1
|
Yang C, Chen R, Chen C, Yang F, Xiao H, Geng B, Xia Y. Tissue engineering strategies hold promise for the repair of articular cartilage injury. Biomed Eng Online 2024; 23:92. [PMID: 39261876 PMCID: PMC11389311 DOI: 10.1186/s12938-024-01260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/18/2024] [Indexed: 09/13/2024] Open
Abstract
Articular cartilage damage and wear can result in cartilage degeneration, ultimately culminating in osteoarthritis. Current surgical interventions offer limited capacity for cartilage tissue regeneration and offer only temporary alleviation of symptoms. Tissue engineering strategies are increasingly recognized as promising modalities for cartilage restoration. Currently, various biological scaffolds utilizing tissue engineering materials are extensively employed in both fundamental and clinical investigations of cartilage repair. In order to optimize the cartilage repair ability of tissue engineering scaffolds, researchers not only optimize the structure and properties of scaffolds from the perspective of materials science and manufacturing technology to enhance their histocompatibility, but also adopt strategies such as loading cells, cytokines, and drugs to promote cartilage formation. This review provides an overview of contemporary tissue engineering strategies employed in cartilage repair, as well as a synthesis of existing preclinical and clinical research. Furthermore, the obstacles faced in the translation of tissue engineering strategies to clinical practice are discussed, offering valuable guidance for researchers seeking to address these challenges.
Collapse
Affiliation(s)
- Chenhui Yang
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
- Department of Orthopedic, Tianshui Hand and Foot Surgery Hospital, Tianshui, 741000, China
| | - Rongjin Chen
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
| | - Changshun Chen
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
| | - Fei Yang
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
| | - Hefang Xiao
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
| | - Bin Geng
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
| | - Yayi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China.
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Lu M, Zhu M, Wu Z, Liu W, Cao C, Shi J. The role of YAP/TAZ on joint and arthritis. FASEB J 2024; 38:e23636. [PMID: 38752683 DOI: 10.1096/fj.202302273rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are two common forms of arthritis with undefined etiology and pathogenesis. Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ), which act as sensors for cellular mechanical and inflammatory cues, have been identified as crucial players in the regulation of joint homeostasis. Current studies also reveal a significant association between YAP/TAZ and the pathogenesis of OA and RA. The objective of this review is to elucidate the impact of YAP/TAZ on different joint tissues and to provide inspiration for further studying the potential therapeutic implications of YAP/TAZ on arthritis. Databases, such as PubMed, Cochran Library, and Embase, were searched for all available studies during the past two decades, with keywords "YAP," "TAZ," "OA," and "RA."
Collapse
Affiliation(s)
- Mingcheng Lu
- Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Mengqi Zhu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Zuping Wu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Wei Liu
- Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Chuwen Cao
- Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Jiejun Shi
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang, Hangzhou, China
| |
Collapse
|
3
|
Liu D, Tang W, Tang D, Yan H, Jiao F. Ocu-miR-10a-5p promotes the chondrogenic differentiation of rabbit BMSCs by targeting BTRC-mediated Wnt/β-catenin signaling pathway. In Vitro Cell Dev Biol Anim 2024; 60:343-353. [PMID: 38504085 DOI: 10.1007/s11626-024-00888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
MicroRNAs (miRNAs) play an important role in articular cartilage damage in osteoarthritis (OA). However, the biological role of miRNAs in the chondrogenic differentiation of bone marrow mesenchymal stem cell (BMSC) remains largely unclear. Rabbit bone marrow mesenchymal stem cells (rBMSCs) were isolated, cultured, and identified. Afterwards, rBMSCs were induced to chondrogenic differentiation, examined by Alcian Blue staining. Differentially expressed miRNAs were identified in rBMSCs between induced and non-induced groups by miRNA sequencing analysis, part of which was validated via PCR assay. Cell viability and apoptosis were assessed by CCK-8 assay and Hoechst staining. Saffron O staining was utilized to assess chondrocyte hyperplasia. The expression of specific chondrogenic markers, including COL2A1, SOX9, Runx2, MMP-13, Aggrecan, and BMP-2, were measured at mRNA and protein levels. The association between beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) and miR-10a-5p in the miRNA family from rabbit (ocu-miR-10a-5p) was determined by luciferase reporter assay. A total of 76 differentially expressed miRNAs, including 52 downregulated and 24 upregulated miRNAs, were identified in rBMSCs from the induced group. Inhibition of ocu-miR-10a-5p suppressed rBMSC viability and chondrogenic differentiation, as well as downregulated the expression of β-catenin, SOX9, COL2A1, MMP-13, and Runx2. BTRC was predicted and confirmed as a target of ocu-miR-10a-5p. Overexpression of BTRC rescued the promoting impacts of overexpressed ocu-miR-10a-5p on chondrogenic differentiation of rBMSCs and β-catenin expression. Taken together, our data suggested that ocu-miR-10a-5p facilitated rabbit BMSC survival and chondrogenic differentiation by activating Wnt/β-catenin signaling through BTRC.
