1
|
Wigham C, Fink TD, Sorci M, O'Reilly P, Park S, Kim J, Varude VR, Zha RH. Phosphate-Driven Interfacial Self-Assembly of Silk Fibroin for Continuous Noncovalent Growth of Nanothin Defect-Free Coatings. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58121-58134. [PMID: 39413432 DOI: 10.1021/acsami.4c07528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Silk fibroin is a fiber-forming protein derived from the thread of Bombyx mori silkworm cocoons. This biocompatible protein, under the kosmotropic influence of potassium phosphate, can undergo supramolecular self-assembly driven by a random coil to β-sheet secondary structure transition. By leveraging concurrent nonspecific adsorption and self-assembly of silk fibroin, we demonstrate an interfacial phenomenon that yields adherent, defect-free nanothin protein coatings that grow continuously in time, without observable saturation in mass deposition. This noncovalent growth of silk fibroin coatings is a departure from traditionally studied protein adsorption phenomena, which generally yield adsorbed layers that saturate in mass with time and often do not completely cover the surface. Here, we explore the fundamental mechanisms of coating growth by examining the effects of coating solution parameters that promote or inhibit silk fibroin self-assembly. Results show a strong dependence of coating kinetics and structure on solution pH, salt species, and salt concentration. Moreover, coating growth was observed to occur in two stages: an early stage driven by protein-surface interactions and a late stage driven by protein-protein interactions. To describe this phenomenon, we developed a kinetic adsorption model with Langmuir-like behavior at early times and a constant steady-state growth rate at later times. Structural analysis by FTIR and photoinduced force microscopy show that small β-sheet-rich structures serve as anchoring sites for absorbing protein nanoaggregates, which is critical for coating formation. Additionally, β-sheets are preferentially located at the interface between protein nanoaggregates in the coating, suggesting their role in forming stable, robust coatings.
Collapse
Affiliation(s)
- Caleb Wigham
- Department of Chemical and Biological Engineering, 110 Eighth Street, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Tanner D Fink
- Department of Chemical and Biological Engineering, 110 Eighth Street, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Mirco Sorci
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | | - Sung Park
- Molecular Vista, San Jose, California 95119, United States
| | - Jeongae Kim
- Department of Chemical and Biological Engineering, 110 Eighth Street, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Vrushali R Varude
- Department of Chemical and Biological Engineering, 110 Eighth Street, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - R Helen Zha
- Department of Chemical and Biological Engineering, 110 Eighth Street, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
2
|
Oguntade E, Wigham C, Owuor L, Aryal U, O'Grady K, Acierto A, Zha RH, Henderson JH. Dry and wet wrinkling of a silk fibroin biopolymer by a shape-memory material with insight into mechanical effects on secondary structures in the silk network. J Mater Chem B 2024; 12:6351-6370. [PMID: 38864220 DOI: 10.1039/d4tb00112e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Surface wrinkling provides an approach to modify the surfaces of biomedical devices to better mimic features of the extracellular matrix and guide cell attachment, proliferation, and differentiation. Biopolymer wrinkling on active materials holds promise but is poorly explored. Here we report a mechanically actuated assembly process to generate uniaxial micro-and nanosized silk fibroin (SF) wrinkles on a thermo-responsive shape-memory polymer (SMP) substrate, with wrinkling demonstrated under both dry and hydrated (cell compatible) conditions. By systematically investigating the influence of SMP programmed strain magnitude, film thickness, and aqueous media on wrinkle stability and morphology, we reveal how to control the wrinkle sizes on the micron and sub-micron length scale. Furthermore, as a parameter fundamental to SMPs, we demonstrate that the temperature during the recovery process can also affect the wrinkle characteristics and the secondary structures in the silk network. We find that with increasing SMP programmed strain magnitude, silk wrinkled topographies with increasing wavelengths and amplitudes are achieved. Furthermore, silk wrinkling is found to increase β-sheet content, with spectroscopic analysis suggesting that the effect may be due primarily to tensile (e.g., Poisson effect and high-curvature wrinkle) loading modes in the SF, despite the compressive bulk deformation (uniaxial contraction) used to produce wrinkles. Silk wrinkles fabricated from sufficiently thick films (roughly 250 nm) persist after 24 h in cell culture medium. Using a fibroblast cell line, analysis of cellular response to the wrinkled topographies reveals high viability and attachment. These findings demonstrate use of wrinkled SF films under physiologically relevant conditions and suggest the potential for biopolymer wrinkles on biomaterials surfaces to find application in cell mechanobiology, wound healing, and tissue engineering.
