1
|
Boanini E, Pagani S, Gazzano M, Rubini K, Raimondi L, De Luca A, Romanelli A, Giavaresi G, Bigi A. Mn 2+ vs Co 2+ substitution into β-TCP: Structural details and bone cells response. Colloids Surf B Biointerfaces 2024; 243:114154. [PMID: 39137528 DOI: 10.1016/j.colsurfb.2024.114154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
This work investigated the range of substitution of two biologically relevant ions, namely Mn2+ and Co2+, into the structure of β-tricalcium phosphate, as well as their influence on bone cells response. To this aim, β-TCP was synthesized by solid state reaction in the presence of increasing amount of the substituent ions. The results of the X-ray diffraction analysis reveal that just limited amounts of these ions can enter into the β-TCP structure: 15 at% and 20 at% for cobalt and manganese, respectively. Substitution provokes aggregation of the micrometric particles and reduction of the lattice constants. In particular, the dimension of the c-parameter exhibits a discontinuity at about 10 at% for both cations, although with different trend. Moreover, Rietveld refinement demonstrates a clear preference of both manganese and cobalt for the octahedral site (V). The influence of these ions on cell response was tested on osteoblast, osteoclast and endothelial cells. The results indicate that the presence of manganese promotes a good osteoblast viability, significantly enhances the expression of osteoblast key genes and the angiogenic process of endothelial cells, while inhibiting osteoclast resorption. At variance, osteoblast viability appears reduced in the presence of Co samples, on which osteoblast genes reach higher expression than on β-TCP just in a few cases. On the other hand, the results clearly show that cobalt significantly stimulates the angiogenic process and inhibits osteoclast resorption.
Collapse
Affiliation(s)
- Elisa Boanini
- Department of Chemistry ''Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Bologna 40126, Italy.
| | - Stefania Pagani
- CS-Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | | | - Katia Rubini
- Department of Chemistry ''Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Bologna 40126, Italy
| | - Lavinia Raimondi
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Angela De Luca
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Alessia Romanelli
- CS-Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Gianluca Giavaresi
- CS-Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Adriana Bigi
- Department of Chemistry ''Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Bologna 40126, Italy
| |
Collapse
|
2
|
Ghezzi D, Graziani G, Cappelletti M, Fadeeva IV, Montesissa M, Sassoni E, Borciani G, Barbaro K, Boi M, Baldini N, Rau JV. New strontium-based coatings show activity against pathogenic bacteria in spine infection. Front Bioeng Biotechnol 2024; 12:1347811. [PMID: 38665815 PMCID: PMC11044685 DOI: 10.3389/fbioe.2024.1347811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Infections of implants and prostheses represent relevant complications associated with the implantation of biomedical devices in spine surgery. Indeed, due to the length of the surgical procedures and the need to implant invasive devices, infections have high incidence, interfere with osseointegration, and are becoming increasingly difficult to threat with common therapies due to the acquisition of antibiotic resistance genes by pathogenic bacteria. The application of metal-substituted tricalcium phosphate coatings onto the biomedical devices is a promising strategy to simultaneously prevent bacterial infections and promote osseointegration/osseoinduction. Strontium-substituted tricalcium phosphate (Sr-TCP) is known to be an encouraging formulation with osseoinductive properties, but its antimicrobial potential is still unexplored. To this end, novel Sr-TCP coatings were manufactured by Ionized Jet Deposition technology and characterized for their physiochemical and morphological properties, cytotoxicity, and bioactivity against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P human pathogenic strains. The coatings are nanostructured, as they are composed by aggregates with diameters from 90 nm up to 1 μm, and their morphology depends significantly on the deposition time. The Sr-TCP coatings did not exhibit any cytotoxic effects on human cell lines and provided an inhibitory effect on the planktonic growth of E. coli and S. aureus strains after 8 h of incubation. Furthermore, bacterial adhesion (after 4 h of exposure) and biofilm formation (after 24 h of cell growth) were significantly reduced when the strains were cultured on Sr-TCP compared to tricalcium phosphate only coatings. On Sr-TCP coatings, E. coli and S. aureus cells lost their organization in a biofilm-like structure and showed morphological alterations due to the toxic effect of the metal. These results demonstrate the stability and anti-adhesion/antibiofilm properties of IJD-manufactured Sr-TCP coatings, which represent potential candidates for future applications to prevent prostheses infections and to promote osteointegration/osteoinduction.
Collapse
Affiliation(s)
- Daniele Ghezzi
- University of Bologna, Department of Pharmacy and Biotechnology, Bologna, Italy
| | - Gabriela Graziani
- IRCCS Istituto Ortopedico Rizzoli, Biomedical Science and Technologies and Nanobiotechnology Lab, Bologna, Italy
| | - Martina Cappelletti
- University of Bologna, Department of Pharmacy and Biotechnology, Bologna, Italy
| | - Inna V. Fadeeva
- AA Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia
| | - Matteo Montesissa
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy
| | - Enrico Sassoni
- University of Bologna, Department of Civil, Chemical, Environmental and Materials Engineering, Bologna, Italy
| | - Giorgia Borciani
- IRCCS Istituto Ortopedico Rizzoli, Biomedical Science and Technologies and Nanobiotechnology Lab, Bologna, Italy
| | | | - Marco Boi
- IRCCS Istituto Ortopedico Rizzoli, Biomedical Science and Technologies and Nanobiotechnology Lab, Bologna, Italy
| | - Nicola Baldini
- IRCCS Istituto Ortopedico Rizzoli, Biomedical Science and Technologies and Nanobiotechnology Lab, Bologna, Italy
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Rome, Italy
| |
Collapse
|
3
|
Sivakumar PM, Yetisgin AA, Demir E, Sahin SB, Cetinel S. Polysaccharide-bioceramic composites for bone tissue engineering: A review. Int J Biol Macromol 2023; 250:126237. [PMID: 37567538 DOI: 10.1016/j.ijbiomac.2023.126237] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Limitations associated with conventional bone substitutes such as autografts, increasing demand for bone grafts, and growing elderly population worldwide necessitate development of unique materials as bone graft substitutes. Bone tissue engineering (BTE) would ensure therapy advancement, efficiency, and cost-effective treatment modalities of bone defects. One way of engineering bone tissue scaffolds by mimicking natural bone tissue composed of organic and inorganic phases is to utilize polysaccharide-bioceramic hybrid composites. Polysaccharides are abundant in nature, and present in human body. Biominerals, like hydroxyapatite are present in natural bone and some of them possess osteoconductive and osteoinductive properties. Ion doped bioceramics could substitute protein-based biosignal molecules to achieve osteogenesis, vasculogenesis, angiogenesis, and stress shielding. This review is a systemic summary on properties, advantages, and limitations of polysaccharide-bioceramic/ion doped bioceramic composites along with their recent advancements in BTE.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Istanbul 34956, Turkey
| | - Ebru Demir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sevilay Burcu Sahin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey.