Collapse
Affiliation(s)
- Donghua Liu
- Department of Spine Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Wang Tang
- Department of Spine Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Dongming Tang
- Department of Joint Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou City, Guangdong Province, China
| | - Haixia Yan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Jiao
- Department of Joint Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
4
|
Li M, Zhang FJ, Bai RJ. The Hippo-YAP Signaling Pathway in Osteoarthritis and Rheumatoid Arthritis. J Inflamm Res 2024; 17:1105-1120. [PMID: 38406325 PMCID: PMC10891274 DOI: 10.2147/jir.s444758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Arthritis is the most prevalent joint disease and is characterized by articular cartilage degradation, synovial inflammation, and changes in periarticular and subchondral bone. Recent studies have reported that Yes-associated protein (YAP) and the transcriptional coactivator with PDZ-binding motif (TAZ) have significant effects on the proliferation, migration, and survival of chondrocytes and fibroblast-like synovial cells (FLSs). YAP/TAZ signaling pathway, as well as the related Hippo-YAP signaling pathway, are responsible for the condition of cells and articular cartilage in joints. They are tightly regulated to maintain metabolism in chondrocytes and FLSs because abnormal expression may result in cartilage damage. However, the roles and mechanisms of the Hippo-YAP pathway in arthritis remain largely unknown. This review summarizes the roles and key functions of YAP/TAZ and the Hippo-YAP signaling pathway in FLSs and chondrocytes for the induction of proliferation, migration, survival, and differentiation in rheumatoid arthritis (RA) and osteoarthritis (OA) research. We also discuss the therapeutic strategies involving YAP/TAZ and the related Hippo-YAP signaling pathway involved in OA.
Collapse
Affiliation(s)
- Min Li
- Department of Orthopaedics, Wuxi Ninth People’s Hospital, Soochow University, Wuxi, Jiangsu, 214000, People’s Republic of China
| | - Fang-Jie Zhang
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, People’s Republic of China
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Rui-Jun Bai
- Department of Orthopaedics, Wuxi Ninth People’s Hospital, Soochow University, Wuxi, Jiangsu, 214000, People’s Republic of China
| |
Collapse
|
5
|
Wang X, Liao H, Liu Y, Kang Y, Tu Q, Li Z, Kang Y, Sheng P, Zhang Z. Aspirin reverses inflammatory suppression of chondrogenesis by stabilizing YAP. Cell Prolif 2022; 56:e13380. [PMID: 36495056 PMCID: PMC10068956 DOI: 10.1111/cpr.13380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMMSCs) transplantation methods are promising candidates for osteoarthritis (OA) treatment. However, inflammatory factors (such as TNF-α) that occur at cell transplantation sites are critical factors that impair the effectiveness of the treatment. Previous studies have shown that aspirin (AS) had a regulatory role in stem cell differentiation. However, little is known about the role of AS on the chondrogenesis of BMMSCs. The purpose of this study is to explore the protective role of AS against the negative effects of TNF-α on BMMSC chondrogenesis. In this study, we investigated the effects of AS and TNF-α on BMMSCs chondrogenesis by performing the Alcian Blue staining, safranin O-fast green staining, haematoxylin and eosin staining, and immunohistochemical staining, as well as real-time RT-PCR and western blot assays. Our results demonstrated that TNF-α inhibited chondrogenic differentiation of BMMSCs by disrupting the balance of cartilage metabolism and promoting oxidative stress in BMMSCs, while AS treatment attenuated these effects. Furthermore, a detailed molecular mechanistic analysis indicated that Yes-associated protein (YAP) played a critical regulatory role in this process. In addition, AS treatment mitigated the progression of cartilage degeneration in a mouse destabilization of the medial meniscus (DMM) model. AS alleviated the inhibitory effect of TNF-α on chondrogenesis of BMMSCs by stabilizing YAP, which may provide new therapeutic strategies for OA treatment.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Orthopedics the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
