1
|
Liu J, Liu R, He BB, Lin X, Guo L, Wu G, Li YX. Bacterial Cytochrome P450 Catalyzed Macrocyclization of Ribosomal Peptides. ACS BIO & MED CHEM AU 2024; 4:268-279. [PMID: 39712204 PMCID: PMC11659900 DOI: 10.1021/acsbiomedchemau.4c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/09/2024] [Accepted: 11/07/2024] [Indexed: 12/24/2024]
Abstract
Macrocyclization is a vital process in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), significantly enhancing their structural diversity and biological activity. Universally found in living organisms, cytochrome P450 enzymes (P450s) are versatile catalysts that facilitate a wide array of chemical transformations and have recently been discovered to contribute to the expansion and complexity of the chemical spectrum of RiPPs. Particularly, P450-catalyzed biaryl-bridged RiPPs, characterized by highly modified structures, represent an intriguing but underexplored class of natural products, as demonstrated by the recent discovery of tryptorubin A, biarylitide and cittilin. These P450 enzymes demonstrate their versatility by facilitating peptide macrocyclization through the formation of carbon-carbon (C-C), carbon-nitrogen (C-N) and ether bonds between the side chains of tyrosine (Tyr), tryptophan (Trp) and histidine (His). This Review briefly highlights the latest progress in P450-catalyzed macrocyclization within RiPP biosynthesis, resulting in the generation of structurally complex RiPPs. These findings have expedited the discovery and detailed analysis of new P450s engaged in RiPP biosynthetic pathways.
Collapse
Affiliation(s)
- Jing Liu
- Department
of Chemistry, The University of Hong Kong, 999077 Hong Kong
Special Administrative Region, Hong Kong,
China
| | - Runze Liu
- Department
of Chemistry, The University of Hong Kong, 999077 Hong Kong
Special Administrative Region, Hong Kong,
China
| | - Bei-Bei He
- Department
of Chemistry, The University of Hong Kong, 999077 Hong Kong
Special Administrative Region, Hong Kong,
China
| | - Xiaoqian Lin
- Department
of Chemistry, The University of Hong Kong, 999077 Hong Kong
Special Administrative Region, Hong Kong,
China
| | - Longcheng Guo
- Department
of Chemistry, The University of Hong Kong, 999077 Hong Kong
Special Administrative Region, Hong Kong,
China
| | - Gengfan Wu
- Department
of Chemistry, The University of Hong Kong, 999077 Hong Kong
Special Administrative Region, Hong Kong,
China
| | - Yong-Xin Li
- Department
of Chemistry, The University of Hong Kong, 999077 Hong Kong
Special Administrative Region, Hong Kong,
China
| |
Collapse
|
2
|
Nie Q, Sun C, Liu S, Gao X. Exploring Bioactive Fungal RiPPs: Advances, Challenges, and Future Prospects. Biochemistry 2024; 63:2948-2957. [PMID: 39499622 DOI: 10.1021/acs.biochem.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Fungal ribosomally synthesized and post-translationally modified peptides (RiPPs) are a vital class of natural products known for their biological activities including anticancer, antitubulin, antinematode, and immunosuppressant properties. These bioactive fungal RiPPs play key roles in chemical ecology and have a significant therapeutic potential. Their structural diversity, which arises from intricate post-translational modifications of precursor peptides, is particularly remarkable. Despite their biological and ecological importance, the discovery of fungal RiPPs has been historically challenging and only a limited number have been identified. To date, known fungal RiPPs are primarily grouped into three groups: cycloamanides and borosins from basidiomycetes and dikaritins from ascomycetes. Recent advancements in bioinformatics have revealed the vast untapped potential of fungi to produce RiPPs, offering new opportunities for their discovery. This review highlights recent progress in fungal RiPP biosynthesis and genome-guided discovery strategies. We propose that combining the knowledge of fungal RiPP biosynthetic pathways with advanced gene-editing technologies and bioinformatic tools will significantly accelerate the discovery of novel bioactive fungal RiPPs.
