1
|
Lei R, Yang C, Zhu T, Zhu X, Zhu Z, Cui H, Pei H, Li J, Mao Y, Lan C. Multifunctional cyclic biomimetic peptides: Self-assembling nanotubes for effective treatment of sepsis. Int J Biol Macromol 2025; 288:138522. [PMID: 39672431 DOI: 10.1016/j.ijbiomac.2024.138522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Antibiotic abuse has led to an increasingly serious risk of antimicrobial resistance, developing alternative antimicrobials to combat this alarming issue is urgently needed. Rhesus theta defensin-1 (RTD-1) is a theta-defensin contributing to broad-spectrum bactericidal activity via the mechanisms of membrane perturbation. Intriguingly, human defensin-6 (HD6), an enteric defensin secreted by Paneth cells without direct bactericidal effect, could self-assembled into fibrous networks to trap enteric pathogens for assistance of innate immunity. The direct bactericidal action of RTD-1 and the bacterial trapping of HD6 inspire a promising antimicrobial paradigm for unique antibacterial strategies. In this study, we utilized the principle of alternating arrangement of D- and L-amino acids in cyclic peptides, which endows them with the potential to self-assemble into nanotubes, mimic the antimicrobial processes of RTD-1 and HD6. We designed and synthesized five cyclic biomimetic peptides (CBPs), among these biomimetics, CBP-4, which possessed a nanotube-like structure, demonstrated the ability to directly and rapidly disrupt the cell membranes of Gram-positive S. aureus and MRSA, while also targeting the surfaces of Gram-negative E. coil using its nanofibrous network to capture bacteria, preventing invasion and migration, and indirectly killing the bacteria. Moreover, CBP-4 eliminated pathogens, inhibited excessive inflammatory responses caused by infections, and maintained immune system homeostasis in septic mice. By fully emulating the antimicrobial mechanisms of both RTD-1 and HD6, CBP-4 showed promising potential for anti-infectious therapies.
Collapse
Affiliation(s)
- Ruyi Lei
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Chujun Yang
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xingqiang Zhu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhiqiang Zhu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongwei Cui
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hui Pei
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiye Li
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yujing Mao
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chao Lan
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
2
|
Wang Y, Su P, Lin Z, Li X, Chen K, Ye T, Li Y, Zou Y, Wang W. A Tribo/Piezoelectric Nanogenerator Based on Bio-MOFs for Energy Harvesting and Antibacterial Wearable Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418207. [PMID: 39838742 DOI: 10.1002/adma.202418207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/12/2025] [Indexed: 01/23/2025]
Abstract
New types of metal-organic framework (MOF) materials have great potential in solving the current global dilemma on energy, environment, and medical care. Herein, based on two kinds of biomolecule-MOFs (Bio-MOFs) with favorable biocompatibility and degradation-reconstruction characteristics, we have established a self-powered muti-functional device to achieve an efficient and broad-spectrum environmental energy collection and biomedical applications. Combining Zn(II) and carnosine-based Zn-Car_MOF possessing a high piezoelectric response (d33 = 11.17 pm V-1) with patterned polydimethylsiloxane (PDMS) film, a tribo-piezoelectric hybrid nanogenerator (TPHG) is constructed with a synergy output of triboelectric and piezoelectric effects. The Zn-Car_TPHG demonstrates a high output performance (131 V at 100 kPa) and a wide range of pressure response (1 Pa-100 kPa), possessing applications in environmental energy collection and biomedical sensors. To expand the application of the wearable device, a conductive hexagonal prism MOF (Cu3(2,3,6,7,10,11-hexahydroxytriphenylene)2 (Cu-HHTP)) is synthesized and employed to load thymol (Thy). Cooperating with Zn-Car_TPHG, the resulting Cu-HHTP/Thy can achieve an efficient self-powered ROS (singlet oxygen (1O2) and hydroxyl radical (·OH)) generation and drug synergistic broad-spectrum sterilization effect (efficiency ≥ 98%). In a word, the flexible wearable device based on the muti-functional Bio-MOFs is sustainable and environmentally friendly, possessing wide application potential in fields of environmental energy collection, biosensors, and self-powered antibacterial.