| |
Collapse
|
4
|
Sahadat Hossain M, Shaikh MAA, Uddin MN, Bashar MS, Ahmed S. β-tricalcium phosphate synthesized in organic medium for controlled release drug delivery application in bio-scaffolds. RSC Adv 2023; 13:26435-26444. [PMID: 37674484 PMCID: PMC10477827 DOI: 10.1039/d3ra04904c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
β-tricalcium phosphate (β-TCP) was synthesized in an organic medium (acetone) to obtain a single-phase product while calcium carbonate (CaCO3) and ortho-phosphoric acid (H3PO4) were the sources of Ca, and P, respectively. The synthesized β-TCP was characterized by employing a number of sophisticated techniques vis. XRD, FTIR, FESEM, VSM and UV-Vis-NIR spectrometry. On the other hand, cytotoxicity, hemolysis, and antimicrobial activity for Gram-negative as well as Gram-positive (E. coli and S. aureus) bacteria were explored using this synthesized sample in powder format. However, to assess the drug loading and releasing profile, these powdered samples were first compressed into disks followed by sintering at 900 °C. Prior to loading the drug, porosity, density, and water absorbance characteristics of the scaffolds were examined in deionized water. Both loading and releasing profiles of the antibiotic (ciprofloxacin) were looked over at various selected time intervals which were continued up to 28 days. The observed results revealed that 2.87% of ciprofloxacin was loaded while 37% of this loaded drug was released within the selected time frame as set in this study. The scaffold was also immersed in SBF solution maintaining identical interim periods for the bioactivity evaluation. Furthermore, all three types of samples (e.g. drug-loaded, drug-released, and SBF-soaked) were characterized by FESEM and EDX while antimicrobial activity (against E. coli, S. typhi, and S. aureus) and efficacy to prevent hemolysis were also investigated. The drug-loaded scaffold presented a larger inhibition zone than the standard for all three types of microbes. Although powdered β-TCP was inactive in killing the Gram-negative bacteria, surprisingly the drug-released scaffold showed an inhibition zone.
Collapse
Affiliation(s)
- Md Sahadat Hossain
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Md Aftab Ali Shaikh
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
- Department of Chemistry, University of Dhaka Dhaka 1000 Bangladesh
| | - Md Najem Uddin
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Muhammad Shahriar Bashar
- Institute of Fuel Research & Development, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Samina Ahmed
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| |
Collapse
|
5
|
Forysenkova AA, Fadeeva IV, Deyneko DV, Gosteva AN, Mamin GV, Shurtakova DV, Davydova GA, Yankova VG, Antoniac IV, Rau JV. Polyvinylpyrrolidone-Alginate-Carbonate Hydroxyapatite Porous Composites for Dental Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4478. [PMID: 37374661 DOI: 10.3390/ma16124478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
An alternative approach for the currently used replacement therapy in dentistry is to apply materials that restore tooth tissue. Among them, composites, based on biopolymers with calcium phosphates, and cells can be applied. In the present work, a composite based on polyvinylpyrrolidone (PVP) and alginate (Alg) with carbonate hydroxyapatite (CHA) was prepared and characterized. The composite was investigated by X-ray diffraction, infrared spectroscopy, electron paramagnetic resonance (EPR) and scanning electron microscopy methods, and the microstructure, porosity, and swelling properties of the material were described. In vitro studies included the MTT test using mouse fibroblasts, and adhesion and survivability tests with human dental pulp stem cells (DPSC). The mineral component of the composite corresponded to CHA with an admixture of amorphous calcium phosphate. The presence of a bond between the polymer matrix and CHA particles was shown by EPR. The structure of the material was represented by micro- (30-190 μm) and nano-pores (average 8.71 ± 4.15 nm). The swelling measurements attested that CHA addition increased the polymer matrix hydrophilicity by 200%. In vitro studies demonstrated the biocompatibility of PVP-Alg-CHA (95 ± 5% cell viability), and DPSC located inside the pores. It was concluded that the PVP-Alg-CHA porous composite is promising for dentistry applications.
