1
|
Yue Z, Lu G, Wei W, Deng Y, Yang L, Shao S, Chen X, Huang Y, Qian J, Fan X. Specific Photocatalytic C-C Coupling of Benzyl Alcohol to Deoxybenzoin or Benzoin by Precise Control of C α-H Bond Activation or O-H Bond Activation by Adjusting the Adsorption Orientation of Hydrobenzoin Intermediates. ACS Catal 2024; 14:15306-15324. [PMID: 39444527 PMCID: PMC11494511 DOI: 10.1021/acscatal.4c03426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Benzyl alcohol (BA) is a major biomass derivative and can be further converted into deoxybenzoin (DOB) and benzoin (BZ) as high-value products for industrial applications through photocatalytic C-C coupling reaction. The photocatalytic process contains two reaction steps, which are (1) the C-C coupling of BA to hydrobenzoin (HB) intermediates and (2) either dehydration of HB to DOB or dehydrogenation of HB to BZ. We found that generation of DOB or BZ is mainly determined by the activation of Cα-H or O-H bonds in HB. In this study, phase junction CdS photocatalysts and Ni/CdS photocatalysts were elaborately designed to precisely control the activation of Cα-H or O-H bonds in HB by adjusting the adsorption orientation of HB on the photocatalyst surfaces. After orienting the Cα-H groups in HB on the CdS surfaces, the Cα-H bond dissociation energy (BDE) at 1.39 eV is lower than the BDE of the O-H bond at 2.69 eV, therefore improving the selectivity of the DOB. Conversely, on Ni/CdS photocatalysts, the O-H groups in HB orient toward the photocatalyst surfaces. The BDE of the O-H bonds is 1.11 eV to form BZ, which is lower than the BDE of the Cα-H bonds to the DOB (1.33 eV), thereby enhancing the selectivity of BZ. As a result, CdS photocatalysts can achieve complete conversion of BA to 80.4% of the DOB after 9 h of visible light irradiation, while 0.3% Ni/CdS photocatalysts promote complete conversion of BA to 81.5% of BZ after only 5 h. This work provides a promising strategy in selective conversion of BA to either DOB or BZ through delicate design of photocatalysts.
Collapse
Affiliation(s)
- Zongyang Yue
- Institute
for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K.
| | - Guanchu Lu
- Institute
for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K.
| | - Wenjing Wei
- Institute
for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K.
| | - Yanan Deng
- Institute
for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K.
| | - Luxi Yang
- Institute
for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K.
| | - Shibo Shao
- Institute
for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K.
- Petrochemical
Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Xianfeng Chen
- Institute
for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K.
| | - Yi Huang
- Institute
for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K.
| | - Jianhua Qian
- School
of Petrochemical Engineering, Liaoning Petrochemical
University, Fushun 113001, China
| | - Xianfeng Fan
- Institute
for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K.
| |
Collapse
|
2
|
Yang B, Liu K, Ma Y, Ma JJ, Chen YY, Huang M, Yang C, Hou Y, Hung SF, Yu JC, Zhang J, Wang X. Incorporation of Pd Single-Atom Sites in Perovskite with an Excellent Selectivity toward Photocatalytic Semihydrogenation of Alkynes. Angew Chem Int Ed Engl 2024; 63:e202410394. [PMID: 39072967 DOI: 10.1002/anie.202410394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Semihydrogenation is a crucial industrial process. Noble metals such as Pd have been extensively studied in semihydrogenation reactions, owing to their unique catalytic activity toward hydrogen activation. However, the overhydrogenation of alkenes to alkanes often happens due to the rather strong adsorption of alkenes on Pd active phases. Herein, we demonstrate that the incorporation of Pd active phases as single-atom sites in perovskite lattices such as SrTiO3 can greatly alternate the electronic structure and coordination environment of Pd active phases to facilitate the desorption of alkenes rather than further hydrogenation. Furthermore, the incorporated Pd sites can be well stabilized without sintering by a strong host-guest interaction with SrTiO3 during the activation of H species in hydrogenation reactions. As a result, the Pd incorporated SrTiO3 (Pd-SrTiO3) exhibits an excellent time-independent selectivity (>99.9 %) and robust durability for the photocatalytic semihydrogenation of phenylacetylene to styrene. This strategy based on incorporation of active phases in perovskite lattices will have broad implications in the development of high-performance photocatalysts for selective hydrogenation reactions.
Collapse
Affiliation(s)
- Baoying Yang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Kunlong Liu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yuhui Ma
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jian-Jie Ma
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yi-Yu Chen
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Meirong Huang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Can Yang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Sung-Fu Hung
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Jimmy C Yu
- Department of Chemistry, Chinese University of Hong Kong Shatin, New Territories, Hong Kong, 999077, China
| | - Jinshui Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
3
|
Feng S, Su R. Synthetic Chemistry in Flow: From Photolysis & Homogeneous Photocatalysis to Heterogeneous Photocatalysis. CHEMSUSCHEM 2024; 17:e202400064. [PMID: 38608169 DOI: 10.1002/cssc.202400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Indexed: 04/14/2024]
Abstract
Photocatalytic synthesis of value-added chemicals has gained increasing attention in recent years owing to its versatility in driving many important reactions under ambient conditions. Selective hydrogenation, oxidation, coupling, and halogenation with a high conversion of the reactants have been realized using designed photocatalysts in batch reactors with small volumes at a laboratory scale; however, scaling-up remains a critical challenge due to inefficient utilization of incident light and active sites of the photocatalysts, resulting in poor catalytic performance that hinders its practical applications. Flow systems are considered one of the solutions for practical applications of light-driven reactions and have experienced great success in photolytic and homogeneous photocatalysis, yet their applications in heterogeneous photocatalysis are still under development. In this perspective, we have summarized recent progress in photolytic and photocatalytic synthetic chemistry performed in flow systems from the view of reactor design with a special focus on heterogeneous photocatalysis. The advantages and limitations of different flow systems, as well as some practical considerations of design strategies are discussed.