Collapse
Affiliation(s)
- Yuqi Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Peipei Su
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhang Lin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaolin Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kangbo Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tingting Ye
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yaping Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Zou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
3
|
Kaur N, Sahoo J, De M. Development of Nanomaterials-Based Agents for Selective Antibacterial Activity. Chembiochem 2025; 26:e202400693. [PMID: 39632741 DOI: 10.1002/cbic.202400693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/26/2024] [Indexed: 12/07/2024]
Abstract
Bacterial infections continue to threaten public health due to limitations in rapid and accurate diagnostic techniques. While broad-spectrum antibiotics offer empirical treatment, their overuse has fuelled the emergence of antimicrobial resistance (AMR) pathogens, posing a critical global public health challenge. In this critical scenario, nanomaterial-based antibacterial agents emerge as a promising solution to combat bacteria and inhibit their proliferation. However, selective elimination of pathogenic bacteria is paramount. This review highlights recent advancements in developing nanomaterials for selective antibacterial activity. We categorize these agents based on their mode of action, exploring how they selectively interact with bacteria and their potential antibacterial mechanisms. This review offers crucial insights for researchers exploring the potential of nanotechnology to address the growing threat of AMR.
Collapse
Affiliation(s)
- Navjot Kaur
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
4
|
Barman R, Mukherjee A, Nag A, Rajdev P, Ghosh S. Hierarchical assembly of foldable polymers and applications in organic optoelectronics and antibacterial or antiviral materials. Chem Commun (Camb) 2023; 59:13951-13961. [PMID: 37937399 DOI: 10.1039/d3cc04855a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Aggregation of amphiphilic polymers in block-selective solvents produces different nanostructures, which have been studied extensively for wide-ranging applications. Nevertheless, such immiscibility-driven aggregation does not endow them with the desired structural precision, predictability or surface functional group exposure, which significantly impact their functional applications. More recently, biomimetic folded structures of synthetic macromolecules (mostly oligomers) have come to the fore, but such studies have been limited to probe the secondary structures. In this article, we have collated hierarchical structures of foldamers, especially highlighting our recent contribution to the field of chain-folding regulated assembly of segmented polyurethanes (PUs) and their functional applications. A series of such PUs have been discussed, which contain a segmented hydrocarbon backbone and alternately placed pendant solvophilic groups. In either water or highly non-polar solvents (TCE, MCH), depending on the nature of the pendant group, they exhibit folded structures stabilized by intra-chain H-bonding. Hierarchical assembly of such folded chains by inter-chain H-bonding and/or π-stacking leads to the formation of well-defined nanostructures with functional applications ranging from organic optoelectronics to biomaterials. For example, a segmented PU with appended naphthalene-diimide (NDI) chromophores showed a pleated structure in MCH, which helped in organization of the NDI chromophores within π-stacking distance. Such folded polymer chains eventually produced nanotubular structures with excellent electron mobility. They also showed efficient intercalation of the pyrene (Py) donor by NDI-Py charge-transfer interaction and in this case the mixed nanotubular structure exhibited prominent room-temperature ferroelectricity. On the other hand, having cationic functionalities as the pendant groups such chain-folding regulated assembly produced unilamellar polymersomes with excellent antibacterial activity with very low minimum inhibitory concentrations (<10 μg mL-1). Replacing the pendant amine functionality with sulphate groups made these polyurethanes highly potent antiviral materials. In the absence of the alternating connectivity of the solvophobic and solvophilic segments or rigid hydrocarbon backbone, such folding propensity is destroyed, leading to structural collapse. While significant efforts have been made in correlating primary structures of wide-ranging polymers with their functional applications, this article demonstrates the direct correlation between the secondary structures of polymers and their functional properties.