Collapse
Affiliation(s)
- Elizabeth Oguntade
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Caleb Wigham
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Luiza Owuor
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Ujjwal Aryal
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Kerrin O'Grady
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Anthony Acierto
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - R Helen Zha
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - James H Henderson
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
3
|
Huang A, Huang Y, Yang W, Wang L, You R, Wang J, Yan S, Zhang Q. Fabrication of multifunctional silk nanofibril/hyaluronic acid scaffold for spinal cord repair. Int J Biol Macromol 2024; 263:130287. [PMID: 38373567 DOI: 10.1016/j.ijbiomac.2024.130287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Bioactive scaffolds accurately mimicking the structure and composition of the extracellular matrix have garnered significant interest in tissue engineering. In this study, we developed a platform utilizing natural silk nanofibrils, hyaluronic acid, and basic fibroblast growth factor for the purpose of promoting spinal cord regeneration by creating an optimal microenvironment. The bioactive scaffold exhibited notable characteristics such as high porosity and hydrophilicity, attributed to its unique nanostructure, high connectivity, and polysaccharide composition. Furthermore, the pore size of the scaffold can be adjusted within the range of 90 μm to 120 μm by varying the content of hyaluronic acid. In vitro, human umbilical vein endothelial cells were seeded into the scaffold, demonstrating enhanced cell viability. The scaffold facilitated cell proliferation and migration. In vivo experiments on rats indicated that the scaffold had a beneficial impact on spinal cord regeneration, creating a conducive environment for motor function recovery of the rats. This effect may be attributed to the scaffold's ability to stimulate axon growth and neuronal survival, as well as inhibit the formation of glial scars, as evidenced by the decreased expression of growth associated protein-43, microtubule-associated protein 2, and neurofilament-200. This study presents a promising method to develop a feasible bioscaffold for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Ao Huang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Ying Huang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Wenjing Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
| | - Renchuan You
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jiannan Wang
- Key Laboratory of Textile Industry for Silk Products in Medical and Health Use, Soochow University, Suzhou 215123, China
| | - Shuqin Yan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; Key Laboratory of Textile Industry for Silk Products in Medical and Health Use, Soochow University, Suzhou 215123, China.
| | - Qiang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
4
|
Oguntade E, Fougnier D, Meyer S, O’Grady K, Kudlack A, Henderson JH. Tuning the Topography of Dynamic 3D Scaffolds through Functional Protein Wrinkled Coatings. Polymers (Basel) 2024; 16:609. [PMID: 38475293 PMCID: PMC10934732 DOI: 10.3390/polym16050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Surface wrinkling provides an approach to fabricate micron and sub-micron-level biomaterial topographies that can mimic features of the dynamic, in vivo cell environment and guide cell adhesion, alignment, and differentiation. Most wrinkling research to date has used planar, two-dimensional (2D) substrates, and wrinkling work on three-dimensional (3D) structures has been limited. To enable wrinkle formation on architecturally complex, biomimetic 3D structures, here, we report a simple, low-cost experimental wrinkling approach that combines natural silk fibroin films with a recently developed advanced manufacturing technique for programming strain in complex 3D shape-memory polymer (SMP) scaffolds. By systematically investigating the influence of SMP programmed strain magnitude, silk film thickness, and aqueous media on wrinkle morphology and stability, we reveal how to generate and tune silk wrinkles on the micron and sub-micron scale. We find that increasing SMP programmed strain magnitude increases wavelength and decreases amplitudes of silk wrinkled topographies, while increasing silk film thickness increases wavelength and amplitude. Silk wrinkles persist after 24 h in cell culture medium. Wrinkled topographies demonstrate high cell viability and attachment. These findings suggest the potential for fabricating biomimetic cellular microenvironments that can advance understanding and control of cell-material interactions in engineering tissue constructs.