Collapse
Affiliation(s)
- Sitong Feng
- Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, 215006, Suzhou, China
| | - Ren Su
- Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, 215006, Suzhou, China
| |
Collapse
|
4
|
Bao T, Tang C, Li S, Qi Y, Zhang J, She P, Rao H, Qin JS. Hollow structured CdS@ZnIn 2S 4 Z-scheme heterojunction for bifunctional photocatalytic hydrogen evolution and selective benzylamine oxidation. J Colloid Interface Sci 2024; 659:788-798. [PMID: 38215615 DOI: 10.1016/j.jcis.2023.12.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/22/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
Photocatalytic hydrogen evolution (PHE) is frequently constrained by inadequate light utilization and the rapid combination rate of the photogenerated electron-hole pairs. Additionally, conventional PHE processes are often facilitated by the addition of sacrificial reagents to consume photo-induced holes, which makes this approach economically unfavorable. Herein, we designed a spatially separated bifunctional cocatalyst decorated Z-scheme heterojunction of hollow structured CdS (HCdS) @ZnIn2S4 (ZIS), which was prepared by a sacrificial hard template method followed by photo-deposition. Consequently, PdOx@HCdS@ZIS@Pt exhibited efficient PHE (86.38 mmol·g-1·h-1) and benzylamine (BA) oxidation coupling (164.75 mmol·g-1·h-1) with high selectivity (97.34 %). The unique hollow core-shelled morphology and bifunctional cocatalyst loading in this work hold great potential for the design and synthesis of bifunctional Z-scheme photocatalysts.
Collapse
Affiliation(s)
- Tengfei Bao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Chenxi Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Shuming Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yuanyuan Qi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Jing Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| |
Collapse
|
5
|
Liu J, Sun X, Fan Y, Yu Y, Li Q, Zhou J, Gu H, Shi K, Jiang B. P-N Heterojunction Embedded CuS/TiO 2 Bifunctional Photocatalyst for Synchronous Hydrogen Production and Benzylamine Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306344. [PMID: 37875719 DOI: 10.1002/smll.202306344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Indexed: 10/26/2023]
Abstract
The coupling of photocatalytic hydrogen production and selective oxidation of benzylamine is a topic of significant research interest. However, enhancing the bifunctional photocatalytic activity in this context is still a major challenge. The construction of Z-scheme heterojunctions is an effective strategy to enhance the activity of bifunctional photocatalysts. Herein, a p-n type direct Z-scheme heterojunction CuS/TiO2 is constructed using metal-organic framework (MOF)-derived TiO2 as a substrate. The carrier density is measured by Mott-Schottky under photoexcitation, which confirms that the Z-scheme electron transfer mode of CuS/TiO2 is driven by the diffusion effect caused by the carrier concentration difference. Benefiting from efficient charge separation and transfer, photogenerated electrons, and holes are directedly transferred to active oxidation and reduction sites. CuS/TiO2 also exhibits excellent bifunctional photocatalytic activity without noble metal cocatalysts. Among them, the H2 evolution activity of the CuS/TiO2 is found to be 17.1 and 29.5 times higher than that of TiO2 and CuS, respectively. Additionally, the yields of N-Benzylidenebenzylamine (NBB) are 14.3 and 47.4 times higher than those of TiO2 and CuS, respectively.
Collapse
Affiliation(s)
- Jianan Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Xuemeng Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Yuying Fan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Yaoguang Yu
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Qi Li
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jing Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Huiquan Gu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Keying Shi
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
6
|
Nai H, Hou J, Li J, Ma X, Yang Y, Qu K, Huang X, Li L. Accurate assembly of thiophene-bridged titanium-oxo clusters with photocatalytic amine oxidation activity. RSC Adv 2024; 14:7924-7931. [PMID: 38449818 PMCID: PMC10915587 DOI: 10.1039/d4ra00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
Designing and synthesizing well-defined crystalline catalysts for the photocatalytic oxidative coupling of amines to imines remains a great challenge. In this work, a crystalline dumbbell-shaped titanium oxo cluster, [Ti10O6(Thdc)(Dmg)2(iPrO)22] (Ti10, Thdc = 2,5-thiophenedicarboxylic acid, Dmg = dimethylglyoxime, iPrOH = isopropanol), was constructed through a facile one-pot solvothermal strategy and treated as a catalyst for the photocatalytic oxidative coupling of amines. In this structure, Thdc serves as the horizontal bar, while the {Ti5Dmg} layers on each side act as the weight plates. The molecular structure, light absorption, and photoelectrochemical properties of Ti10 were systematically investigated. Remarkably, the inclusion of the Thdc ligand, with the assistance of the Dmg ligand, broadens the light absorption spectrum of Ti10, extending it into the visible range. Furthermore, the effective enhancement of charge transfer within the Ti10 was achieved with the successful incorporation of the Thdc ligand, as opposed to PTC-211, where terephthalic acid replaces the Thdc ligand, while maintaining consistency in other aspects of Ti10. Building on this foundation, Ti10 was employed as a heterogeneous molecular photocatalyst for the catalytic oxidative coupling reaction of benzylamine (BA), demonstrating very high conversion activity and selectivity. Our study illustrates that the inclusion of ligands derived from Thdc enhances the efficiency of charge transfer in functionalized photocatalysts, significantly influencing the performance of photocatalytic organic conversion.