Collapse
Affiliation(s)
- Ranajit Barman
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Anurag Mukherjee
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Atish Nag
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Priya Rajdev
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
5
|
Lin C, Ma Z, Gao Y, Le M, Shi Z, Qi D, Ma JC, Cui ZK, Wang L, Jia YG. Main-Chain Cationic Bile Acid Polymers Mimicking Facially Amphiphilic Antimicrobial Peptides. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37400427 DOI: 10.1021/acsami.3c06424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Antibiotic-resistant bacterial infections have led to an increased demand for antibacterial agents that do not contribute to antimicrobial resistance. Antimicrobial peptides (AMPs) with the facially amphiphilic structures have demonstrated remarkable effectiveness, including the ability to suppress antibiotic resistance during bacterial treatment. Herein, inspired by the facially amphiphilic structure of AMPs, the facially amphiphilic skeletons of bile acids (BAs) are utilized as building blocks to create a main-chain cationic bile acid polymer (MCBAP) with macromolecular facial amphiphilicity via polycondensation and a subsequent quaternization. The optimal MCBAP displays an effective activity against Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative Escherichia coli, fast killing efficacy, superior bactericidal stability in vitro, and potent anti-infectious performance in vivo using the MRSA-infected wound model. MCBAP shows the low possibility to develop drug-resistant bacteria after repeated exposure, which may ascribe to the macromolecular facial amphiphilicity promoting bacterial membrane disruption and the generation of reactive oxygen species. The easy synthesis and low cost of MCBAP, the superior antimicrobial performance, and the therapeutic potential in treating MRSA infection altogether demonstrate that BAs are a promising group of building blocks to mimic the facially amphiphilic structure of AMPs in treating MRSA infection and alleviating antibiotic resistance.
Collapse
Affiliation(s)
- Caihong Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Zunwei Ma
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yunpeng Gao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Mengqi Le
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Zhifeng Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Dawei Qi
- MediCity Research Laboratory, University of Turku, Turku 20520, Finland
| | - Jian-Chao Ma
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhong-Kai Cui
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Wu J, Zhou JH, Liu DF, Wu J, He RL, Cheng ZH, Li HH, Li WW. Phthalates Promote Dissemination of Antibiotic Resistance Genes: An Overlooked Environmental Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6876-6887. [PMID: 37083356 DOI: 10.1021/acs.est.2c09491] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plastics-microorganism interactions have aroused growing environmental and ecological concerns. However, previous studies concentrated mainly on the direct interactions and paid little attention to the ecotoxicology effects of phthalates (PAEs), a common plastic additive that is continuously released and accumulates in the environment. Here, we provide insights into the impacts of PAEs on the dissemination of antibiotic resistance genes (ARGs) among environmental microorganisms. Dimethyl phthalate (DMP, a model PAE) at environmentally relevant concentrations (2-50 μg/L) significantly boosted the plasmid-mediated conjugation transfer of ARGs among intrageneric, intergeneric, and wastewater microbiota by up to 3.82, 4.96, and 4.77 times, respectively. The experimental and molecular dynamics simulation results unveil a strong interaction between the DMP molecules and phosphatidylcholine bilayer of the cell membrane, which lowers the membrane lipid fluidity and increases the membrane permeability to favor transfer of ARGs. In addition, the increased reactive oxygen species generation and conjugation-associated gene overexpression under DMP stress also contribute to the increased gene transfer. This study provides fundamental knowledge of the PAE-bacteria interactions to broaden our understanding of the environmental and ecological risks of plastics, especially in niches with colonized microbes, and to guide the control of ARG environmental spreading.