Collapse
Affiliation(s)
- Anna A Forysenkova
- A.A. Baikov Institute of Metallurgy and Material Science RAS, Leninsky, 49, 119334 Moscow, Russia
| | - Inna V Fadeeva
- A.A. Baikov Institute of Metallurgy and Material Science RAS, Leninsky, 49, 119334 Moscow, Russia
| | - Dina V Deyneko
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre RAS, 14 Fersman Str., 184209 Apatity, Russia
| | - Alevtina N Gosteva
- Tananaev Institute of Chemistry, Kola Science Centre RAS, Akademgorodok 26A, 184209 Apatity, Russia
| | - Georgy V Mamin
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Darya V Shurtakova
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Galina A Davydova
- Institute of Theoretical and Experimental Biophysics of RAS, Institutskaya 3, Puschino, 142290 Moscow, Russia
| | - Viktoriya G Yankova
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119991 Moscow, Russia
| | - Iulian V Antoniac
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Julietta V Rau
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119991 Moscow, Russia
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100, 00133 Rome, Italy
| |
Collapse
|
6
|
Fosca M, Streza A, Antoniac IV, Vadalà G, Rau JV. Ion-Doped Calcium Phosphate-Based Coatings with Antibacterial Properties. J Funct Biomater 2023; 14:jfb14050250. [PMID: 37233360 DOI: 10.3390/jfb14050250] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Ion-substituted calcium phosphate (CP) coatings have been extensively studied as promising materials for biomedical implants due to their ability to enhance biocompatibility, osteoconductivity, and bone formation. This systematic review aims to provide a comprehensive analysis of the current state of the art in ion-doped CP-based coatings for orthopaedic and dental implant applications. Specifically, this review evaluates the effects of ion addition on the physicochemical, mechanical, and biological properties of CP coatings. The review also identifies the contribution and additional effects (in a separate or a synergistic way) of different components used together with ion-doped CP for advanced composite coatings. In the final part, the effects of antibacterial coatings on specific bacteria strains are reported. The present review could be of interest to researchers, clinicians, and industry professionals involved in the development and application of CP coatings for orthopaedic and dental implants.
Collapse
Affiliation(s)
- Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Alexandru Streza
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
| | - Iulian V Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Gianluca Vadalà
- Laboratory of Regenerative Orthopaedics, Research Unit of Orthopaedic, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Operative Research Unit of Orthopaedics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
7
|
Fadeeva IV, Deyneko DV, Knotko AV, Olkhov AA, Slukin PV, Davydova GA, Trubitsyna TA, Preobrazhenskiy II, Gosteva AN, Antoniac IV, Rau JV. Antibacterial Composite Material Based on Polyhydroxybutyrate and Zn-Doped Brushite Cement. Polymers (Basel) 2023; 15:polym15092106. [PMID: 37177252 PMCID: PMC10181370 DOI: 10.3390/polym15092106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
A composite material based on electrospinning printed polyhydroxybutyrate fibers impregnated with brushite cement containing Zn substitution was developed for bone implant applications. Powder X-ray Diffraction (PXRD), Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy were applied for materials characterization. Soaking the composite in Ringer's solution led to the transformation of brushite into apatite phase, accompanied by the morphology changes of the material. The bending strength of the composite material was measured to be 3.1 ± 0.5 MPa. NCTC mouse fibroblast cells were used to demonstrate by means of the MTT test that the developed material was not cytotoxic. The behavior of the human dental pulp stem cells on the surface of the composite material investigated by the direct contact method was similar to the control. It was found that the developed Zn containing composite material possessed antibacterial properties, as testified by microbiology investigations against bacteria strains of Escherichia coli and Staphylococcus aureus. Thus, the developed composite material is promising for the treatment of damaged tissues with bacterial infection complications.
Collapse
Affiliation(s)
- Inna V Fadeeva
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Leninsky Prospect 49, 119334 Moscow, Russia
| | - Dina V Deyneko
- Chemistry Department, Lomonosov Moscow State University, Vorobievy Gory 1, 119991 Moscow, Russia
- Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre, Russian Academy of Sciences, 14 Fersman Str., 184209 Apatity, Russia
| | - Alexander V Knotko
- Chemistry Department, Lomonosov Moscow State University, Vorobievy Gory 1, 119991 Moscow, Russia
| | - Anatoly A Olkhov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Building 1, 119991 Moscow, Russia
- Plekhanov Russian University of Economics, Stremyanny Lane 36, 117997 Moscow, Russia
| | - Pavel V Slukin
- State Scientific Center of Applied Microbiology and Biotechnology of Rospotrebnadzor 24, Block A, 142279 Obolensk, Russia
| | - Galina A Davydova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Moscow, Russia
| | - Taisiia A Trubitsyna
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Moscow, Russia
| | - Ilya I Preobrazhenskiy
- Materials Science Department, Lomonosov Moscow State University, Vorobievy Gory 1, 119991 Moscow, Russia
| | - Alevtina N Gosteva
- Kola Science Centre RAS, Tananaev Institute of Chemistry, Akademgorodok District 26A, 184209 Apatity, Russia
| | - Iulian V Antoniac
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, ISM-CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
8
|
Cassari L, Brun P, Di Foggia M, Taddei P, Zamuner A, Pasquato A, De Stefanis A, Valentini V, Saceleanu VM, Rau JV, Dettin M. Mn-Containing Bioactive Glass-Ceramics: BMP-2-Mimetic Peptide Covalent Grafting Boosts Human-Osteoblast Proliferation and Mineral Deposition. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4647. [PMID: 35806763 PMCID: PMC9267458 DOI: 10.3390/ma15134647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022]
Abstract
The addition of Mn in bioceramic formulation is gaining interest in the field of bone implants. Mn activates human osteoblast (h-osteoblast) integrins, enhancing cell proliferation with a dose-dependent effect, whereas Mn-enriched glasses induce inhibition of Gram-negative or Gram-positive bacteria and fungi. In an effort to further optimize Mn-containing scaffolds' beneficial interaction with h-osteoblasts, a selective and specific covalent functionalization with a bioactive peptide was carried out. The anchoring of a peptide, mapped on the BMP-2 wrist epitope, to the scaffold was performed by a reaction between an aldehyde group of the peptide and the aminic groups of silanized Mn-containing bioceramic. SEM-EDX, FT-IR, and Raman studies confirmed the presence of the peptide grafted onto the scaffold. In in vitro assays, a significant improvement in h-osteoblast proliferation, gene expression, and calcium salt deposition after 7 days was detected in the functionalized Mn-containing bioceramic compared to the controls.
Collapse
Affiliation(s)
- Leonardo Cassari
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (L.C.); (A.Z.); (A.P.)