Collapse
Affiliation(s)
- Haoran Nai
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 People's Republic of China
| | - Jinle Hou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 People's Republic of China
| | - Jinyu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 People's Republic of China
| | - Xiaoxi Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 People's Republic of China
| | - Yujia Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 People's Republic of China
| | - Konggang Qu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 People's Republic of China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 People's Republic of China
| | - Lianzhi Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 People's Republic of China
| |
Collapse
|
7
|
Shi S, Liu W, Li Y, Lu S, Zhu H, Du M, Chen X, Duan F. Rational design of bimetallic sites in covalent organic frameworks for efficient photocatalytic oxidative coupling of amines. J Colloid Interface Sci 2024; 655:611-621. [PMID: 37956548 DOI: 10.1016/j.jcis.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
The conversion of organic compounds by photocatalysis under mild conditions is an environment-friendly alternative for organic transformations. In this work, the bimetallic covalent organic framework coordinated by Sr2+ and Fe2+ in the porphyrin centers with molar ratio of 2:1 (COF-Sr2Fe1) was synthesized through a two-step reaction. Under the synergistic regulation of Sr2+ and Fe2+, the separation of photogenerated charges and visible light absorption for COF-Sr2Fe1 were significantly promoted, and thus COF-Sr2Fe1 exhibited efficient photocatalytic performance towards benzylamine oxidative coupling reaction with a yield of 97 %, much higher than that of the nonmetallic covalent organic framework COF-366. Moreover, it was found that the Fe site displayed higher dehydrogenation ability and the Sr site displayed higher CN coupling ability through the density functional theory (DFT) calculations, thereby making the dehydrogenation and CN coupling steps more controllable for benzylamine oxidative coupling reaction by COF-Sr2Fe1. This work provides a strategy for designing efficient covalent organic frameworks photocatalysts, and helps to understand the oxidative coupling of amines more deeply.
Collapse
Affiliation(s)
- Songhu Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Wenhao Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yujie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xin Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
8
|
Chen R, Chen S, Wang L, Wang D. Nanoscale Metal Particle Modified Single-Atom Catalyst: Synthesis, Characterization, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304713. [PMID: 37439396 DOI: 10.1002/adma.202304713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Single-atom catalysts (SACs) have attracted considerable attention in heterogeneous catalysis because of their well-defined active sites, maximum atomic utilization efficiency, and unique unsaturated coordinated structures. However, their effectiveness is limited to reactions requiring active sites containing multiple metal atoms. Furthermore, the loading amounts of single-atom sites must be restricted to prevent aggregation, which can adversely affect the catalytic performance despite the high activity of the individual atoms. The introduction of nanoscale metal particles (NMPs) into SACs (NMP-SACs) has proven to be an efficient approach for improving their catalytic performance. A comprehensive review is urgently needed to systematically introduce the synthesis, characterization, and application of NMP-SACs and the mechanisms behind their superior catalytic performance. This review first presents and classifies the different mechanisms through which NMPs enhance the performance of SACs. It then summarizes the currently reported synthetic strategies and state-of-the-art characterization techniques of NMP-SACs. Moreover, their application in electro/thermo/photocatalysis, and the reasons for their superior performance are discussed. Finally, the challenges and perspectives of NMP-SACs for the future design of advanced catalysts are addressed.
Collapse
Affiliation(s)
- Runze Chen
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Shenghua Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, P. R. China
| | - Liqiang Wang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
9
|
Wu Y, Deng X, Cui R, Song M, Guo X, Gong X, He J, Chen P. Electronic configuration inversion in CdIn 2S 4 for efficient photocatalytic hydrogen peroxide generation coupled with selective benzylamine oxidation. J Colloid Interface Sci 2023; 656:528-537. [PMID: 38007944 DOI: 10.1016/j.jcis.2023.11.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/01/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Vacancies engineering has sparked a huge interest in enhancing photocatalytic activity, but monovacancy simultaneously conducts as either electron or hole acceptor and redox reaction, worsening charge transfer and catalytic performance. Here, the concept of electronic inversion has been proposed through the simultaneous introduction of surface oxygen and S vacancies in CdIn2S4 (OSv-CIS). Consequently, under mild conditions, the well-designed OSv-CIS-200 demonstrated a strong rate of N-benzylidenebenzylamine production (2972.07 µmol g-1 h-1) coupled with Hydrogen peroxide (H2O2) synthesis (2362.33 µmol g-1 h-1) (PIH), which is 12.4 times higher than that of CdIn2S4. Density functional theory (DFT) simulation and characterization studies demonstrate that oxygen is introduced into the lattice on the surface of the material, reversing the charge distribution of the S vacancy and enhancing the polarity of the total charge distribution. It not only provides a huge built-in electric field (BEF) for guiding the orientation of the charge transfer, but also acts as a long-distance active site to accelerate reaction and prevent H2O2 decomposition. Our work offers a straightforward connection between the atomic defect and intrinsic properties for designing high-efficiency materials.
Collapse
Affiliation(s)
- Yubo Wu
- College of Big Data and Information Engineering, State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, Guizhou, China; Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, State Key Laboratory of Public Big Data, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xiaoxu Deng
- College of Big Data and Information Engineering, State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, Guizhou, China
| | - Ruirui Cui
- College of Big Data and Information Engineering, State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Meiyang Song
- Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, State Key Laboratory of Public Big Data, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xiang Guo
- College of Big Data and Information Engineering, State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Xingyong Gong
- College of Big Data and Information Engineering, State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jie He
- Key Laboratory of Catalysis and Energy Materials, Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, China.
| | - Peng Chen
- Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, State Key Laboratory of Public Big Data, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
10
|
Xu D, Zhai L, Mu Z, Tao CL, Ge F, Zhang H, Ding M, Cheng F, Wu XJ. Versatile synthesis of nano-icosapods via cation exchange for effective photocatalytic conversion of biomass-relevant alcohols. Chem Sci 2023; 14:10167-10175. [PMID: 37772115 PMCID: PMC10530866 DOI: 10.1039/d3sc02493h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
Branched metal chalcogenide nanostructures with well-defined composition and configuration are appealing photocatalysts for solar-driven organic transformations. However, precise design and controlled synthesis of such nanostructures still remain a great challenge. Herein, we report the construction of a variety of highly symmetrical metal sulfides and heterostructured icosapods based on them, in which twenty branches were radially grown in spatially ordered arrangement, with a high degree of structure homogeneity. Impressively, the as-obtained CdS-PdxS icosapods manifest a significantly improved photocatalytic activity for the selective oxidation of biomass-relevant alcohols into corresponding aldehydes coupled with H2 evolution under visible-light irradiation (>420 nm), and the apparent quantum yield of the benzyl alcohol reforming can be achieved as high as 31.4% at 420 nm. The photoreforming process over the CdS-PdxS icosapods is found to be directly triggered by the photogenerated electrons and holes without participation of radicals. The enhanced photocatalytic performance is attributed to the fast charge separation and abundant active sites originating from the well-defined configuration and spatial organization of the components in the branched heterostructures.