Collapse
Affiliation(s)
- Jing Wu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jun-Hua Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Ru-Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Zhou-Hua Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hui-Hui Li
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
7
|
Niu M, Gu X, Yang J, Cui H, Hou X, Ma Y, Wang C, Wei G. Dual-Mechanism Glycolipidpeptide with High Antimicrobial Activity, Immunomodulatory Activity, and Potential Application for Combined Antibacterial Therapy. ACS NANO 2023; 17:6292-6316. [PMID: 36951612 DOI: 10.1021/acsnano.2c10249] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bacterial drug resistance is becoming increasingly serious, and it is urgent to develop effective antibacterial drugs. Antimicrobial peptides (AMPs), as potential candidates against bacteria, have a broad prospect for development. Herein, a series of AMPs with biological characteristics (net positive charge, amphiphilicity, and α-helix), an AXA motif recognized by membrane bound serine protease type I signal peptidases (SPase I), an FLPII motif to reduce hemolysis, and a monosaccharide motif to improve the stability and activity were designed and synthesized, and among which, the glycolipidpeptide GLP6 (glycosylated LP6 lipopeptide) had excellent antibacterial and immunomodulatory activity, good stability and biocompatibility, and excellent biofilm eradication and membrane penetrating activity. The positively charged spherical aggregates formed by self-assembly of GLP6 could encapsulate tetracycline (TC) to form GLP6@TC with a sustained-release effect, which could enhance the sensitivity of bacteria to the antibiotic and realize combined sterilization. The results of acute peritonitis and bacterial keratitis showed that GLP6@TC had a good combined antibacterial effect and the ability to inhibit interleukin-2 (IL-2), which could significantly reduce the inflammatory response while treating bacterial infection, and it had great potential for application. The results of computer molecular docking showed the AXA motif could effectively bind to SPase I, which was consistent with the results of biological experiments. In general, the study could provide a perspective for the design of AMPs and combined antibacterial therapy.
Collapse
Affiliation(s)
- Mingcong Niu
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003, China
| | - Xiulian Gu
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003, China
| | - Jingyi Yang
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003, China
| | - Haoyu Cui
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003, China
| | - Xinyi Hou
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003, China
| | - Yue Ma
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003, China
| | - Chunhua Wang
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003, China
| | - Guangcheng Wei
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
8
|
Jiang X, Zhang Y, Zhang F, Tian J, Zhang L, Zhao X, Cui F. Fungi-enabled pore channel regulation and defect engineering of a novel micro-reactor for treating complex effluents. Phys Chem Chem Phys 2023; 25:8564-8573. [PMID: 36883830 DOI: 10.1039/d2cp05608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Defect engineering has become a significant research area in recent years; however, little has been reported on the biological method for modulating the intrinsic carbon defects of the biochar framework. Herein, a fungi-enabled method for the fabrication of porous carbon/Fe3O4/Ag (PC/Fe3O4/Ag) composites was developed, and the mechanism underlying the hierarchical structure is elucidated for the first time. By regulating the cultivation process of fungi on water hyacinth biomass, a well-developed interconnected structure and carbon defects acting as potential catalytic active sites were formed. This new material with antibacterial, adsorption and photodegradation properties could be an excellent choice for treating the mixed dyestuff effluents with oils and bacteria, also guiding pore channel regulation and defect engineering in materials science. Numerical simulations were carried out to demonstrate the remarkable catalytic activity.
Collapse
Affiliation(s)
- Xiaoying Jiang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Feiyang Zhang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Jiashuo Tian
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Liuping Zhang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Xinrui Zhao
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Fengling Cui
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
9
|
Ali SR, De M. Superparamagnetic Nickel Nanocluster-Embedded MoS 2 Nanosheets for Gram-Selective Bacterial Adhesion and Antibacterial Activity. ACS Biomater Sci Eng 2022; 8:2932-2942. [PMID: 35666676 DOI: 10.1021/acsbiomaterials.2c00257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ever increasing infectious diseases caused by pathogenic bacteria are creating one of the greatest health problems. The extensive use of numerous antibiotics and antimicrobial agents has prompted the growth of multidrug-resistant bacterial strains. The ancient biomedical application of metals and the recent advancement in the field of nanotechnology have encouraged us to explore the antimicrobial activity of nanomaterials. Herein, we have synthesized a magnetically separable superparamagnetic nickel nanocluster-loaded two-dimensional molybdenum disulfide nanocomposite (Ni@2D-MoS2). It can selectively bind with Gram-positive bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis over Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa. After the functionalization of Ni@2D-MoS2 with a positively charged ligand, it showed an excellent Gram-selective antibacterial activity toward MRSA and E. faecalis. Furthermore, the superparamagnetic property of the synthesized material can be used for the simultaneous removal and killing of the microbes and recycled for further use. This study demonstrates strategies to develop hybrid antimicrobial nanomaterial systems for selective antibacterial activity with recyclability.