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Via Gabelli, 63, 35121 Padova, Italy;
| | - Michele Di Foggia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (M.D.F.); (P.T.)
| | - Paola Taddei
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (M.D.F.); (P.T.)
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (L.C.); (A.Z.); (A.P.)
| | - Antonella Pasquato
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (L.C.); (A.Z.); (A.P.)
| | - Adriana De Stefanis
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Montelibretti Unit, Via Salaria km 29.300, Monterotondo, 00015 Rome, Italy; (A.D.S.); (V.V.)
| | - Veronica Valentini
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Montelibretti Unit, Via Salaria km 29.300, Monterotondo, 00015 Rome, Italy; (A.D.S.); (V.V.)
| | | | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100, 00133 Rome, Italy;
- Department of Analytical, Physical and Colloid Chemistry, Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119991 Moscow, Russia
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (L.C.); (A.Z.); (A.P.)
| |
Collapse
|
9
|
Synthesis, structural and luminescent properties of Mn-doped calcium pyrophosphate (Ca 2P 2O 7) polymorphs. Sci Rep 2022; 12:7116. [PMID: 35504944 PMCID: PMC9065112 DOI: 10.1038/s41598-022-11337-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022] Open
Abstract
In the present work, three different Mn2+-doped calcium pyrophosphate (CPP, Ca2P2O7) polymorphs were synthesized by wet co-precipitation method followed by annealing at different temperatures. The crystal structure and purity were studied by powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR), solid-state nuclear magnetic resonance (SS-NMR), and electron paramagnetic resonance (EPR) spectroscopies. Scanning electron microscopy (SEM) was used to investigate the morphological features of the synthesized products. Optical properties were investigated using photoluminescence measurements. Excitation spectra, emission spectra, and photoluminescence decay curves of the samples were studied. All Mn-doped polymorphs exhibited a broadband emission ranging from approximately 500 to 730 nm. The emission maximum was host-dependent and centered at around 580, 570, and 595 nm for γ-, β-, and α-CPP, respectively.
Collapse
|
10
|
Influence of Synthesis Conditions on Gadolinium-Substituted Tricalcium Phosphate Ceramics and Its Physicochemical, Biological, and Antibacterial Properties. NANOMATERIALS 2022; 12:nano12050852. [PMID: 35269340 PMCID: PMC8912835 DOI: 10.3390/nano12050852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023]
Abstract
Gadolinium-containing calcium phosphates are promising contrast agents for various bioimaging modalities. Gadolinium-substituted tricalcium phosphate (TCP) powders with 0.51 wt% of gadolinium (0.01Gd-TCP) and 5.06 wt% of (0.1Gd-TCP) were synthesized by two methods: precipitation from aqueous solutions of salts (1) (Gd-TCP-pc) and mechano-chemical activation (2) (Gd-TCP-ma). The phase composition of the product depends on the synthesis method. The product of synthesis (1) was composed of β-TCP (main phase, 96%), apatite/chlorapatite (2%), and calcium pyrophosphate (2%), after heat treatment at 900 °C. The product of synthesis (2) was represented by β-TCP (main phase, 73%), apatite/chlorapatite (20%), and calcium pyrophosphate (7%), after heat treatment at 900 °C. The substitution of Ca2+ ions by Gd3+ in both β-TCP (main phase) and apatite (admixture) phases was proved by the electron paramagnetic resonance technique. The thermal stability and specific surface area of the Gd-TCP powders synthesized by two methods were significantly different. The method of synthesis also influenced the size and morphology of the prepared Gd-TCP powders. In the case of synthesis route (1), powders with particle sizes of tens of nanometers were obtained, while in the case of synthesis (2), the particle size was hundreds of nanometers, as revealed by transmission electron microscopy. The Gd-TCP ceramics microstructure investigated by scanning electron microscopy was different depending on the synthesis route. In the case of (1), ceramics with grains of 1–50 μm, pore sizes of 1–10 µm, and a bending strength of about 30 MPa were obtained; in the case of (2), the ceramics grain size was 0.4–1.4 μm, the pore size was 2 µm, and a bending strength of about 39 MPa was prepared. The antimicrobial activity of powders was tested for four bacteria (S. aureus, E. coli, S. typhimurium, and E. faecalis) and one fungus (C. albicans), and there was roughly 30% of inhibition of the micro-organism’s growth. The metabolic activity of the NCTC L929 cell and viability of the human dental pulp stem cell study demonstrated the absence of toxic effects for all the prepared ceramic materials doped with Gd ions, with no difference for the synthesis route.
Collapse
|
11
|
Fadeeva IV, Trofimchuk ES, Forysenkova AA, Ahmed AI, Gnezdilov OI, Davydova GA, Kozlova SG, Antoniac A, Rau JV. Composite Polyvinylpyrrolidone-Sodium Alginate-Hydroxyapatite Hydrogel Films for Bone Repair and Wound Dressings Applications. Polymers (Basel) 2021; 13:polym13223989. [PMID: 34833286 PMCID: PMC8621946 DOI: 10.3390/polym13223989] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Today, the synthesis of biocompatible and bioresorbable composite materials such as “polymer matrix-mineral constituent,” which stimulate the natural growth of living tissues and the restoration of damaged parts of the body, is one of the challenging problems in regenerative medicine. In this study, composite films of bioresorbable polymers of polyvinylpyrrolidone (PVP) and sodium alginate (SA) with hydroxyapatite (HA) were obtained. HA was introduced by two different methods. In one of them, it was synthesized in situ in a solution of polymer mixture, and in another one, it was added ex situ. Phase composition, microstructure, swelling properties and biocompatibility of films were investigated. The crosslinked composite PVP-SA-HA films exhibit hydrogel swelling characteristics, increasing three times in mass after immersion in a saline solution. It was found that composite PVP-SA-HA hydrogel films containing HA synthesized in situ exhibited acute cytotoxicity, associated with the presence of HA synthesis reaction byproducts—ammonia and ammonium nitrate. On the other hand, the films with HA added ex situ promoted the viability of dental pulp stem cells compared to the films containing only a polymer PVP-SA blend. The developed composite hydrogel films are recommended for such applications, such as membranes in osteoplastic surgery and wound dressing.