Collapse
Affiliation(s)
- Qiuyue Nie
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chunxiao Sun
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Shuai Liu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Abstract
Covering: 2016 to 2023Ribosomally synthesized and posttranslationally modified peptides (RiPPs) continue to be a rich source of chemically diverse and bioactive peptide natural products. In recent years, cyclophane-containing RiPP natural products and their biosynthetic pathways have been more frequently encountered. This highlight will focus on bacterial monoaryl cyclophane-containing RiPPs. This class of RiPPs is produced by radical SAM/SPASM enzymes that form a crosslink between the aromatic ring and sidechain of two amino acid residues of the precursor peptide. Selected natural products from these pathways exhibit specific antibacterial activity against gram-negative pathogens. The approaches used to discover these pathways and products will be described and categorized as natural product-first or enzyme-first. The breadth of ring systems formed by the enzymes, enzyme mechanism, and recent reports of synthetic methods for constructing these ring systems will also be presented. Bacterial cyclophane-containing RiPPs and their biosynthetic enzymes represent an untapped source of scaffolds for drug discovery and tools for synthetic biology.
Collapse
Affiliation(s)
- Chin-Soon Phan
- Department of Pharmacy, National University of Singapore, 4 Science Dr 2, Singapore 117544, Singapore.
| | - Brandon I Morinaka
- Department of Pharmacy, National University of Singapore, 4 Science Dr 2, Singapore 117544, Singapore.
| |
Collapse
|
4
|
Nguyen DT, Zhu L, Gray DL, Woods TJ, Padhi C, Flatt KM, Mitchell DA, van der Donk WA. Biosynthesis of Macrocyclic Peptides with C-Terminal β-Amino-α-keto Acid Groups by Three Different Metalloenzymes. ACS CENTRAL SCIENCE 2024; 10:1022-1032. [PMID: 38799663 PMCID: PMC11117315 DOI: 10.1021/acscentsci.4c00088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 05/29/2024]
Abstract
Advances in genome sequencing and bioinformatics methods have identified a myriad of biosynthetic gene clusters (BGCs) encoding uncharacterized molecules. By mining genomes for BGCs containing a prevalent peptide-binding domain used for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), we uncovered a new compound class involving modifications installed by a cytochrome P450, a multinuclear iron-dependent non-heme oxidative enzyme (MNIO, formerly DUF692), a cobalamin- and radical S-adenosyl-l-methionine-dependent enzyme (B12-rSAM), and a methyltransferase. All enzymes were functionally expressed in Burkholderia sp. FERM BP-3421. Structural characterization demonstrated that the P450 enzyme catalyzed the formation of a biaryl C-C cross-link between two Tyr residues with the B12-rSAM generating β-methyltyrosine. The MNIO transformed a C-terminal Asp residue into aminopyruvic acid, while the methyltransferase acted on the β-carbon of this α-keto acid. Exciton-coupled circular dichroism spectroscopy and microcrystal electron diffraction (MicroED) were used to elucidate the stereochemical configuration of the atropisomer formed upon biaryl cross-linking. To the best of our knowledge, the MNIO featured in this pathway is the first to modify a residue other than Cys. This study underscores the utility of genome mining to isolate new macrocyclic RiPPs biosynthesized via previously undiscovered enzyme chemistry.
Collapse
Affiliation(s)
- Dinh T. Nguyen
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lingyang Zhu
- School
of Chemical Sciences NMR Laboratory, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Danielle L. Gray
- School
of Chemical Sciences George L. Clark X-Ray Facility and 3M Materials
Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Toby J. Woods
- School
of Chemical Sciences George L. Clark X-Ray Facility and 3M Materials
Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chandrashekhar Padhi
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kristen M. Flatt
- Materials
Research Laboratory, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Douglas A. Mitchell
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Nguyen DT, Mitchell DA, van der Donk WA. Genome Mining for New Enzyme Chemistry. ACS Catal 2024; 14:4536-4553. [PMID: 38601780 PMCID: PMC11002830 DOI: 10.1021/acscatal.3c06322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 04/12/2024]
Abstract
A revolution in the field of biocatalysis has enabled scalable access to compounds of high societal values using enzymes. The construction of biocatalytic routes relies on the reservoir of available enzymatic transformations. A review of uncharacterized proteins predicted from genomic sequencing projects shows that a treasure trove of enzyme chemistry awaits to be uncovered. This Review highlights enzymatic transformations discovered through various genome mining methods and showcases their potential future applications in biocatalysis.