Collapse
Affiliation(s)
- Elizabeth Oguntade
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; (E.O.); (D.F.); (S.M.); (K.O.)
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Daniel Fougnier
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; (E.O.); (D.F.); (S.M.); (K.O.)
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Sadie Meyer
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; (E.O.); (D.F.); (S.M.); (K.O.)
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Kerrin O’Grady
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; (E.O.); (D.F.); (S.M.); (K.O.)
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Autumn Kudlack
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; (E.O.); (D.F.); (S.M.); (K.O.)
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - James H. Henderson
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; (E.O.); (D.F.); (S.M.); (K.O.)
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
5
|
Fink TD, Funnell JL, Gilbert RJ, Zha RH. One-Pot Assembly of Drug-Eluting Silk Coatings with Applications for Nerve Regeneration. ACS Biomater Sci Eng 2024; 10:482-496. [PMID: 38109315 DOI: 10.1021/acsbiomaterials.3c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Clinical use of polymeric scaffolds for tissue engineering often suffers from their inability to promote strong cellular interactions. Functionalization with biomolecules may improve outcomes; however, current functionalization approaches using covalent chemistry or physical adsorption can lead to loss of biomolecule bioactivity. Here, we demonstrate a novel bottom-up approach for enhancing the bioactivity of poly(l-lactic acid) electrospun scaffolds though interfacial coassembly of protein payloads with silk fibroin into nanothin coatings. In our approach, protein payloads are first added into an aqueous solution with Bombyx mori-derived silk fibroin. Phosphate anions are then added to trigger coassembly of the payload and silk fibroin, as well as noncovalent formation of a payload-silk fibroin coating at poly(l-lactic) acid fiber surfaces. Importantly, the coassembly process results in homogeneous distribution of protein payloads, with the loading quantity depending on payload concentration in solution and coating time. This coassembly process yields greater loading capacity than physical adsorption methods, and the payloads can be released over time in physiologically relevant conditions. We also demonstrate that the coating coassembly process can incorporate nerve growth factor and that coassembled coatings lead to significantly more neurite extension than loading via adsorption in a rat dorsal root ganglia explant culture model.
Collapse
Affiliation(s)
- Tanner D Fink
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Shirley Ann Jackson, Ph. D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Jessica L Funnell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Shirley Ann Jackson, Ph. D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Shirley Ann Jackson, Ph. D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - R Helen Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Shirley Ann Jackson, Ph. D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
6
|
Cheng G, Guo S, Li M, Xiao S, Jiang B, Ding Y. Hydroxyapatite-Coated Small Intestinal Submucosa Membranes Enhanced Periodontal Tissue Regeneration through Immunomodulation and Osteogenesis via BMP-2/Smad Signaling Pathway. Adv Healthc Mater 2024; 13:e2301479. [PMID: 37739439 DOI: 10.1002/adhm.202301479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/16/2023] [Indexed: 09/24/2023]
Abstract
Periodontitis, a chronic infection causing periodontal tissue loss, may be effectively addressed with in situ tissue engineering. Small intestinal submucosa (SIS) offers exceptional biocompatibility and biodegradability but lacks sufficient osteoconductive and osteoinductive properties. This study develops and characterizes SIS coated with hydroxyapatite (SIS-HA) and gelatin methacrylate hydroxyapatite (SIS-Gel-HA) using biomineralization and chemical crosslinking. The impact on periodontal tissue regeneration is assessed by evaluating macrophage immune response and osteogenic differentiation potential of periodontal ligament stem cells (PDLSCs) in vitro and rat periodontal defects in vivo. The jejunum segment, with the highest collagen type I content, is optimal for SIS preparation. SIS retains collagen fiber structure and bioactive factors. Calcium content is 2.21% in SIS-HA and 2.45% in SIS-Gel-HA, with no significant differences in hydrophilicity, physicochemical properties, protein composition, or biocompatibility among SIS, SIS-HA, SIS-Gel, and SIS-Gel-HA. SIS is found to upregulate M2 marker expression, both SIS-HA and SIS-Gel-HA enhance the osteogenic differentiation of PDLSCs through the BMP-2/Smad signaling pathway, and SIS-HA demonstrates superior in vitro osteogenic activity. In vivo, SIS-HA and SIS-Gel-HA yield denser, more mature bones with the highest BMP-2 and Smad expression. SIS-HA and SIS-Gel-HA demonstrate enhanced immunity-osteogenesis coupling, representing a promising periodontal tissue regeneration approach.