Collapse
Affiliation(s)
- Inna V. Fadeeva
- Baikov Institute of Metallurgy and Material Science RAS, Leninsky, 49, 119334 Moscow, Russia;
- Correspondence: (I.V.F.); (J.V.R.)
| | - Elena S. Trofimchuk
- Department of High-Molecular Compounds, Lomonosov Moscow State University, GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia;
| | - Anna A. Forysenkova
- Baikov Institute of Metallurgy and Material Science RAS, Leninsky, 49, 119334 Moscow, Russia;
| | - Abdulrahman I. Ahmed
- Department of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia; (A.I.A.); (O.I.G.)
- Department of Physics, University of Al-Hamadaniya, Mosul 41001, Iraq
| | - Oleg I. Gnezdilov
- Department of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia; (A.I.A.); (O.I.G.)
| | - Galina A. Davydova
- Institute of Theoretical and Experimental Biophysics of RAS, Institutskaya 3, 142290 Pushchino, Moscow reg., Russia;
- National Medical Research Center of Obstetrics, Gynecology and Perinatology, Academician Oparin Str., 117997 Moscow, Russia
| | - Svetlana G. Kozlova
- Department of Natural Science, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia;
| | - Aurora Antoniac
- Department of Metallic Materials Science and Physical Metallurgy, University Politehnica of Bucharest, Street Splaiul Independentei, 060042 Bucharest, Romania;
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 00133 Rome, Italy
- Department of Analytical, Physical and Colloid Chemistry, I.M. Sechenov First Moscow State Medical University, Trubetskaya Street, Build. 8/2, 119991 Moscow, Russia
- Correspondence: (I.V.F.); (J.V.R.)
| |
Collapse
|
12
|
Murzakhanov F, Mamin GV, Orlinskii S, Goldberg M, Petrakova NV, Fedotov AY, Grishin P, Gafurov MR, Komlev VS. Study of Electron-Nuclear Interactions in Doped Calcium Phosphates by Various Pulsed EPR Spectroscopy Techniques. ACS OMEGA 2021; 6:25338-25349. [PMID: 34632192 PMCID: PMC8495714 DOI: 10.1021/acsomega.1c03238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 05/08/2023]
Abstract
Substituted calcium phosphates (CaPs) are vital materials for the treatment of bone diseases and repairing and replacement of defects in human hard tissues. In this paper, we present some applications of the rarely used pulsed electron paramagnetic resonance (EPR) and hyperfine interaction spectroscopy approaches [namely, electron spin-echo envelope modulation (ESEEM) and electron-electron double-resonance detected nuclear magnetic resonance (EDNMR)] to investigate synthetic CaPs (hydroxyapatite, tricalcium, and octacalcium phosphate) doped with various cations (Li+, Na+, Mn2+, Cu2+, Fe3+, and Ba2+). These resonance techniques provide reliable tools to obtain unique information about the presence and localization of impurity centers and values of hyperfine and quadrupole tensors. We show that revealed in CaPs by EPR techniques, radiation-induced stable nitrogen-containing species and carbonate radicals can serve as sensitive paramagnetic probes to follow CaPs' structural changes caused by cation doping. The most pulsed EPR, ESEEM, and EDNMR spectra can be detected at room temperature, reducing the costs of the measurements and facilitating the usage of pulsed EPR techniques for CaP characterization.
Collapse
Affiliation(s)
- Fadis Murzakhanov
- Kazan
Federal University, 18
Kremlevskaya Str., Kazan 420008, Russian Federation
| | | | - Sergei Orlinskii
- Kazan
Federal University, 18
Kremlevskaya Str., Kazan 420008, Russian Federation
| | - Margarita Goldberg
- A.A.
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, Moscow 119334, Russian Federation
| | - Nataliya V. Petrakova
- A.A.
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, Moscow 119334, Russian Federation
| | - Alexander Y. Fedotov
- A.A.
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, Moscow 119334, Russian Federation
| | - Peter Grishin
- Kazan
State Medical University, 49 Butlerova Str., Kazan 420012, Russian Federation
| | - Marat R. Gafurov
- Kazan
Federal University, 18
Kremlevskaya Str., Kazan 420008, Russian Federation
| | - Vladimir S. Komlev
- A.A.
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, Moscow 119334, Russian Federation
| |
Collapse
|
13
|
Fadeeva IV, Lazoryak BI, Davidova GA, Murzakhanov FF, Gabbasov BF, Petrakova NV, Fosca M, Barinov SM, Vadalà G, Uskoković V, Zheng Y, Rau JV. Antibacterial and cell-friendly copper-substituted tricalcium phosphate ceramics for biomedical implant applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112410. [PMID: 34579919 DOI: 10.1016/j.msec.2021.112410] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022]
Abstract
The development of new materials with antibacterial properties and the scope to decrease or eliminate the excessive antibiotic use is an urgent priority due to the growing antibiotic resistance-related mortalities. New bone substitute materials with intrinsic antibacterial characteristics are highly requested for various clinical applications. In this study, the choice of copper ions as substitutes for calcium in tricalcium phosphate (TCP) has been justified by their pronounced broad-spectrum antibacterial properties. Copper-substituted TCP (Cu-TCP) ceramics with the copper content of 1.4 and 0.1 wt% were synthesized by mechano-chemical activation. X-ray diffraction (XRD) analyses established that both pure and copper-containing compounds adopted the structure of whitlockite (β-TCP). XRD and electron paramagnetic resonance (EPR) spectroscopy revealed the partial isovalent substitution of calcium ions with copper ions in the β-TCP lattice. With the use of infrared and EPR spectroscopies, it was detected that carbonate ions got incorporated into the β-TCP structure during the synthesis procedure. By releasing the tension in the M(5)O6 octahedron consequential to the lower CaO bond length than the corresponding sum of ionic radii, the substitution of calcium with smaller copper ions stabilizes the structure of β-TCP. As concluded form the thermal analyses, the introduction of Cu prevented the polymorphic transformation of β- to α-TCP. At the same time, the introduction of Cu to the β-TCP structure enhanced the crystal growth and porosity of the ceramics, which had a positive effect on the cytocompatibility of the material. The MTT colorimetric assay showed that the metabolic activity of the mouse fibroblast NCTC L929 cell line during 24 h of incubation with 3-day extracts from Cu-TCP (1.4 wt%) and β-TCP pellets in the cell culture medium was similar to the negative control, indicating the absence of any inhibitory effects on cells. The seeding and the growth of human dental pulp stem cells on the surface of Cu-TCP (1.4 wt%) and β-TCP ceramics also showed the absence of any signs of cytotoxicity. Finally, microbiological assays demonstrated the antibacterial activity of Cu-TCP ceramics against Escherichia coli and Salmonella enteritidis, whereas β-TCP did not exhibit such an activity. Overall, the addition of Cu ions to β-TCP improves its antibacterial properties without diminishing the biocompatibility of the material, thus making it more attractive than pure β-TCP for clinical applications such as synthetic bone grafts and orthopaedic implant coatings.
