chemistryInstitute of ChemistryUniv. São Paulo 05508-000 São Paulo Brazil
| | | | - Maurício P. Franco
- Department of chemistryInstitute of ChemistryUniv. São Paulo 05508-000 São Paulo Brazil
| | - Ataualpa A. C. Braga
- Department of chemistryInstitute of ChemistryUniv. São Paulo 05508-000 São Paulo Brazil
| | - Alceu T. Silveira
- Department of chemistryInstitute of ChemistryUniv. São Paulo 05508-000 São Paulo Brazil
| | - Henrique E. Toma
- Department of chemistryInstitute of ChemistryUniv. São Paulo 05508-000 São Paulo Brazil
| |
Collapse
|
26
|
Pang H, Zhao S, Mo L, Wang Z, Zhang W, Huang A, Zhang S, Li J. Mussel‐inspired bio‐based water‐resistant soy adhesives with low‐cost dopamine analogue‐modified silkworm silk Fiber. J Appl Polym Sci 2019. [DOI: 10.1002/app.48785] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Huiwen Pang
- MOE Key Laboratory of Wooden Material Science and ApplicationBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
- Beijing Key Laboratory of Wood Science and EngineeringBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
| | - Shujun Zhao
- MOE Key Laboratory of Wooden Material Science and ApplicationBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
- Beijing Key Laboratory of Wood Science and EngineeringBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
| | - Liuting Mo
- MOE Key Laboratory of Wooden Material Science and ApplicationBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
- Beijing Key Laboratory of Wood Science and EngineeringBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
| | - Zhong Wang
- MOE Key Laboratory of Wooden Material Science and ApplicationBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
- Beijing Key Laboratory of Wood Science and EngineeringBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
| | - Wei Zhang
- MOE Key Laboratory of Wooden Material Science and ApplicationBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
- Beijing Key Laboratory of Wood Science and EngineeringBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
| | - Anmin Huang
- Chinese Academy of Forestry Research Institute of Wood Industry Beijing 100091 People's Republic of China
| | - Shifeng Zhang
- MOE Key Laboratory of Wooden Material Science and ApplicationBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
- Beijing Key Laboratory of Wood Science and EngineeringBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
| | - Jianzhang Li
- MOE Key Laboratory of Wooden Material Science and ApplicationBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
- Beijing Key Laboratory of Wood Science and EngineeringBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
| |
Collapse
|