Collapse
Affiliation(s)
- Sk Rajab Ali
- Department of Organic Chemistry, Indian Institute of Science, CV Raman Road, Bangalore 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, CV Raman Road, Bangalore 560012, India
| |
Collapse
|
10
|
Exploiting the antibacterial mechanism of phenazine substances from Lysobacter antibioticus 13-6 against Xanthomonas oryzae pv. oryzicola. J Microbiol 2022; 60:496-510. [PMID: 35362894 DOI: 10.1007/s12275-022-1542-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 10/18/2022]
Abstract
Bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most destructive diseases affecting rice production worldwide. In this study, we extracted and purified phenazine substances from the secondary metabolites of Lysobacter antibioticus 13-6. The bacteriostatic mechanism of phenazine substances against Xoc was investigated through physiological response and transcriptomic analysis. Results showed that phenazine substances affects the cell membrane permeability of Xoc, which causes cell swelling and deformation, blockage of flagellum synthesis, and imbalance of intracellular environment. The changes in intracellular environment affect the physiological and metabolic functions of Xoc, which reduces the formation of pathogenic factors and pathogenicity. Through transcriptomic analysis, we found that among differentially expressed genes, the expression of 595 genes was induced significantly (275 up-regulated and 320 down-regulated). In addition, we observed that phenazine substances affects three main functions of Xoc, i.e., transmembrane transporter activity, DNA-mediated transposition, and structural molecular activity. Phenazine substances also inhibits the potassium ion transport system that reduces Xoc resistance and induces the phosphate ion transport system to maintain the stability of the internal environment. Finally, we conclude that phenazine substances could retard cell growth and reduce the pathogenicity of Xoc by affecting cell structure and physiological metabolism. Altogether, our study highlights latest insights into the antibacterial mechanism of phenazine substances against Xoc and provides basic guidance to manage the incidence of bacterial leaf streak of rice.
Collapse
|
11
|
Zhang J, Jia Q, Yue Z, Huo J, Chai J, Yu L, Nie R, Shao H, Zhao Y, Li P, Huang W. An Electroluminodynamic Flexible Device for Highly Efficient Eradication of Drug-Resistant Bacteria. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200334. [PMID: 35194842 DOI: 10.1002/adma.202200334] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) has attracted wide attention in antibacterial applications due to its advantages of spatial-temporal selectivity, noninvasiveness, and low incidence to develop drug resistance. To make it more convenient, universal, and manipulatable for clinical application, a conceptually antibacterial strategy, namely "electroluminodynamic therapy" (ELDT), is presented by nanoassembly of an electroluminescent (EL) material and a photosensitizer, which is capable of generating reactive oxygen species (ROS) in situ under an electric field, i.e., the fluorescence emitted by the EL molecules excites the photosensitizer to generate singlet oxygen (1 O2 ), for the oxidative damage of pathogens. Based on the scheme of ELDT, a flexible therapeutic device is fabricated through a hydrogel loading with ELDT nanoagents, followed by integration with a flexible battery, satisfying the requirements of being light and wearable for wound dressings. The ELDT-based flexible device presents potent ROS-induced killing efficacies against drug-resistant bacteria (>99.9%), so as to effectively inhibit the superficial infection and promote the wound healing. This research reveals a proof-of-concept ELDT strategy as a prospective alternative to PDT, which avoids the utilization of a physical light source, and achieves convenient and effective killing of drug-resistant bacteria through a hydrogel-based flexible therapeutic device.