Collapse
Affiliation(s)
- Inna V Fadeeva
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Leninsky prospect 49, 119334 Moscow, Russia.
| | - Bogdan I Lazoryak
- M.V. Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 119991 Moscow, Russia
| | - Galina A Davidova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Puschino, 142290, Moscow region, Russia
| | | | | | - Natalya V Petrakova
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Leninsky prospect 49, 119334 Moscow, Russia
| | - Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Sergey M Barinov
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Leninsky prospect 49, 119334 Moscow, Russia
| | - Gianluca Vadalà
- Laboratory for Regenerative Orthopaedics, Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, Irvine, CA 92604, USA; Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy; Sechenov First Moscow State Medical University, Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, Trubetskaya 8, build. 2, 119991 Moscow, Russia.
| |
Collapse
|
14
|
Using DFT to Calculate the Parameters of the Crystal Field in Mn2+ Doped Hydroxyapatite Crystals. CRYSTALS 2021. [DOI: 10.3390/cryst11091050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Crystal field parameters for two nonequivalent positions Ca (I) and Ca (II) for hydroxyapatite (HAp) crystals from the density functional theory (DFT) are calculated. Calculations are compared with the experimental electron paramagnetic resonance (EPR) spectra (registered at two microwave frequencies) for the synthesized Mn-HAp powders Ca9.995Mn0.005(PO4)6(OH)2. It is found that in the investigated species, the manganese is redistributed between both calcium sites with prevalence in Ca (I). Agreement between the calculated and experimental data proves that crystal field parameters in HAp can be calculated in the classical DFT model using the distributed electron density.
Collapse
|
15
|
Mocanu AC, Miculescu F, Stan GE, Pandele AM, Pop MA, Ciocoiu RC, Voicu ȘI, Ciocan LT. Fiber-Templated 3D Calcium-Phosphate Scaffolds for Biomedical Applications: The Role of the Thermal Treatment Ambient on Physico-Chemical Properties. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2198. [PMID: 33922963 PMCID: PMC8123353 DOI: 10.3390/ma14092198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 01/12/2023]
Abstract
A successful bone-graft-controlled healing entails the development of novel products with tunable compositional and architectural features and mechanical performances and is, thereby, able to accommodate fast bone in-growth and remodeling. To this effect, graphene nanoplatelets and Luffa-fibers were chosen as mechanical reinforcement phase and sacrificial template, respectively, and incorporated into a hydroxyapatite and brushite matrix derived by marble conversion with the help of a reproducible technology. The bio-products, framed by a one-stage-addition polymer-free fabrication route, were thoroughly physico-chemically investigated (by XRD, FTIR spectroscopy, SEM, and nano-computed tomography analysis, as well as surface energy measurements and mechanical performance assessments) after sintering in air or nitrogen ambient. The experiments exposed that the coupling of a nitrogen ambient with the graphene admixing triggers, in both compact and porous samples, important structural (i.e., decomposition of β-Ca3(PO4)2 into α-Ca3(PO4)2 and α-Ca2P2O7) and morphological modifications. Certain restrictions and benefits were outlined with respect to the spatial porosity and global mechanical features of the derived bone scaffolds. Specifically, in nitrogen ambient, the graphene amount should be set to a maximum 0.25 wt.% in the case of compact products, while for the porous ones, significantly augmented compressive strengths were revealed at all graphene amounts. The sintering ambient or the graphene addition did not interfere with the Luffa ability to generate 3D-channels-arrays at high temperatures. It can be concluded that both Luffa and graphene agents act as adjuvants under nitrogen ambient, and that their incorporation-ratio can be modulated to favorably fit certain foreseeable biomedical applications.
Collapse
Affiliation(s)
- Aura-Cătălina Mocanu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, RO-060042 Bucharest, Romania; (A.-C.M.); (R.C.C.)
| | - Florin Miculescu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, RO-060042 Bucharest, Romania; (A.-C.M.); (R.C.C.)
| | - George E. Stan
- National Institute of Materials Physics, 405A Atomistilor Street, RO-077125 Măgurele, Romania;
| | - Andreea-Mădălina Pandele
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1-7 Gh. Polizu, RO-011061 Bucharest, Romania; (A.-M.P.); (Ş.I.V.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu, RO-011061 Bucharest, Romania
| | - Mihai Alin Pop
- Department of Materials Science, Faculty of Materials Science and Engineering, ICDT, University Transilvania of Brasov, 10 Institutului, RO-500484 Brasov, Romania;
| | - Robert Cătălin Ciocoiu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, RO-060042 Bucharest, Romania; (A.-C.M.); (R.C.C.)
| | - Ștefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1-7 Gh. Polizu, RO-011061 Bucharest, Romania; (A.-M.P.); (Ş.I.V.)
| | - Lucian-Toma Ciocan
- Prosthetics Technology and Dental Materials Department, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, RO-020022 Bucharest, Romania;
| |
Collapse
|
16
|
Murzakhanov FF, Mamin GV, Goldberg MA, Knotko AV, Gafurov MR, Orlinskii SB. EPR of Radiation-Induced Nitrogen Centers in Hydroxyapatite: New Approaches to the Study of Electron-Nuclear Interactions. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420110044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Fadeeva IV, Kalita VI, Komlev DI, Radiuk AA, Fomin AS, Davidova GA, Fursova NK, Murzakhanov FF, Gafurov MR, Fosca M, Antoniac IV, Barinov SM, Rau JV. In Vitro Properties of Manganese-Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4411. [PMID: 33022953 PMCID: PMC7579245 DOI: 10.3390/ma13194411] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022]
Abstract
Bioactive manganese (Mn)-doped ceramic coatings for intraosseous titanium (Ti) implants are developed. Arc plasma deposition procedure is used for coatings preparation. X-ray Diffraction, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, and Electron Paramagnetic Resonance (EPR) methods are applied for coatings characterization. The coatings are homogeneous, composed of the main phase α-tricalcium phosphate (α-TCP) (about 67%) and the minor phase hydroxyapatite (about 33%), and the Mn content is 2.3 wt%. EPR spectroscopy demonstrates that the Mn ions are incorporated in the TCP structure and are present in the coating in Mn2+ and Mn3+ oxidation states, being aggregated in clusters. The wetting contact angle of the deposited coatings is suitable for cells' adhesion and proliferation. In vitro soaking in physiological solution for 90 days leads to a drastic change in phase composition; the transformation into calcium carbonate and octacalcium phosphate takes place, and no more Mn is present. The absence of antibacterial activity against Escherichia coli, Enterococcus faecalis, and Pseudomonas aeruginosa bacteria strains is observed. A study of the metabolic activity of mouse fibroblasts of the NCTC L929 cell line on the coatings using the MTT (dye compound 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test demonstrates that there is no toxic effect on the cell culture. Moreover, the coating material supports the adhesion and proliferation of the cells. A good adhesion, spreading, and proliferative activity of the human tooth postnatal dental pulp stem cells (DPSC) is demonstrated. The developed coatings are promising for implant application in orthopedics and dentistry.
Collapse
Affiliation(s)
- Inna V. Fadeeva
- A.A. Baikov Institute of Metallurgy and Material Science Russian Academy of Sciences, Leninsky, 49, 119334 Moscow, Russian; (I.V.F.); (V.I.K.); (D.I.K.); (A.A.R.); (A.S.F.); (S.M.B.)
| | - Vasilii I. Kalita
- A.A. Baikov Institute of Metallurgy and Material Science Russian Academy of Sciences, Leninsky, 49, 119334 Moscow, Russian; (I.V.F.); (V.I.K.); (D.I.K.); (A.A.R.); (A.S.F.); (S.M.B.)
| | - Dmitry I. Komlev
- A.A. Baikov Institute of Metallurgy and Material Science Russian Academy of Sciences, Leninsky, 49, 119334 Moscow, Russian; (I.V.F.); (V.I.K.); (D.I.K.); (A.A.R.); (A.S.F.); (S.M.B.)
| | - Alexei A. Radiuk
- A.A. Baikov Institute of Metallurgy and Material Science Russian Academy of Sciences, Leninsky, 49, 119334 Moscow, Russian; (I.V.F.); (V.I.K.); (D.I.K.); (A.A.R.); (A.S.F.); (S.M.B.)
| | - Alexander S. Fomin
- A.A. Baikov Institute of Metallurgy and Material Science Russian Academy of Sciences, Leninsky, 49, 119334 Moscow, Russian; (I.V.F.); (V.I.K.); (D.I.K.); (A.A.R.); (A.S.F.); (S.M.B.)
| | - Galina A. Davidova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Institutskaya 3, Puschino, 142290 Moscow, Russian;
| | - Nadezhda K. Fursova
- Federal Budget Institution of Science State Scientific Center of Applied Microbiology and Biotechnology, 24 block A, Obolensk, Serpukhov, 142279 Moscow, Russian;
| | - Fadis F. Murzakhanov
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russian; (F.F.M.); (M.R.G.)
| | - Marat R. Gafurov
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russian; (F.F.M.); (M.R.G.)
| | - Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
| | - Iulian V. Antoniac
- Faculty of Materials Science and Engineering, Politehnica University of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania;
| | - Sergey M. Barinov
- A.A. Baikov Institute of Metallurgy and Material Science Russian Academy of Sciences, Leninsky, 49, 119334 Moscow, Russian; (I.V.F.); (V.I.K.); (D.I.K.); (A.A.R.); (A.S.F.); (S.M.B.)
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119991 Moscow, Russian
| |
Collapse
|
18
|
Bohner M, Santoni BLG, Döbelin N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater 2020; 113:23-41. [PMID: 32565369 DOI: 10.1016/j.actbio.2020.06.022] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022]
Abstract
β-tricalcium phosphate (β-TCP) is one the most used and potent synthetic bone graft substitute. It is not only osteoconductive, but also osteoinductive. These properties, combined with its cell-mediated resorption, allow full bone defects regeneration. Its clinical outcome is sometimes considered to be "unpredictable", possibly due to a poor understanding of β-TCP physico-chemical properties: β-TCP crystallographic structure is not fully uncovered; recent results suggest that sintered β-TCP is coated with a Ca-rich alkaline phase; β-TCP apatite-forming ability and osteoinductivity may be enhanced by a hydrothermal treatment; β-TCP grain size and porosity are strongly modified by the presence of minute amounts of β-calcium pyrophosphate or hydroxyapatite impurities. The aim of the present article is to provide a critical, but still rather comprehensive review of the current state of knowledge on β-TCP, with a strong focus on its synthesis and physico-chemical properties, and their link to the in vivo response. STATEMENT OF SIGNIFICANCE: The present review documents the richness, breadth, and interest of the research devoted to β-tricalcium phosphate (β-TCP). β-TCP is synthetic, osteoconductive, osteoinductive, and its resorption is cell-mediated, thus making it one of the most potent bone graft substitutes. This comprehensive review reveals that there are a number of aspects, such as surface chemistry, crystallography, or stoichiometry deviations, that are still poorly understood. As such, β-TCP is still an exciting scientific playground despite a 50 year long history and > 200 yearly publications.