Collapse
Affiliation(s)
- Guoping Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
- Department of Periodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shujuan Guo
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
- Department of Periodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Maoxue Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
- Department of Periodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shimeng Xiao
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
- Department of Periodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Bo Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, 610041, China
- National Center for Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
- Department of Periodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
7
|
Fuest S, Smeets R, Gosau M, Aavani F, Knipfer C, Grust ALC, Kopp A, Becerikli M, Behr B, Matthies L. Layer-by-Layer Deposition of Regenerated Silk Fibroin─An Approach to the Surface Coating of Biomedical Implant Materials. ACS Biomater Sci Eng 2023; 9:6644-6657. [PMID: 37983947 DOI: 10.1021/acsbiomaterials.3c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Biomaterials and coating techniques unlock major benefits for advanced medical therapies. Here, we explored layer-by-layer (LbL) deposition of silk fibroin (SF) by dip coating to deploy homogeneous films on different materials (titanium, magnesium, and polymers) frequently used for orthopedic and other bone-related implants. Titanium and magnesium specimens underwent preceding plasma electrolytic oxidation (PEO) to increase hydrophilicity. This was determined as surface properties were visualized by scanning electron microscopy and contact angle measurements as well as Fourier transform infrared spectroscopy (FTIR) analysis. Finally, biological in vitro evaluations of hemocompatibility, THP-1 cell culture, and TNF-α assays were conducted. A more hydrophilic surface could be achieved using the PEO surface, and the contact angle for magnesium and titanium showed a reduction from 73 to 18° and from 58 to 17°, respectively. Coating with SF proved successful on all three surfaces, and coating thicknesses of up to 5.14 μm (±SD 0.22 μm) were achieved. Using FTIR analysis, it was shown that the insolubility of the material was achieved by post-treatment with water vapor annealing, although the random coil peak (1640-1649 cm-1) and the α-helix peak (at 1650 cm-1) were still evident. SF did not change hemocompatibility, regardless of the substrate, whereas the PEO-coated materials showed improved hemocompatibility. THP-1 cell culture showed that cells adhered excellently to all of the tested material surfaces. Interestingly, SF coatings induced a significantly higher amount of TNF-α for all materials, indicating an inflammatory response, which plays an important role in a variety of physiological processes, including osteogenesis. LbL coatings of SF are shown to be promising candidates to modulate the body's immune response to implants manufactured from titanium, magnesium, and polymers. They may therefore facilitate future applications for bioactive implant coatings. However, further in vivo studies are needed to confirm the proposed effects on osteogenesis in a physiological environment.