Collapse
Affiliation(s)
- Dan Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Li Zhai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong China
| | - Zhangyan Mu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Chen-Lei Tao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Feiyue Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Han Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications Nanjing 210023 China
| | - Mengning Ding
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Fang Cheng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications Nanjing 210023 China
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
11
|
Zhang H, Liu Y, Liu H, Yin J, Shi L, Tang H. Surface anchoring of nickel sulfide clusters as active sites and cocatalysts for photocatalytic antibiotic degradation and bacterial inactivation. J Colloid Interface Sci 2023; 637:421-430. [PMID: 36716666 DOI: 10.1016/j.jcis.2023.01.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/01/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Achieving photocatalytic antibiotic degradation and bacterial inactivation with high efficiency remains a challenging mission to originate a clean environment. In this work, ultra-small NiS clusters were in-situ grew on photoactive ZnIn2S4 nanoflower supports to form a NiS/ZnIn2S4 heterojunction, in which a strong and surface-limited binding was formed between the NiS clusters and ZnIn2S4 supports. The in-situ formed NiS clusters not only appeased interfacial charge transfer resistance of the heterojunction but also eventuated a strong built-in electric field, resulting a fast electron migration from ZnIn2S4 to NiS clusters functioned as cocatalyst and active sites to boost the separation efficiency of photogenerated carriers. As a result, the optimal 2NiS/ZnIn2S4 heterojunction expressed a higher photocatalytic Escherichia inactivation activity (99.23 % for 3 h) and a raised antibiotic degradation performance, including tetracycline (60 % for 20 min), ofloxacin (62 % for 20 min), oxytetracycline (63 % for 20 min) compared to that of pure ZnIn2S4 (39.14 % for Escherichia inactivation and 44 % for tetracycline degradation). This work furnishes a great promise to develop inorganic clusters coupled photocatalysts for light-driven environmental application.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Emergency, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Yanru Liu
- Department of Emergency, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Hanqiong Liu
- Department of Emergency, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Jiangning Yin
- Department of Emergency, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Liang Shi
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China.
| | - Hua Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, P.R. China.
| |
Collapse
|
12
|
Wu Y, Sakurai T, Adachi T, Wang Q. Alternatives to water oxidation in the photocatalytic water splitting reaction for solar hydrogen production. NANOSCALE 2023; 15:6521-6535. [PMID: 36938953 DOI: 10.1039/d3nr00260h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The photocatalytic water splitting process to produce H2 is an attractive approach to meet energy demands while achieving carbon emission reduction targets. However, none of the current photocatalytic devices meets the criteria for practical sustainable H2 production due to their insufficient efficiency and the resulting high H2 cost. Economic viability may be achieved by simultaneously producing more valuable products than O2 or integrating with reforming processes of real waste streams, such as plastic and food waste. Research over the past decade has begun to investigate the possibility of replacing water oxidation with more kinetically and thermodynamically facile oxidation reactions. We summarize how various alternative photo-oxidation reactions can be combined with proton reduction in photocatalysis to achieve chemical valorization with concurrent H2 production. By examining the current advantages and challenges of these oxidation reactions, we intend to demonstrate that these technologies would contribute to providing H2 energy, while also producing high-value chemicals for a sustainable chemical industry and eliminating waste.
Collapse
Affiliation(s)
- Yaqiang Wu
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Takuya Sakurai
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Takumi Adachi
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Qian Wang
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
13
|
Nie X, Zhao Y, Gao W, Liu W, Cheng X, Gao Y, Shang N, Gao S, Wang C. Enhanced Photocatalytic Activity of Hyper-Cross-Linked Polymers Toward Amines Oxidation Coupled with H 2 O 2 Generation through Extending Monomer's Conjugation Degree. Chemistry 2023; 29:e202203607. [PMID: 36482168 DOI: 10.1002/chem.202203607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Visible-light-driven amines oxidation coupled with hydrogen peroxide (H2 O2 ) generation is a promising way to convert solar energy to chemical energy. Herein, a series of hyper-cross-linked polymers (HCPs) photocatalysts with different arenes monomers, including benzene (BE), diphenyl (DP), p-terphenyl (TP), or p-quaterphenyl (QP), were synthesized by simple Friedel-Crafts alkylation reaction. Owing to the maximum monomer's conjunction degree and excellent oxygen (O2 ) adsorption capacity, QP-HCPs exhibited highest photocatalytic activity for benzylamine oxidation coupled with H2 O2 generation under the irradiation of 455 nm Blue LED lamp. More than 99 % of benzylamine could be converted to N-benzylidenebenzylamine within 60 min. In addition, nearly stoichiometric H2 O2 was synchronously obtained with a high production rate of 9.3 mmol gcat -1 h-1 . Our work not only demonstrated that the photocatalytic activity of HCPs photocatalysts significantly depends on monomer's conjunction degree, but also provided a new strategy for converting solar energy to chemical energy.