| | - Hongyi Liao
- Department of Orthopedics the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
| | - Yong Liu
- Department of Orthopedics the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
| | - Yunze Kang
- Department of Orthopedics the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
| | - Qingqiang Tu
- Department of Orthopedics the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
| | - Zhiwen Li
- Department of Orthopedics the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
| | - Yan Kang
- Department of Orthopedics the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
| | - Puyi Sheng
- Department of Orthopedics the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
| | - Ziji Zhang
- Department of Orthopedics the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
| |
Collapse
|
6
|
Damkham N, Issaragrisil S, Lorthongpanich C. Role of YAP as a Mechanosensing Molecule in Stem Cells and Stem Cell-Derived Hematopoietic Cells. Int J Mol Sci 2022; 23:14634. [PMID: 36498961 PMCID: PMC9737411 DOI: 10.3390/ijms232314634] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
Yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1, also known as TAZ) are transcriptional coactivators in the Hippo signaling pathway. Both are well-known regulators of cell proliferation and organ size control, and they have significant roles in promoting cell proliferation and differentiation. The roles of YAP and TAZ in stem cell pluripotency and differentiation have been extensively studied. However, the upstream mediators of YAP and TAZ are not well understood. Recently, a novel role of YAP in mechanosensing and mechanotransduction has been reported. The present review updates information on the regulation of YAP by mechanical cues such as extracellular matrix stiffness, fluid shear stress, and actin cytoskeleton tension in stem cell behaviors and differentiation. The review explores mesenchymal stem cell fate decisions, pluripotent stem cells (PSCs), self-renewal, pluripotency, and differentiation to blood products. Understanding how cells sense their microenvironment or niche and mimic those microenvironments in vitro could improve the efficiency of producing stem cell products and the efficacy of the products.
Collapse
Affiliation(s)
- Nattaya Damkham
- Siriraj Center of Excellence for Stem cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Bangkok Hematology Center, Wattanosoth Hospital, BDMS Center of Excellence for Cancer, Bangkok 10310, Thailand
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
7
|
A calpain-6/YAP axis in sarcoma stem cells that drives the outgrowth of tumors and metastases. Cell Death Dis 2022; 13:819. [PMID: 36153320 PMCID: PMC9509353 DOI: 10.1038/s41419-022-05244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 01/23/2023]
Abstract
Sarcomas include cancer stem cells, but how these cells contribute to local and metastatic relapse is largely unknown. We previously showed the pro-tumor functions of calpain-6 in sarcoma stem cells. Here, we use an osteosarcoma cell model, osteosarcoma tissues and transcriptomic data from human tumors to study gene patterns associated with calpain-6 expression or suppression. Calpain-6 modulates the expression of Hippo pathway genes and stabilizes the hippo effector YAP. It also modulates the vesicular trafficking of β-catenin degradation complexes. Calpain-6 expression is associated with genes of the G2M phase of the cell cycle, supports G2M-related YAP activities and up-regulated genes controlling mitosis in sarcoma stem cells and tissues. In mouse models of bone sarcoma, most tumor cells expressed calpain-6 during the early steps of tumor out-growth. YAP inhibition prevented the neoformation of primary tumors and metastases but had no effect on already developed tumors. It could even accelerate lung metastasis associated with large bone tumors by affecting tumor-associated inflammation in the host tissues. Our results highlight a specific mechanism involving YAP transcriptional activity in cancer stem cells that is crucial during the early steps of tumor and metastasis outgrowth and that could be targeted to prevent sarcoma relapse.