Collapse
Affiliation(s)
- Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Farzaneh Aavani
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christian Knipfer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Audrey Laure Céline Grust
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | | | - Mustafa Becerikli
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, D-44789 Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, D-44789 Bochum, Germany
| | - Levi Matthies
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|
8
|
Hu J, Jiang Z, Zhang J, Yang G. Application of silk fibroin coatings for biomaterial surface modification: a silk road for biomedicine. J Zhejiang Univ Sci B 2023; 24:943-956. [PMID: 37961798 PMCID: PMC10646393 DOI: 10.1631/jzus.b2300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/18/2023] [Indexed: 11/15/2023]
Abstract
Silk fibroin (SF) as a natural biopolymer has become a popular material for biomedical applications due to its minimal immunogenicity, tunable biodegradability, and high biocompatibility. Nowadays, various techniques have been developed for the applications of SF in bioengineering. Most of the literature reviews focus on the SF-based biomaterials and their different forms of applications such as films, hydrogels, and scaffolds. SF is also valuable as a coating on other substrate materials for biomedicine; however, there are few reviews related to SF-coated biomaterials. Thus, in this review, we focused on the surface modification of biomaterials using SF coatings, demonstrated their various preparation methods on substrate materials, and introduced the latest procedures. The diverse applications of SF coatings for biomedicine are discussed, including bone, ligament, skin, mucosa, and nerve regeneration, and dental implant surface modification. SF coating is conducive to inducing cell adhesion and migration, promoting hydroxyapatite (HA) deposition and matrix mineralization, and inhibiting the Notch signaling pathway, making it a promising strategy for bone regeneration. In addition, SF-coated composite scaffolds can be considered prospective candidates for ligament regeneration after injury. SF coating has been proven to enhance the mechanical properties of the substrate material, and render integral stability to the dressing material during the regeneration of skin and mucosa. Moreover, SF coating is a potential strategy to accelerate nerve regeneration due to its dielectric properties, mechanical flexibility, and angiogenesis promotion effect. In addition, SF coating is an effective and popular means for dental implant surface modification to promote osteogenesis around implants made of different materials. Thus, this review can be of great benefit for further improvements in SF-coated biomaterials, and will undoubtedly contribute to clinical transformation in the future.
Collapse
Affiliation(s)
- Jinxing Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jing Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
9
|
Nelson DW, Puhl DL, Funnell JL, Kruger U, Gilbert RJ. Multivariate analysis reveals topography dependent relationships amongst neurite morphological features from dorsal root ganglia neurons. J Neural Eng 2022; 19:036026. [PMID: 35580576 DOI: 10.1088/1741-2552/ac7078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/17/2022] [Indexed: 11/11/2022]
Abstract
Objective.Nerve guidance scaffolds containing anisotropic architectures provide topographical cues to direct regenerating axons through an injury site to reconnect the proximal and distal end of an injured nerve or spinal cord. Previousin vitrocultures of individual neurons revealed that fiber characteristics such as fiber diameter and inter-fiber spacing alter neurite morphological features, such as total neurite length, the longest single neurite, branching density, and the number of primary neurites. However, the relationships amongst these four neurite morphological features have never been studied on fibrous topographies using multivariate analysis.Approach.In this study, we cultured dissociated dorsal root ganglia on aligned, fibrous scaffolds and flat, isotropic films and evaluated the univariate and multivariate differences amongst these four neurite morphological features.Main results.Univariate analysis showed that fibrous scaffolds increase the length of the longest neurite and decrease branching density compared to film controls. Further, multivariate analysis revealed that, regardless of scaffold type, overall neurite length increases due to a compromise between the longest extending neurite, branching density, and the number of primary neurites. Additionally, multivariate analysis indicated that neurite branching is more independent of the other neurite features when neurons were cultured on films but that branching is strongly related to the other neurite features when cultured on fibers.Significance.These findings are significant as they are the first evidence that aligned topographies affect the relationships between neurite morphological features. This study provides a foundation for analyzing how individual neurite morphology may relate to neural regeneration on a macroscopic scale and provide information that may be used to optimize nerve guidance scaffolds.