Collapse
Affiliation(s)
- Xinhao Nie
- College of Science, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Ying Zhao
- College of Science, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Wei Gao
- College of Science, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Weihua Liu
- College of Science, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Xiang Cheng
- College of Science, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Yongjun Gao
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P.R. China
| | - Ningzhao Shang
- College of Science, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Shutao Gao
- College of Science, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, P.R. China
| |
Collapse
|
14
|
Dual-functional photocatalysis boosted by electrostatic assembly of porphyrinic metal-organic framework heterojunction composites with CdS quantum dots. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
15
|
Verma PK. Advancement in photocatalytic acceptorless dehydrogenation reactions: Opportunity and challenges for sustainable catalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Wu B, Zhan X, Yu P, Meng J, Sendeku MG, Dajan FT, Gao N, Lai W, Yang Y, Wang Z, Wang F. Photocatalytic co-production of hydrogen gas and N-benzylidenebenzylamine over high-quality 2D layered In 4/3P 2Se 6 nanosheets. NANOSCALE 2022; 14:15442-15450. [PMID: 36222699 DOI: 10.1039/d2nr04332g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The concurrent photocatalytic synthesis of hydrogen gas and high-valued chemicals over two-dimensional semiconductors is extremely attractive to alleviate global energy and environmental concerns through directly using sunlight. Herein, a novel layered In4/3P2Se6 nanosheet is synthesized by a space confined chemical vapor conversion method, and it acts as a dual-functional photocatalyst to deliver the co-production of hydrogen gas and N-benzylidenebenzylamine from water reduction and selective benzylamine oxidation. The simultaneous yield of hydrogen gas and N-benzylidenebenzylamine is 895 μmol g-1 and 681 μmol g-1, respectively, within 16-hour continuous reaction involving a small amount of water in acetonitrile solvent. Moreover, 97.4% N-benzylidenebenzylamine selectivity from benzylamine oxidation can be achieved with continuous 10 hour-reaction only in acetonitrile solvent under ambient conditions. Further in situ electron paramagnetic resonance measurements and reaction optimization tests reveal that the reaction mechanism strongly relies on the conditions over the In4/3P2Se6 nanosheet photocatalyst.
Collapse
Affiliation(s)
- Binglan Wu
- Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China.
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Xueying Zhan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Peng Yu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Jun Meng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Marshet Getaye Sendeku
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Fekadu Tsegaye Dajan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Ning Gao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Wenjia Lai
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Ying Yang
- Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China.
| | - Zhenxing Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Fengmei Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
17
|
Qi MY, Conte M, Tang ZR, Xu YJ. Engineering Semiconductor Quantum Dots for Selectivity Switch on High-Performance Heterogeneous Coupling Photosynthesis. ACS NANO 2022; 16:17444-17453. [PMID: 36170635 DOI: 10.1021/acsnano.2c08652] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Semiconductor-based photoredox catalysis brings an innovative strategy for sustainable organic transformation (e.g., C-C/C-X bond formation), via radical coupling under mild conditions. However, since semiconductors interact with photogenerated radicals unselectively, the precise control of selectivity for such organic synthesis by steering radical conversion is extremely challenging. Here, by the judicious design of a structurally well-defined and atomically dispersed cocatalyst over semiconductor quantum dots, we demonstrate the precise selectivity switch on high-performance selective heterogeneous coupling photosynthesis of a C-C bond or a C-N bond along with hydrogen production over the Ni-oxo cluster and single Pd atom-decorated CdS quantum dots crafted onto the SiO2 support. Mechanistic studies unveil that the Ph(•CH)NH2 and PhCH2NH2•+ act as dominant radical intermediates for such divergent organic synthesis of C-C coupled vicinal diamines and C-N coupled imines, as respectively enabled by Ni-oxo clusters assisted radical-radical coupling and single Pd atom-assisted radical addition-elimination. This work overcomes the pervasive difficulties of selectivity regulation in semiconductor-based photochemical synthesis, highlighting a vista of utilizing atomically dispersed cocatalysts as active sites to maneuver unselective radical conversion by engineering quantum dots toward selective heterogeneous photosynthesis.
Collapse
Affiliation(s)
- Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Marco Conte
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, U.K
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
18
|
Liu X, Dai D, Cui Z, Zhang Q, Gong X, Wang Z, Liu Y, Zheng Z, Cheng H, Dai Y, Huang B, Wang P. Optimizing the Reaction Pathway by Active Site Regulation in the CdS/Fe 2O 3 Z-Scheme Heterojunction System for Highly Selective Photocatalytic Benzylamine Oxidation Integrated with H 2 Production. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaolei Liu
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Dujuan Dai
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zihao Cui
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Qianqian Zhang
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xueqin Gong
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zeyan Wang
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuanyuan Liu
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hefeng Cheng
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Wang
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
19
|
Surface engineering improving selective hydrogenation of p-chloronitrobenzene over AuPt alloy/SnNb2O6 ultrathin nanosheets under visible light. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Chen Y, Sun D, Du L, Jiao Y, Han W, Tian G. Sandwich-Structured Hybrid of NiCo Nanoparticles-Embedded Carbon Nanotubes Grafted on C 3N 4 Nanosheets for Efficient Photodehydrogenative Coupling Reactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24425-24434. [PMID: 35603740 DOI: 10.1021/acsami.2c04826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exploring cheap and efficient hybrid catalysts offers exciting opportunities for enhancing the performance of photocatalysts in the green organic synthesis field. Herein, a facile and effective approach is designed for the synthesis of a sandwich-structured hybrid in which NiCo bimetallic nanoparticles are embedded in the tip of nitrogen-doped carbon nanotubes (N-CNTs) grafted on both sides of a nitrogen deficient C3N4 (Nv-C3N4) nanosheet for photodehydrogenative coupling reactions. Such a brand-new type of sandwich-structured hybrid comprises Nv-C3N4 nanosheets and surrounding N-CNTs embedded with NiCo nanoparticles at their tips. Remarkably, the resultant hybrid exhibits integrated functionalities, abundant active sites, enhanced visible light absorption, and excellent interfacial charge transfer ability. As a result, the optimized NiCo@N-CNTs@Nv-C3N4 photocatalyst shows significantly improved photodehydrogenative coupling performance of amines to imines compared to the control single-metal-based catalysts (Ni@N-CNTs@Nv-C3N4 and Co@N-CNTs@Nv-C3N4). The mechanistic investigation through experimental and computational study demonstrates that, compared with single-metal-based hybrids, the NiCo bimetallic hybrid exhibits stronger amine adsorption and weaker photogenerated hydrogen atom adsorption, thus promoting the dehydrogenative activation of primary amines and fast generation of imines. This work presents a promising insight for designing and preparing efficient photocatalysts to trigger organic synthesis in high yields.