Collapse
Affiliation(s)
- Dinh T. Nguyen
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Douglas A. Mitchell
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute at the University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Nguyen DT, Zhu L, Gray DL, Woods TJ, Padhi C, Flatt KM, Mitchell DA, van der Donk WA. Biosynthesis of macrocyclic peptides with C-terminal β-amino-α-keto acid groups by three different metalloenzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564719. [PMID: 37965205 PMCID: PMC10635010 DOI: 10.1101/2023.10.30.564719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Advances in genome sequencing and bioinformatics methods have identified a myriad of biosynthetic gene clusters (BGCs) encoding uncharacterized molecules. By mining genomes for BGCs containing a prevalent peptide-binding domain used for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), we uncovered a new class involving modifications installed by a cytochrome P450, a multi-nuclear iron-dependent non-heme oxidative enzyme (MNIO, formerly DUF692), a cobalamin- and radical S-adenosyl-L-methionine-dependent enzyme (B12-rSAM), and a methyltransferase. All enzymes encoded by the BGC were functionally expressed in Burkholderia sp. FERM BP-3421. Structural characterization with 2D-NMR and Marfey's method on the resulting RiPP demonstrated that the P450 enzyme catalyzed the formation of a biaryl C-C crosslink between two Tyr residues with the B12-rSAM generating β-methyltyrosine. The MNIO transformed a C-terminal Asp residue into aminopyruvic acid while the methyltransferase acted on the β-carbon of the α-keto acid. Exciton-coupled circular dichroism spectroscopy and microcrystal electron diffraction (MicroED) were used to elucidate the stereochemical configurations of the atropisomer that formed upon biaryl crosslinking. The conserved Cys residue in the precursor peptide was not modified as in all other characterized MNIO-containing BGCs; However, mutational analyses demonstrated that it was essential for the MNIO activity on the C-terminal Asp. To the best of our knowledge, the MNIO featured in this pathway is the first to modify a residue other than Cys. This study underscores the utility of genome mining to discover new macrocyclic RiPPs and that RiPPs remain a significant source of previously undiscovered enzyme chemistry.
Collapse
Affiliation(s)
- Dinh T. Nguyen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Danielle L. Gray
- School of Chemical Sciences George L. Clark X-Ray Facility and 3M Materials Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Toby J. Woods
- School of Chemical Sciences George L. Clark X-Ray Facility and 3M Materials Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Chandrashekhar Padhi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Kristen M. Flatt
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
7
|
Saad H, Majer T, Bhattarai K, Lampe S, Nguyen DT, Kramer M, Straetener J, Brötz-Oesterhelt H, Mitchell DA, Gross H. Bioinformatics-guided discovery of biaryl-linked lasso peptides. Chem Sci 2023; 14:13176-13183. [PMID: 38023510 PMCID: PMC10664482 DOI: 10.1039/d3sc02380j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Lasso peptides are a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) that feature an isopeptide bond and a distinct lariat fold. A growing number of secondary modifications have been described that further decorate lasso peptide scaffolds. Using genome mining, we have discovered a pair of lasso peptide biosynthetic gene clusters (BGCs) that include cytochrome P450 genes. Using mass spectrometry, stable isotope incorporation, and extensive 2D-NMR spectrometry, we report the structural characterization of two unique examples of (C-N) biaryl-linked lasso peptides. Nocapeptin A, from Nocardia terpenica, is tailored with a Trp-Tyr crosslink, while longipepetin A, from Longimycelium tulufanense, features a Trp-Trp linkage. Besides the unusual bicyclic frame, a Met of longipepetin A undergoes S-methylation to yield a trivalent sulfonium, a heretofore unprecedented RiPP modification. A bioinformatic survey revealed additional lasso peptide BGCs containing P450 enzymes which await future characterization. Lastly, nocapeptin A bioactivity was assessed against a panel of human and bacterial cell lines with modest growth-suppression activity detected towards Micrococcus luteus.
Collapse
Affiliation(s)
- Hamada Saad
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Thomas Majer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Keshab Bhattarai
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Sarah Lampe
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Dinh T Nguyen
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Markus Kramer
- Institute of Organic Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Jan Straetener
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen Tübingen Germany
| | - Douglas A Mitchell
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Harald Gross
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen Tübingen Germany
| |
Collapse
|