Collapse
|
8
|
Zhang WY, Yuan Y, Zhang HY, He YM, Liu CL, Xu L, Yang BG, Ren HX, Wang GF, E GX. Genetic basis investigation of wattle phenotype in goat using genome-wide sequence data. Anim Genet 2022; 53:700-705. [PMID: 35748186 DOI: 10.1111/age.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
In domestic goats, wattles often appear in even numbers, mostly on the neck and a few under the ear. Goat wattle is composed of ectopic cartilage tissue covered by skin and was reported as a dominant inheritance. Thirty-eight goats from two Southwest Chinese breeds were studied to elucidate the genetic basis of wattle phenotype in goat. Their genomes were sequenced for wide-genome selective sweep analysis (WGSA) and a genome-wide association study (GWAS). The WGSA results revealed 500 candidate genes identified by fixation index and π ratio and 261 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched with 195 genes and 38 significantly enriched KEGG items. In particular, three chondrogenesis-related pathways (Wnt, Hippo and MAPK signaling pathways) were found. Among the 500 genes, 474 were enriched to 2855 Gene Ontology items, and four (BMP2, BMP4, RARA and MSX1) were annotated in the regulation and development of chondrogenesis. Four chondrogenesis-related genes (GREM1, NEDD4, ATG7 and ITGA1) were identified from 519 single-nucleotide polymorphisms (SNPs) with a GWAS above the threshold. Six and 11 SNPs on chromosome 10 are located on GREM1 and NEDD4 respectively, and the highest numbers of SNPs on chromosomes 20 and 22 are located on ITGA1 and ATG7 respectively. All of these genes are related to cartilage development. This study identified a series of genes related to chondroplasia by GWAS and WGSA and presented the possibility that wattle inheritance may be influenced by multiple genes. This work provides a new theoretical understanding of the hereditary basis of wattle phenotype.
Collapse
Affiliation(s)
- Wei-Yi Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Ying Yuan
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Hao-Yuan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yong-Meng He
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Cheng-Li Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Lu Xu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Bai-Gao Yang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Hang-Xing Ren
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Gao-Fu Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Guang-Xin E
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Han Y, Pei D, Li W, Luo B, Jiang Q. Epigallocatechin gallate attenuates tumor necrosis factor (TNF)-α-induced inhibition of osteoblastic differentiation by up-regulating lncRNA TUG1 in osteoporosis. Bioengineered 2022; 13:8950-8961. [PMID: 35358011 PMCID: PMC9161859 DOI: 10.1080/21655979.2022.2056825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Promoting osteoblast proliferation and differentiation contributes to the prevention and clinical treatment of osteoporosis. This study was to investigate the effect and mechanism of epigallocatechin gallate (EGCG) on tumor necrosis factor (TNF)-α-caused inhibition of osteoblastic differentiation. First, we cultured mouse embryo osteoblast precursor cells (MC3T3-E1) and induced by TNF-α (0, 2.5, 5, 10 ng/mL). The results revealed that TNF-α significantly inhibited the proliferation, ALP activity and mineralized nodule formation of MC3T3-E1 cells and promoted apoptosis. However, EGCG pretreatment significantly alleviated the inhibitory effect of TNF-α on MC3T3-E1. In addition, TNF-α significantly downregulated the expression of lncRNA TUG1 in MC3T3-E1, while EGCG upregulated the expression of lncRNA TUG1. After overexpression of lncRNA TUG1 in TNF-α-induced MC3T3-E1 cells, it could show similar effects as EGCG. However, interference with lncRNA TUG1 expression diminished the protective effect of EGCG on TNF-α-induced MC3T3-E1 cells. Finally, we found that EGCG inhibited TNF-α-induced activation of the Hippo/YAP signaling pathway, and that low expression of lncRNA TUG1 suppressed this effect. In conclusion, EGCG could suppress Hippo/YAP pathway activity by up-regulating lncRNA TUG1, ultimately improving TNF-α-caused inhibition of osteoblastic differentiation.