Collapse
Affiliation(s)
- Yajie Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| | - Dan Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| | - Lizhi Du
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| | - Yuzhen Jiao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| | - Wei Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| | - Guohui Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| |
Collapse
|
21
|
Huang M, Chen C, Wang T, Sui Q, Zhang K, Li B. Cadmium-sulfide/gold/graphitic-carbon-nitride sandwich heterojunction photocatalyst with regulated electron transfer for boosting carbon-dioxide reduction to hydrocarbon. J Colloid Interface Sci 2022; 613:575-586. [DOI: 10.1016/j.jcis.2022.01.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
|
22
|
Tang JH, Han G, Li G, Yan K, Sun Y. Near-infrared light photocatalysis enabled by a ruthenium complex-integrated metal–organic framework via two-photon absorption. iScience 2022; 25:104064. [PMID: 35355522 PMCID: PMC8958328 DOI: 10.1016/j.isci.2022.104064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/23/2021] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
Photocatalysis under UV/visible light irradiation has emerged as one of the green methodologies for solar energy utilization and organic synthesis. These photocatalytic processes are typically initiated by one-photon-absorbing metal complexes or organic dyes. Nevertheless, the intrinsic restrictions of UV/visible light irradiation, such as shallow penetration in reaction solutions, competing absorption by substrates, and limited coverage of the solar spectrum, call for the development of innovative photocatalysts functioning under longer wavelength irradiation. Herein, we report a ruthenium complex containing a metal-organic framework, MOF-Ru1, which can drive diverse organic reactions under 740 nm light irradiation following the two-photon absorption (TPA) process. Various organic transformations such as energy transfer, reductive, oxidative, and redox neutral reactions were realized using this heterogeneous hybrid photocatalyst. Overall, MOF-Ru1 represents an intriguing TPA photocatalyst active under near-infrared light irradiation, paving a way for the efficient utilization of low-energy light and convenient photocatalyst recycling because of phase separation. Ru complexes with π-conjugation ligands show two-photon absorption of NIR photons Hybrid MOF-Ru has NIR light-driven photocatalytic performance with recyclability A variety of organic reactions were photocatalyzed by MOF-Ru under 740 nm irradiation
Collapse
Affiliation(s)
- Jian-Hong Tang
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Guanqun Han
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Guodong Li
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Kaili Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
- Corresponding author
| |
Collapse
|
23
|
She P, Qin JS, Sheng J, Qi Y, Rui H, Zhang W, Ge X, Lu G, Song X, Rao H. Dual-Functional Photocatalysis for Cooperative Hydrogen Evolution and Benzylamine Oxidation Coupling over Sandwiched-Like Pd@TiO 2 @ZnIn 2 S 4 Nanobox. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105114. [PMID: 34984800 DOI: 10.1002/smll.202105114] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Photocatalytic hydrogen evolution (PHE) over semiconductor photocatalysts is usually constrained by the limited light-harvesting and separation of photogenerated electron-hole pairs. Most of the reported systems focusing on PHE are facilitated by consuming the photoinduced holes with organic sacrificial electron donors (SEDs). The introduction of the SEDs not only causes the environmental problem, but also increases the cost of the reaction. Herein, a dual-functional photocatalyst is developed with the morphology of sandwiched-like hollowed Pd@TiO2 @ZnIn2 S4 nanobox, which is synthesized by choosing microporous zeolites with sub-nanometer-sized Pd nanoparticles (Pd NPs) embedded as the sacrificial templates. The ternary Pd@TiO2 @ZnIn2 S4 photocatalyst exhibits a superior PHE rate (5.35 mmol g-1 h-1 ) and benzylamine oxidation conversion rate (>99%) simultaneously without adding any other SEDs. The PHE performance is superior to the reported composites of TiO2 and ZnIn2 S4 , which is attributed to the elevated light capture ability induced by the hollow structure, and the enhanced charge separation efficiency facilitated by the ultrasmall sized Pd NPs. The unique design presented here holds great potential for other highly efficient cooperative dual-functional photocatalytic reactions.
Collapse
Affiliation(s)
- Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jiyao Sheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yuanyuan Qi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hongbang Rui
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wei Zhang
- Electron Microscopy Center, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xin Ge
- Electron Microscopy Center, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Geyu Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xiaowei Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
24
|
Zhu M, Yan Q, Bai X, Cai H, Zhao J, Yan Y, Zhu K, Ye K, Yan J, Cao D, Wang G. Construction of reduced graphene oxide coupled with CoSe 2-MoSe 2 heterostructure for enhanced electrocatalytic hydrogen production. J Colloid Interface Sci 2022; 608:922-930. [PMID: 34785467 DOI: 10.1016/j.jcis.2021.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 01/11/2023]
Abstract
It is important to develop novel energy to solve energy shortage and environmental problems. Hydrogen evolution reaction (HER) is envisaged as a viable technology that can be used to develop sustainable clean energy. Herein, we report a catalyst with CoSe2-MoSe2 heterostructure grown on reduced graphene oxide with an optimum Co/Mo proportion of 1:1 (CoSe2-MoSe2(1-1)/rGO). It exhibits good HER activities in both acidic and alkaline conditions. The CoSe2-MoSe2(1-1)/rGO shows an overpotential of 107 mV at 10 mA cm-2 with a Tafel slope of 56 mV dec-1 under acidic condition. Meanwhile, CoSe2-MoSe2(1-1)/rGO also presents an overpotential of 182 mV at 10 mA cm-2 and with a Tafel slope of 89 mV dec-1 under alkaline condition. These impressive performances of the catalyst are mainly due to the excellent electronic transmission capability of rGO and the abundant active sites of CoSe2-MoSe2 heterostructure as well as the optimized hydrogen adsorption energy of CoSe2-MoSe2 interface. The design of CoSe2-MoSe2(1-1)/rGO provides a meaningful guide for manufacturing electrode in energy storage and conversion.