Collapse
Affiliation(s)
- Jianhong Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Qingyan Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zilin Yue
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Jingjing Huo
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Jin Chai
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Renhao Nie
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Han Shao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Yang Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
12
|
Antibacterial Effect of Phenolic Acids Derived from Rice Straw and in Combination with Antibiotics Against Escherichia coli. Appl Biochem Biotechnol 2022; 194:2931-2945. [PMID: 35298768 DOI: 10.1007/s12010-021-03650-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/03/2021] [Indexed: 11/02/2022]
Abstract
Many studies have demonstrated that natural plant extracts have inhibitory effects on microorganisms. The purpose of this study was to investigate the inhibitory effect of phenolic acids from rice straw (PAs) on Escherichia coli and their synergistic effect in combination with antibiotics. PAs can inhibit the growth of E. coli effectively by inducing the formation of H2O2; PA-treated cells had a tenfold greater intracellular H2O2 concentration than the control group. The synergistic effect caused by the interaction of PAs and antibiotics on inhibiting the growth of E. coli was significant. This effect may be caused by a PA-induced change in the permeability of E. coli cell membrane. The treatment with PAs made the extracellular K+ concentration reached 15 mg/L within 30 min, while the K+ concentration in the control group was very low and did not change significantly over time. Similarly to the extracellular K+, the extracellular protein concentration exceeded 150 mg/L in the PA treatment group, while it remained very low in the control group. Due to the increased cell permeability, more antibiotics can enter the cell. Hence, this study may provide a novel method of improving the safe use of antibiotics.
Collapse
|
13
|
Barman R, Ray D, Aswal VK, Ghosh S. Chain-folding regulated self-assembly, outstanding bactericidal activity and biofilm eradication by biomimetic amphiphilic polymers. Polym Chem 2022. [DOI: 10.1039/d2py00625a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chain-folding regulated hierarchical self-assembly of cationic host defense peptide mimicking amphiphilic polyurethanes exhibit excellent antibacterial activity and biofilm killing.
Collapse
Affiliation(s)
- Ranajit Barman
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, Pin-700032, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - V. K. Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, Pin-700032, India
| |
Collapse
|
14
|
Sun H, Wang Y, Song J. Polymer Vesicles for Antimicrobial Applications. Polymers (Basel) 2021; 13:2903. [PMID: 34502943 PMCID: PMC8434374 DOI: 10.3390/polym13172903] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Polymer vesicles, hollow nanostructures with hydrophilic cavity and hydrophobic membrane, have shown significant potentials in biomedical applications including drug delivery, gene therapy, cancer theranostics, and so forth, due to their unique cell membrane-like structure. Incorporation with antibacterial active components like antimicrobial peptides, etc., polymer vesicles exhibited enhanced antimicrobial activity, extended circulation time, and reduced cell toxicity. Furthermore, antibacterial, and anticancer can be achieved simultaneously, opening a new avenue of the antimicrobial applications of polymer vesicles. This review seeks to highlight the state-of-the-art of antimicrobial polymer vesicles, including the design strategies and potential applications in the field of antibacterial. The structural features of polymer vesicles, preparation methods, and the combination principles with antimicrobial active components, as well as the advantages of antimicrobial polymer vesicles, will be discussed. Then, the diverse applications of antimicrobial polymer vesicles such as wide spectrum antibacterial, anti-biofilm, wound healing, and tissue engineering associated with their structure features are presented. Finally, future perspectives of polymer vesicles in the field of antibacterial is also proposed.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yin Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China;
| | - Jiahui Song
- Center of Scientific Technology, Ningxia Medical University, Yinchuan 750004, China;
| |
Collapse
|
15
|
Zhou S, Wang W, Sun Y, Tang X, Zhang B, Yao X. Antibacterial effect of Ag-PMANa modified cotton. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Starch-based magnetic nanocomposite for targeted delivery of hydrophilic bioactives as anticancer strategy. Carbohydr Polym 2021; 264:118017. [PMID: 33910740 DOI: 10.1016/j.carbpol.2021.118017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Magnetic nanocomposites were synthesized for the targeted delivery of hydrophilic bioactives through guidance generated by a magnetic field. Superparamagnetic iron oxide nanoparticles (SPIONs) were used to generate hydroxyethyl starch magnetic nanocapsules (HES MNCs). This synthesis allowed the co-encapsulation of oncocalyxone A (onco A) and surface-modified magnetite nanoparticles (Fe3O4@citrate) into the same nanostructure. The synthesized nanocapsules exhibited a core-shell morphology, with an average diameter of 143 nm. This nanocomposite showed potential anticancer activity (IC50) against four human tumor cell lines: glioblastoma SNB-19 (1.010 μgmL-1), colon carcinoma HCT-116 (2.675 μgmL-1), prostate PC3 (4.868 μgmL-1), and leukemia HL-60 (2.166 μgmL-1). Additionally, in vivo toxicity and locomotor activity were evaluated in a zebrafish (Danio rerio) model. The nanocomposite exhibited in vitro cytotoxicity, prolonged drug release profile and also responded to an applied magnetic field, representing a versatile compound with perspectives for highest concentration of different hydrophilic bioactives in a target tissue through magnetic vectorization.
