1
|
Katoli Z, Navaei-Nigjeh M, Mirzababaei S, Sabahi H, Baeeri M, Akrami M, Roshanbinfar K, Engel FB, Abdollahi M. Incorporation of montmorillonite into microfluidics-generated chitosan microfibers enhances neuron-like PC12 cells for application in neural tissue engineering. Carbohydr Polym 2024; 342:122272. [PMID: 39048184 DOI: 10.1016/j.carbpol.2024.122272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 07/27/2024]
Abstract
The complexity in structure and function of the nervous system, as well as its slow rate of regeneration, makes it more difficult to treat it compared to other tissues. Neural tissue engineering aims to create an appropriate environment for nerve cell proliferation and differentiation. Fibrous scaffolds with suitable morphology and topography and better mimicry of the extracellular matrix have been promising for the alignment and migration of neural cells. On this premise, to improve the properties of the scaffold, we combined montmorillonite (MMT) with chitosan (CS) polymer and created microfibers with variable diameters and varied concentrations of MMT using microfluidic technology and tested its suitability for the rat pheochromocytoma cell line (PC12). According to the findings, CS/MMT 0.1 % compared to CS/MMT 0 % microfibers showed a 201 MPa increase in Young's modulus, a 68 mS/m increase in conductivity, and a 1.4-fold increase in output voltage. Analysis of cell mitochondrial activity verified the non-toxicity, resulting in good cell morphology with orientation along the microfiber. Overall, the results of this project showed that with a low concentration of MMT, the properties of microfibers can be significantly improved and a suitable scaffold can be designed for neural tissue engineering.
Collapse
Affiliation(s)
- Zahra Katoli
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran; Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Soheyl Mirzababaei
- Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hossein Sabahi
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Iran
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Institute of Biomaterials, University of Tehran, Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wu C, Almuaalemi HYM, Sohan ASMMF, Yin B. Effect of Flow Velocity on Laminar Flow in Microfluidic Chips. MICROMACHINES 2023; 14:1277. [PMID: 37512588 PMCID: PMC10383554 DOI: 10.3390/mi14071277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 07/30/2023]
Abstract
Gel fibers prepared based on microfluidic laminar flow technology have important research value in constructing biomimetic scaffolds and tissue engineering. The key point of microfluidic laminar flow technology is to find the appropriate fluid flow rate in the micropipe. In order to explore the influence of flow rate on the laminar flow phenomenon of a microfluidic chip, a microfluidic chip composed of an intermediate main pipe and three surrounding outer pipes are designed, and the chip is prepared by photolithography and the composite molding method. Then, a syringe pump is used to inject different fluids into the microtubing, and the data of fluid motion are obtained through fluid dynamics simulation and finite element analysis. Finally, a series of optimal adjustments are made for different fluid composition and flow rate combinations to achieve the fluid's stable laminar flow state. It was determined that when the concentration of sodium alginate in the outer phase was 1 wt% and the concentration of CaCl2 in the inner phase was 0.1 wt%, the gel fiber prepared was in good shape, the flow rate was the most stable, and laminar flow was the most obvious when the flow rate of both was 1 mL/h. This study represents a preliminary achievement in exploring the laminar flow rate and fabricating gel fibers, thus offering significant reference value for investigating microfluidic laminar flow technology.
Collapse
Affiliation(s)
- Chuang Wu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
- Nantong Fuleda Vehicle Accessory Component Co., Ltd., Nantong 226300, China
- Jiangsu Tongshun Power Technology Co., Ltd., Nantong 226300, China
| | | | - A S M Muhtasim Fuad Sohan
- Faculty of Engineering, Department of Mechanical Engineering, University of Adelaide, Adelaide, SA 5000, Australia
| | - Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
3
|
Souza PR, de Oliveira AC, Vilsinski BH, Kipper MJ, Martins AF. Polysaccharide-Based Materials Created by Physical Processes: From Preparation to Biomedical Applications. Pharmaceutics 2021; 13:621. [PMID: 33925380 PMCID: PMC8146878 DOI: 10.3390/pharmaceutics13050621] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Polysaccharide-based materials created by physical processes have received considerable attention for biomedical applications. These structures are often made by associating charged polyelectrolytes in aqueous solutions, avoiding toxic chemistries (crosslinking agents). We review the principal polysaccharides (glycosaminoglycans, marine polysaccharides, and derivatives) containing ionizable groups in their structures and cellulose (neutral polysaccharide). Physical materials with high stability in aqueous media can be developed depending on the selected strategy. We review strategies, including coacervation, ionotropic gelation, electrospinning, layer-by-layer coating, gelation of polymer blends, solvent evaporation, and freezing-thawing methods, that create polysaccharide-based assemblies via in situ (one-step) methods for biomedical applications. We focus on materials used for growth factor (GFs) delivery, scaffolds, antimicrobial coatings, and wound dressings.
Collapse
Affiliation(s)
- Paulo R. Souza
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
| | - Ariel C. de Oliveira
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
- Laboratory of Materials, Macromolecules and Composites, Federal University of Technology—Paraná (UTFPR), Apucarana 86812-460, PR, Brazil
| | - Bruno H. Vilsinski
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
- School of Advanced Materials Discovery, Colorado State University (CSU), Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| | - Alessandro F. Martins
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
- Laboratory of Materials, Macromolecules and Composites, Federal University of Technology—Paraná (UTFPR), Apucarana 86812-460, PR, Brazil
- Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Wang H, Liu H, Zhang X, Wang Y, Zhao M, Chen W, Qin J. One-Step Generation of Aqueous-Droplet-Filled Hydrogel Fibers as Organoid Carriers Using an All-in-Water Microfluidic System. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3199-3208. [PMID: 33405509 DOI: 10.1021/acsami.0c20434] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogel fibers are promising carriers for biological applications due to their flexible mechanical properties, well-defined spatial distribution, and excellent biocompatibility. In particular, the droplet-filled hydrogel fibers with the controllable dimension and location of droplets display great advantages to enhance the loading capacity of multiple components and biofunctions. In this work, we proposed a new all-in-water microfluidic system that allows for one-step fabrication of aqueous-droplet-filled hydrogel fibers (ADHFs) with unique morphology and tunable configurations. In the system, the aqueous droplets with equidistance are successfully arranged within the alginate calcium fibers, relying on the design of the pump valve cycle and the select of two immiscible liquids with a stable aqueous interface. The architecture of the ADHF can be flexibly controlled by adjusting the three phase flow rates and the valve switch cycle. The produced ADHFs exhibit high controllability, uniformity, biocompatibility, and stability. The established system enabled the formation of functional human islet organoids in situ through encapsulating pancreatic endocrine progenitor cells within microfibers. The generated islet organoids within droplets exhibit high cell viability and islet-specific function of insulin secretion. The proposed approach provides a new way to fabricate multifunctional hydrogel fibers for materials sciences, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Hui Wang
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Liu
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zhang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, Unites States
| | - Yaqing Wang
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqian Zhao
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenwen Chen
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Qin
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Institute For Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|