Collapse
Affiliation(s)
- Derek W Nelson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Devan L Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Jessica L Funnell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Uwe Kruger
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| |
Collapse
|
10
|
Guo Y, Wang X, Shen Y, Dong K, Shen L, Alzalab AAA. Research progress, models and simulation of electrospinning technology: a review. JOURNAL OF MATERIALS SCIENCE 2021; 57:58-104. [PMID: 34658418 PMCID: PMC8513391 DOI: 10.1007/s10853-021-06575-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/29/2021] [Indexed: 05/09/2023]
Abstract
In recent years, nanomaterials have aroused extensive research interest in the world's material science community. Electrospinning has the advantages of wide range of available raw materials, simple process, small fiber diameter and high porosity. Electrospinning as a nanomaterial preparation technology with obvious advantages has been studied, such as its influencing parameters, physical models and computer simulation. In this review, the influencing parameters, simulation and models of electrospinning technology are summarized. In addition, the progresses in applications of the technology in biomedicine, energy and catalysis are reported. This technology has many applications in many fields, such as electrospun polymers in various aspects of biomedical engineering. The latest achievements in recent years are summarized, and the existing problems and development trends are analyzed and discussed.
Collapse
Affiliation(s)
- Yajin Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200 People’s Republic of China
| | - Ying Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Kuo Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Linyi Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Asmaa Ahmed Abdullah Alzalab
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
11
|
Funnell JL, Ziemba AM, Nowak JF, Awada H, Prokopiou N, Samuel J, Guari Y, Nottelet B, Gilbert RJ. Assessing the combination of magnetic field stimulation, iron oxide nanoparticles, and aligned electrospun fibers for promoting neurite outgrowth from dorsal root ganglia in vitro. Acta Biomater 2021; 131:302-313. [PMID: 34271170 PMCID: PMC8373811 DOI: 10.1016/j.actbio.2021.06.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023]
Abstract
Magnetic fiber composites combining superparamagnetic iron oxide nanoparticles (SPIONs) and electrospun fibers have shown promise in tissue engineering fields. Controlled grafting of SPIONs to the fibers post-electrospinning generates biocompatible magnetic composites without altering desired fiber morphology. Here, for the first time, we assess the potential of SPION-grafted scaffolds combined with magnetic fields to promote neurite outgrowth by providing contact guidance from the aligned fibers and mechanical stimulation from the SPIONs in the magnetic field. Neurite outgrowth from primary rat dorsal root ganglia (DRG) was assessed from explants cultured on aligned control and SPION-grafted electrospun fibers as well as on non-grafted fibers with SPIONs dispersed in the culture media. To determine the optimal magnetic field stimulation to promote neurite outgrowth, we generated a static, alternating, and linearly moving magnet and simulated the magnetic flux density at different areas of the scaffold over time. The alternating magnetic field increased neurite length by 40% on control fibers compared to a static magnetic field. Additionally, stimulation with an alternating magnetic field resulted in a 30% increase in neurite length and 62% increase in neurite area on SPION-grafted fibers compared to DRG cultured on PLLA fibers with untethered SPIONs added to the culture media. These findings demonstrate that SPION-grafted fiber composites in combination with magnetic fields are more beneficial for stimulating neurite outgrowth on electrospun fibers than dispersed SPIONs. STATEMENT OF SIGNIFICANCE: Aligned electrospun fibers improve axonal regeneration by acting as a passive guidance cue but do not actively interact with cells, while magnetic nanoparticles can be remotely manipulated to interact with neurons and elicit neurite outgrowth. Here, for the first time, we examine the combination of magnetic fields, magnetic nanoparticles, and aligned electrospun fibers to enhance neurite outgrowth. We show an alternating magnetic field alone increases neurite outgrowth on aligned electrospun fibers. However, combining the alternating field with magnetic nanoparticle-grafted fibers does not affect neurite outgrowth compared to control fibers but improves outgrowth compared to freely dispersed magnetic nanoparticles. This study provides the groundwork for utilizing magnetic electrospun fibers and magnetic fields as a method for promoting axonal growth.