Collapse
|
17
|
Lin C, Wang Y, Le M, Chen KF, Jia YG. Recent Progress in Bile Acid-Based Antimicrobials. Bioconjug Chem 2021; 32:395-410. [PMID: 33683873 DOI: 10.1021/acs.bioconjchem.0c00642] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the emergence of drug-resistant bacteria and the formation of biofilms by bacteria and fungi, microbial infections gradually threaten global health. Natural antimicrobial peptides (AMPs) have low susceptibility for developing resistance due to the membrane targeted mechanism, but instability and high manufacturing cost limit their applications in clinic. Bile acids, a group of steroids in the human body, with high stability, biocompatibility, and inherent facial amphiphilic structure similar to the characteristics of AMPs, have been applied to the biological field, such as drug delivery systems, self-healing hydrogels, antimicrobials, and so on. In this review, we mainly focus on the different classes of bile acid-based antimicrobials in recent years. Various designs and methods for the preparation of unimolecular antimicrobials with bile acid skeletons are first introduced, including coupling of primary amine, quaternary ammonium, and amino acid units with bile acid skeletons. Some representative oligomeric antimicrobials, including dimers of bile acids, are summarized. Finally, macromolecular antimicrobials bearing some positive charges at the main chain or side chain and interaction mechanisms of these bile acid-based antimicrobials are discussed.
Collapse
Affiliation(s)
- Caihong Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Yushi Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Mengqi Le
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Kai-Feng Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
18
|
dos Santos SB, Pereira SA, Rodrigues FA, da Silva AC, de Almeida RR, Sousa AC, Fechine LM, Denardin JC, Araneda F, Sá LG, da Silva CR, Nobre Júnior HV, Ricardo NM. Antibacterial activity of fluoxetine-loaded starch nanocapsules. Int J Biol Macromol 2020; 164:2813-2817. [DOI: 10.1016/j.ijbiomac.2020.08.184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/07/2020] [Accepted: 08/23/2020] [Indexed: 01/15/2023]
|
19
|
Ghosh P, De P. Modulation of Amyloid Protein Fibrillation by Synthetic Polymers: Recent Advances in the Context of Neurodegenerative Diseases. ACS APPLIED BIO MATERIALS 2020; 3:6598-6625. [DOI: 10.1021/acsabm.0c01021] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pooja Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| |
Collapse
|
20
|
Bahrami N, Nouri Khorasani S, Mahdavi H, Khalili S. Layer‐by‐layer self‐assembly of collagen and chitosan biomolecules on polyurethane films. J Appl Polym Sci 2020. [DOI: 10.1002/app.49417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Narges Bahrami
- Department of Chemical EngineeringIsfahan University of Technology Isfahan Iran
| | | | - Hamid Mahdavi
- Department of Novel Drug Delivery SystemsIran Polymer and Petrochemical Institute Tehran Iran
| | - Shahla Khalili
- Department of Chemical EngineeringIsfahan University of Technology Isfahan Iran
| |
Collapse
|