Collapse
|
19
|
Ghiasi B, Sefidbakht Y, Mozaffari-Jovin S, Gharehcheloo B, Mehrarya M, Khodadadi A, Rezaei M, Ranaei Siadat SO, Uskoković V. Hydroxyapatite as a biomaterial - a gift that keeps on giving. Drug Dev Ind Pharm 2020; 46:1035-1062. [PMID: 32476496 DOI: 10.1080/03639045.2020.1776321] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthetic analogue to biogenic apatite, hydroxyapatite (HA) has a number of physicochemical properties that make it an attractive candidate for diagnosis, treatment of disease and augmentation of biological tissues. Here we describe some of the recent studies on HA, which may provide bases for a number of new medical applications. The content of this review is divided to different medical application modes utilizing HA, including tissue engineering, medical implants, controlled drug delivery, gene therapies, cancer therapies and bioimaging. A number of advantages of HA over other biomaterials emerge from this discourse, including (i) biocompatibility, (ii) bioactivity, (iii) relatively simple synthesis protocols for the fabrication of nanoparticles with specific sizes and shapes, (iv) smart response to environmental stimuli, (v) facile functionalization and surface modification through noncovalent interactions, and (vi) the capacity for being simultaneously loaded with a wide range of therapeutic agents and switched to bioimaging modalities for uses in theranostics. A special section is dedicated to analysis of the safety of particulate HA as a component of parenterally administrable medications. It is concluded that despite the fact that many benefits come with the usage of HA, its deficiencies and potential side effects must be addressed before the translation to the clinical domain is pursued. Although HA has been known in the biomaterials world as the exemplar of safety, this safety proves to be the function of size, morphology, surface ligands and other structural and compositional parameters defining the particles. For this reason, each HA, especially when it comes in a novel structural form, must be treated anew from the safety research angle before being allowed to enter the clinical stage.
Collapse
Affiliation(s)
- Behrad Ghiasi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Arash Khodadadi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Science, Kerman, Iran
| | - Maryam Rezaei
- Institute of Biochemistry and Biophysics (IBB), Tehran University, Tehran, Iran
| | - Seyed Omid Ranaei Siadat
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
20
|
Cavalu S, Fritea L, Brocks M, Barbaro K, Murvai G, Costea TO, Antoniac I, Verona C, Romani M, Latini A, Zilli R, Rau JV. Novel Hybrid Composites Based on PVA/SeTiO 2 Nanoparticles and Natural Hydroxyapatite for Orthopedic Applications: Correlations between Structural, Morphological and Biocompatibility Properties. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2077. [PMID: 32369898 PMCID: PMC7254265 DOI: 10.3390/ma13092077] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/25/2022]
Abstract
The properties of poly(vinyl alcohol) (PVA)-based composites recommend this material as a good candidate for the replacement of damaged cartilage, subchondral bone, meniscus, humeral joint and other orthopedic applications. The manufacturing process can be manipulated to generate the desired biomechanical properties. However, the main shortcomings of PVA hydrogels are related to poor strength and bioactivity. To overcome this situation, reinforcing elements are added to the PVA matrix. The aim of our work was to develop and characterize a novel composition based on PVA reinforced with Se-doped TiO2 nanoparticles and natural hydroxyapatite (HA), for possible orthopedic applications. The PVA/Se-doped TiO2 composites with and without HA were structurally investigated by FTIR and XRD, in order to confirm the incorporation of the inorganic phase in the polymeric structure, and by SEM and XRF, to evidence the ultrastructural details and dispersion of nanoparticles in the PVA matrix. Both the mechanical and structural properties of the composites demonstrated a synergic reinforcing effect of HA and Se-doped TiO2 nanoparticles. Moreover, the tailorable properties of the composites were proved by the viability and differentiation potential of the bone marrow mesenchymal stem cells (BMMSC) to osteogenic, chondrogenic and adipogenic lineages. The novel hybrid PVA composites show suitable structural, mechanical and biological features to be considered as a promising biomaterial for articular cartilage and subchondral bone repair.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410081 Oradea, Romania;
| | - Luminita Fritea
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410081 Oradea, Romania;
| | - Marcel Brocks
- Biomedical Sciences Doctoral School, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410081 Oradea, Romania; (M.B.); (G.M.)
| | - Katia Barbaro
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova 1411, 00178 Rome, Italy; (K.B.); (R.Z.)
| | - Gelu Murvai
- Biomedical Sciences Doctoral School, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410081 Oradea, Romania; (M.B.); (G.M.)
| | - Traian Octavian Costea
- Advanced Materials Research Laboratory, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania;
| | - Iulian Antoniac
- Department Materials Science and Engineering, University Politehnica of Bucharest, Splaiul Independentei 313, sector 6, 060032 Bucharest, Romania;
| | - Claudio Verona
- Department of Industrial Engineering, University “Tor Vergata” Rome, via del Politecnico 1, 00133 Rome, Italy;
| | - Martina Romani
- INFN National Laboratory of Frascati, via Enrico Fermi 40, 00044 Frascati, Italy;
| | - Alessandro Latini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Romano Zilli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova 1411, 00178 Rome, Italy; (K.B.); (R.Z.)
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
| |
Collapse
|