Collapse
Affiliation(s)
- Yanfeng Han
- Department of Implant, School of Stomatology, Capital Medical University, Beijing, Hebei, China
| | - Dening Pei
- National Institutes for Food and Drug Control, Beijing, Hebei, China
| | - Wenjing Li
- Department of Prosthodontic, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Bin Luo
- Department of Prosthodontic, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Qingsong Jiang
- Department of Prosthodontic, School of Stomatology, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
10
|
Virdi JK, Pethe P. Biomaterials Regulate Mechanosensors YAP/TAZ in Stem Cell Growth and Differentiation. Tissue Eng Regen Med 2021; 18:199-215. [PMID: 33230800 PMCID: PMC8012461 DOI: 10.1007/s13770-020-00301-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/15/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Tissue-resident stem cells are surrounded by a microenvironment known as 'stem cell niche' which is specific for each stem cell type. This niche comprises of cell-intrinsic and -extrinsic factors like biochemical and biophysical signals, which regulate stem cell characteristics and differentiation. Biochemical signals have been thoroughly studied however, the effect of biophysical signals on stem cell regulation is yet to be completely understood. Biomaterials have aided in addressing this issue since they can provide a defined and tuneable microenvironment resembling in vivo conditions. We review various biomaterials used in many studies which have shown a connection between biomaterial-generated mechanical signals and alteration in stem cell behaviour. Researchers probed to understand the mechanism of mechanotransduction and reported that the signals from the extracellular matrix regulate a transcription factor yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ), which is a downstream-regulator of the Hippo pathway and it transduces the mechanical signals inside the nucleus. We highlight the role of the YAP/TAZ as mechanotransducers in stem cell self-renewal and differentiation in response to substrate stiffness, also the possibility of mechanobiology as the emerging field of regenerative medicines and three-dimensional tissue printing.
Collapse
Affiliation(s)
- Jasmeet Kaur Virdi
- Department of Biological Science, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to-be) University, Mumbai, India
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University, Lavale, Mulshi, Pune, 412115, India.
| |
Collapse
|
11
|
Walker M, Luo J, Pringle EW, Cantini M. ChondroGELesis: Hydrogels to harness the chondrogenic potential of stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111822. [PMID: 33579465 DOI: 10.1016/j.msec.2020.111822] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023]
Abstract
The extracellular matrix is a highly complex microenvironment, whose various components converge to regulate cell fate. Hydrogels, as water-swollen polymer networks composed by synthetic or natural materials, are ideal candidates to create biologically active substrates that mimic these matrices and target cell behaviour for a desired tissue engineering application. Indeed, the ability to tune their mechanical, structural, and biochemical properties provides a framework to recapitulate native tissues. This review explores how hydrogels have been engineered to harness the chondrogenic response of stem cells for the repair of damaged cartilage tissue. The signalling processes involved in hydrogel-driven chondrogenesis are also discussed, identifying critical pathways that should be taken into account during hydrogel design.
Collapse
Affiliation(s)
- Matthew Walker
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Jiajun Luo
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Eonan William Pringle
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK.
| |
Collapse
|
12
|
Xie W, Xiao W, Tang K, Zhang L, Li Y. Yes-Associated Protein 1: Role and Treatment Prospects in Orthopedic Degenerative Diseases. Front Cell Dev Biol 2020; 8:573455. [PMID: 33178690 PMCID: PMC7593614 DOI: 10.3389/fcell.2020.573455] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/25/2020] [Indexed: 01/11/2023] Open
Abstract
The Hippo/yes-associated protein 1 signaling pathway is an evolutionarily conserved signaling pathway. This signaling pathway is primarily involved in the regulation of stem cell self-renewal, organ size and tissue regeneration by regulating cell proliferation, differentiation and apoptosis. It plays an important role in embryonic development and tissue organ formation. Yes-associated protein 1 (YAP1) is a key transcription factor in the Hippo signaling pathway and is negatively regulated by this pathway. Changes in YAP1 expression levels affect the occurrence and development of a variety of tumors, but the specific mechanism associated with this phenomenon has not been thoroughly studied. Recently, several studies have described the role of YAP1 in osteoarthritis (OA). Indeed, YAP1 is involved in orthopedic degenerative diseases such as osteoporosis (OP) in addition to OA. In this review, we will summarize the significance of YAP1 in orthopedic degenerative diseases and discuss the potential of the targeted modulation of YAP1 for the treatment of these diseases.
Collapse
Affiliation(s)
- Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Tang
- Discipline Construction Office, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|