Collapse
Affiliation(s)
- Jessica L Funnell
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Alexis M Ziemba
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - James F Nowak
- Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Hussein Awada
- IBMM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nicos Prokopiou
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Johnson Samuel
- Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Ryan J Gilbert
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
12
|
Zhao C, Xing Z, Zhang C, Fan Y, Liu H. Nanopharmaceutical-based regenerative medicine: a promising therapeutic strategy for spinal cord injury. J Mater Chem B 2021; 9:2367-2383. [PMID: 33662083 DOI: 10.1039/d0tb02740e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder that can lead to loss of perceptive and athletic function due to the severe nerve damage. To date, pieces of evidence detailing the precise pathological mechanisms in SCI are still unclear. Therefore, drug therapy cannot effectively alleviate the SCI symptoms and faces the limitations of systemic administration with large side effects. Thus, the development of SCI treatment strategies is urgent and valuable. Due to the application of nanotechnology in pharmaceutical research, nanopharmaceutical-based regenerative medicine will bring colossal development space for clinical medicine. These nanopharmaceuticals (i.e. nanocrystalline drugs and nanocarrier drugs) are designed using different types of materials or bioactive molecules, so as to improve the therapeutic effects, reduce side effects, and subtly deliver drugs, etc. Currently, an increasing number of nanopharmaceutical products have been approved by drug regulatory agencies, which has also prompted more researchers to focus on the potential treatment strategies of SCI. Therefore, the purpose of this review is to summarize and elaborate the research progress as well as the challenges and future of nanopharmaceuticals in the treatment of SCI, aiming to promote further research of nanopharmaceuticals in SCI.
Collapse
Affiliation(s)
- Chen Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P. R. China. and School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P. R. China.
| | - Chunchen Zhang
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, 310027, P. R. China and Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P. R. China.
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P. R. China.
| |
Collapse
|
13
|
Puhl DL, Funnell JL, Nelson DW, Gottipati MK, Gilbert RJ. Electrospun Fiber Scaffolds for Engineering Glial Cell Behavior to Promote Neural Regeneration. Bioengineering (Basel) 2020; 8:4. [PMID: 33383759 PMCID: PMC7823609 DOI: 10.3390/bioengineering8010004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Electrospinning is a fabrication technique used to produce nano- or micro- diameter fibers to generate biocompatible, biodegradable scaffolds for tissue engineering applications. Electrospun fiber scaffolds are advantageous for neural regeneration because they mimic the structure of the nervous system extracellular matrix and provide contact guidance for regenerating axons. Glia are non-neuronal regulatory cells that maintain homeostasis in the healthy nervous system and regulate regeneration in the injured nervous system. Electrospun fiber scaffolds offer a wide range of characteristics, such as fiber alignment, diameter, surface nanotopography, and surface chemistry that can be engineered to achieve a desired glial cell response to injury. Further, electrospun fibers can be loaded with drugs, nucleic acids, or proteins to provide the local, sustained release of such therapeutics to alter glial cell phenotype to better support regeneration. This review provides the first comprehensive overview of how electrospun fiber alignment, diameter, surface nanotopography, surface functionalization, and therapeutic delivery affect Schwann cells in the peripheral nervous system and astrocytes, oligodendrocytes, and microglia in the central nervous system both in vitro and in vivo. The information presented can be used to design and optimize electrospun fiber scaffolds to target glial cell response to mitigate nervous system injury and improve regeneration.