Collapse
Affiliation(s)
- Min Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Qing Yan
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, PR China; College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Xiaojing Bai
- College of Materials Science and Engineering, Anyang Institute of Technology, Anyang, Henan 455000, PR China
| | - Hao Cai
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Jing Zhao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Yongde Yan
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Kai Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Ke Ye
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Jun Yan
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Dianxue Cao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Guiling Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| |
Collapse
|
25
|
Mondal S, Das SR, Sahoo L, Dutta S, Gautam UK. Light-Induced Hypoxia in Carbon Quantum Dots and Ultrahigh Photocatalytic Efficiency. J Am Chem Soc 2022; 144:2580-2589. [PMID: 35104402 DOI: 10.1021/jacs.1c10636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbon quantum dots (CQDs) represent a class of carbon materials exhibiting photoresponse and many potential applications. Here, we present a unique property that dissolved CQDs capture large amounts of molecular oxygen from the air, the quantity of which can be controlled by light irradiation. The O2 content can be varied between a remarkable 1 wt % of the CQDs in the dark to nearly half of it under illumination, in a reversible manner. Moreover, O2 depletion enhances away from the air-solution interface as the nearby CQDs quickly regain them from the air, creating a pronounced concentration gradient in the solution. We elucidate the role of the CQD functional groups and show that excitons generated under light are responsible for their tunable adsorbed-oxygen content. Because of O2 enrichment, the photocatalytic efficiency of the CQDs toward oxidation of benzylamines in the air is the same as under oxygen flow and far higher than the existing photocatalysts. The findings should encourage the development of a new class of oxygen-enricher materials and air as a sustainable oxidant in chemical transformations.
Collapse
Affiliation(s)
- Sanjit Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | | | - Lipipuspa Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | | | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| |
Collapse
|
26
|
Zhang Y, Yu W, Cao S, Sun Z, Nie X, Liu Y, Zhao Z. Photocatalytic Chemoselective Transfer Hydrogenation of Quinolines to Tetrahydroquinolines on Hierarchical NiO/In 2O 3–CdS Microspheres. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Weiwei Yu
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuo Cao
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhe Sun
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Zhongkui Zhao
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
27
|
Liu X, Wang Y, Li B, Liu B, Wang W, Xiang N, Zhang Z. Catalytic dehydrogenation of amines to imines and the in-situ reduction of sulfoxides into sulfides. J Catal 2021. [DOI: 10.1016/j.jcat.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Wang F, Hou T, Zhao X, Yao W, Fang R, Shen K, Li Y. Ordered Macroporous Carbonous Frameworks Implanted with CdS Quantum Dots for Efficient Photocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102690. [PMID: 34302403 DOI: 10.1002/adma.202102690] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Solar-driven photocatalytic CO2 reduction is regarded as a promising way to simultaneously mitigate the energy crisis and CO2 pollution. However, achieving high efficiency of photocatalytic CO2 reduction, especially without the assistance of sacrifice reagents or extra alkaline additives, remains a critical issue. Herein, a photocatalyst of 3D ordered macroporous N-doped carbon (NC) supported CdS quantum dots (3DOM CdSQD/NC) is successfully fabricated toward photocatalytic CO2 reduction via an in situ transformation strategy. Additionally, an amines oxidation reaction is introduced to replace the H2 O oxidation process to further boost the photocatalytic CO2 reduction efficiency. Impressively, 3DOM CdSQD/NC exhibits superior activity and selectivity in photocatalytic CO2 reduction coupled with amines oxidation, affording a CO production rate as high as 5210 µmol g-1 h-1 in the absence of any sacrificial agents and alkaline additives. Moreover, 3DOM CdSQD/NC achieves an apparent quantum efficiency of 2.9% at 450 nm. Mechanism studies indicate that the 3D ordered macropores in the NC matrix are beneficial to the transfer of photogenerated carriers. Furthermore, the highly dispersed CdS QDs on the NC skeleton are able to significantly promote the adsorption of both CO2 and amine molecules and depress the CO2 activation energy barriers by stabilizing the *COOH intermediate, directly contributing to the high activity.
Collapse
Affiliation(s)
- Fengliang Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Tingting Hou
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xin Zhao
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wen Yao
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ruiqi Fang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Kui Shen
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yingwei Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
29
|
Qi MY, Conte M, Anpo M, Tang ZR, Xu YJ. Cooperative Coupling of Oxidative Organic Synthesis and Hydrogen Production over Semiconductor-Based Photocatalysts. Chem Rev 2021; 121:13051-13085. [PMID: 34378934 DOI: 10.1021/acs.chemrev.1c00197] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Merging hydrogen (H2) evolution with oxidative organic synthesis in a semiconductor-mediated photoredox reaction is extremely attractive because the clean H2 fuel and high-value chemicals can be coproduced under mild conditions using light as the sole energy input. Following this dual-functional photocatalytic strategy, a dreamlike reaction pathway for constructing C-C/C-X (X = C, N, O, S) bonds from abundant and readily available X-H bond-containing compounds with concomitant release of H2 can be readily fulfilled without the need of external chemical reagents, thus offering a green and fascinating organic synthetic strategy. In this review, we begin by presenting a concise overview on the general background of traditional photocatalytic H2 production and then focus on the fundamental principles of cooperative photoredox coupling of selective organic synthesis and H2 production by simultaneous utilization of photoexcited electrons and holes over semiconductor-based catalysts to meet the economic and sustainability goal. Thereafter, we put dedicated emphasis on recent key progress of cooperative photoredox coupling of H2 production and various selective organic transformations, including selective alcohol oxidation, selective methane conversion, amines oxidative coupling, oxidative cross-coupling, cyclic alkanes dehydrogenation, reforming of lignocellulosic biomass, and so on. Finally, the remaining challenges and future perspectives in this flourishing area have been critically discussed. It is anticipated that this review will provide enlightening guidance on the rational design of such dual-functional photoredox reaction system, thereby stimulating the development of economical and environmentally benign solar fuel generation and organic synthesis of value-added fine chemicals.