Collapse
Affiliation(s)
- Devan L. Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Jessica L. Funnell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Derek W. Nelson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Manoj K. Gottipati
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, USA
| | - Ryan J. Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| |
Collapse
|
14
|
Hierarchical porous silk fibroin/poly(L-lactic acid) fibrous membranes towards vascular scaffolds. Int J Biol Macromol 2020; 166:1111-1120. [PMID: 33159945 DOI: 10.1016/j.ijbiomac.2020.10.266] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 11/21/2022]
Abstract
Fibrous membranes played an important role to prepare tubular scaffolds for muscular artery regeneration. In this study, a strategy has been developed to combine silk fibroin (SF) with highly porous electrospun poly(L-lactic acid) (PLLA) fibrous membrane towards vascular scaffolds. After PLLA fibres were electrospun and collected, they were immersed into acetone to generate a porous structure with ultra-high surface area. While the pores on PLLA fibres were fulfilled with SF solution and dried, SF was coated uniformly and tightly on PLLA fibres. A multi-layer tubular structure of the tunica media was simulated by winding and stacking a strip of electrospun fibrous membrane. In vitro viability and morphology studies of A7r5 smooth muscle cells were undertaken for up to 14 days. Because the hydrophilicity of SF/PLLA composite fibres were improved dramatically, it had a positive effect on cell adhesion rate (97%) and proliferation (64.4%). Moreover, good cell morphology was observed via a multiphoton laser confocal microscope on SF/PLLA bioactive materials. These results demonstrated that the hierarchical porous SF/PLLA fibrous membranes are promising off-the-shelf scaffolds for muscular artery regeneration.
Collapse
|
15
|
Puhl DL, Funnell JL, D’Amato AR, Bao J, Zagorevski DV, Pressman Y, Morone D, Haggerty AE, Oudega M, Gilbert RJ. Aligned Fingolimod-Releasing Electrospun Fibers Increase Dorsal Root Ganglia Neurite Extension and Decrease Schwann Cell Expression of Promyelinating Factors. Front Bioeng Biotechnol 2020; 8:937. [PMID: 32923432 PMCID: PMC7456907 DOI: 10.3389/fbioe.2020.00937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/20/2020] [Indexed: 01/05/2023] Open
Abstract
Researchers are investigating the use of biomaterials with aligned guidance cues, like those provided by aligned electrospun fibers, to facilitate axonal growth across critical-length peripheral nerve defects. To enhance the regenerative outcomes further, these aligned fibers can be designed to provide local, sustained release of therapeutics. The drug fingolimod improved peripheral nerve regeneration in preclinical rodent models by stimulating a pro-regenerative Schwann cell phenotype and axonal growth. However, the systemic delivery of fingolimod for nerve repair can lead to adverse effects, so it is necessary to develop a means of providing sustained delivery of fingolimod local to the injury. Here we created aligned fingolimod-releasing electrospun fibers that provide directional guidance cues in combination with the local, sustained release of fingolimod to enhance neurite outgrowth and stimulate a pro-regenerative Schwann cell phenotype. Electrospun fiber scaffolds were created by blending fingolimod into poly(lactic-co-glycolic acid) (PLGA) at a w/w% (drug/polymer) of 0.0004, 0.02, or 0.04%. We examined the effectiveness of these scaffolds to stimulate neurite extension in vitro by measuring neurite outgrowth from whole and dissociated dorsal root ganglia (DRG). Subsequently, we characterized Schwann cell migration and gene expression in vitro. The results show that drug-loaded PLGA fibers released fingolimod for 28 days, which is the longest reported release of fingolimod from electrospun fibers. Furthermore, the 0.02% fingolimod-loaded fibers enhanced neurite outgrowth from whole and dissociated DRG neurons, increased Schwann cell migration, and reduced the Schwann cell expression of promyelinating factors. The in vitro findings show the potential of the aligned fingolimod-releasing electrospun fibers to enhance peripheral nerve regeneration and serve as a basis for future in vivo studies.
Collapse
Affiliation(s)
- Devan L. Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jessica L. Funnell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Anthony R. D’Amato
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jonathan Bao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Dmitri V. Zagorevski
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Yelena Pressman
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Daniel Morone
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Agnes E. Haggerty
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Martin Oudega
- Shirley Ryan AbilityLab, Chicago, IL, United States
- Department of Physical Therapy and Human Movement Sciences and Department of Physiology, Northwestern University, Chicago, IL, United States
- Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
- Edward Hines, Jr. VA Hospital, Hines, IL, United States
| | - Ryan J. Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
16
|
Pfister BJ, Grasman JM, Loverde JR. Exploiting biomechanics to direct the formation of nervous tissue. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2020.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|