Collapse
Affiliation(s)
- Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Marco Conte
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Masakazu Anpo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
30
|
Zheng Z, Wang T, Han F, Yang Q, Li B. Synthesis of Ni modified Au@CdS core-shell nanostructures for enhancing photocatalytic coproduction of hydrogen and benzaldehyde under visible light. J Colloid Interface Sci 2021; 606:47-56. [PMID: 34388572 DOI: 10.1016/j.jcis.2021.07.150] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
The development of visible light responsive photocatalysts for simultaneous production of hydrogen (H2) fuel and value-added chemicals is greatly promising to solve the energy and environmental issues by improving the utilization efficiency of solar energy. Herein, the three-component Ni/(Au@CdS) core-shell nanostructures were constructed by the hydrothermal synthesis followed with photodeposition. The intimate integration of plasmonic Au nanospheres and visible-light responsive CdS shells modified with Ni cocatalyst facilitated the generation and separation of electron-hole pairs as well as reduced the overpotential of hydrogen evolution. The Ni/(Au@CdS) photocatalyst exhibited excellent performance toward the selective transformation of benzyl alcohol under anaerobic conditions, and the yields of H2 and benzaldehyde reached up to 3882 and 4242 μmol·g-1·h-1, respectively. The apparent quantum efficiency (AQE) was determined to be 4.09% under the irradiation of 420 nm. The systematic studies have verified the synergy of plasmonic effect and metal cocatalyst on enhancing the photocatalysis. This work highlights the desirable design and potential application of plasmonic photocatalysts for solar-driven coproduction of H2 fuel and high-value chemicals.
Collapse
Affiliation(s)
- Ziqiang Zheng
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ting Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fang Han
- Anhui Entry-Exit Inspection and Quarantine Technical Center, 329 Tunxi Road, Hefei, Anhui 230029, China
| | - Qing Yang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Benxia Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
31
|
Yu J, Liu Q, Qiao W, Lv D, Li Y, Liu C, Yu Y, Li Y, Niemantsverdriet H, Zhang B, Su R. Catalytic Role of Metal Nanoparticles in Selectivity Control over Photodehydrogenative Coupling of Primary Amines to Imines and Secondary Amines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01519] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jin Yu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou District, Beijing 101407, China
| | - Qi Liu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Wei Qiao
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy, Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Dongdong Lv
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou District, Beijing 101407, China
| | - Yaru Li
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou District, Beijing 101407, China
| | - Cuibo Liu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yifu Yu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yongwang Li
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou District, Beijing 101407, China
| | - Hans Niemantsverdriet
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou District, Beijing 101407, China
- SynCat@DIFFER, Syngaschem BV, 6336 HH Eindhoven, The Netherlands
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Ren Su
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou District, Beijing 101407, China
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy, Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| |
Collapse
|
32
|
Zhang HH, Zhan GP, Liu ZK, Wu CD. Photocatalytic Hydrogen Evolution Coupled with Production of Highly Value-Added Organic Chemicals by a Composite Photocatalyst CdIn 2 S 4 @MIL-53-SO 3 Ni 1/2. Chem Asian J 2021; 16:1499-1506. [PMID: 33871155 DOI: 10.1002/asia.202100262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Indexed: 11/08/2022]
Abstract
Photocatalytic water splitting coupled with the production of highly value-added organic chemicals is of significant importance, which represents a very promising pathway for transforming green solar energy into chemical energy. Herein, we report a composite photocatalyst CdIn2 S4 @MIL-53-SO3 Ni1/2 , which is highly efficient on prompting water splitting for the production of H2 in the reduction half-reaction and selective oxidation of organic molecules for the production of highly value-added organic chemicals in the oxidation half-reaction under visible light irradiation. The superior photocatalytic properties of the composite photocatalyst CdIn2 S4 @MIL-53-SO3 Ni1/2 should be ascribed to coating suspended ion catalyst (SIC), consisting of redox-active NiII ions in the anionic pores of coordination network MIL-53-SO3 - , on the surface of photoactive CdIn2 S4 , which endows photogenerated electron-hole pairs separate more efficiently for high rate production of H2 and selective production of highly value-added organic products, demonstrating great potential for practical applications.
Collapse
Affiliation(s)
- Huan-Huan Zhang
- Key Laboratory of Excited-State Materials of Zhejiang Province, and State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Guo-Peng Zhan
- Key Laboratory of Excited-State Materials of Zhejiang Province, and State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zi-Kun Liu
- Key Laboratory of Excited-State Materials of Zhejiang Province, and State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Chuan-De Wu
- Key Laboratory of Excited-State Materials of Zhejiang Province, and State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
33
|
Wang H, Shi Y, Wang Z, Song Y, Shen M, Guo B, Wu L. Selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde over Au-Pd/ultrathin SnNb2O6 nanosheets under visible light. J Catal 2021. [DOI: 10.1016/j.jcat.2021.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Wang T, Tao X, Li X, Zhang K, Liu S, Li B. Synergistic Pd Single Atoms, Clusters, and Oxygen Vacancies on TiO 2 for Photocatalytic Hydrogen Evolution Coupled with Selective Organic Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006255. [PMID: 33325647 DOI: 10.1002/smll.202006255] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Developing efficient photocatalysts for synchronously producing H2 and high value-added chemicals holds great promise to enhance solar energy conversion. Herein, a facile strategy of simultaneously engineering Pd cocatalyst and oxygen vacancies (VO s) on TiO2 to promote H2 production coupled with selective oxidation of benzylamine is demonstrated. The optimized PdSA+C /TiO2 -VO photocatalyst containing Pd single atoms (SAs), clusters (C), and VO s exhibits much superior performance to those of TiO2 -VO and PdSA /TiO2 -VO counterparts. The production rates of H2 and N-benzylidenebenzylamine over PdSA+C /TiO2 -VO are 52.7 and 1.5 times those over TiO2 -VO , respectively. Both experimental and theoretical studies have elucidated the synergistic effect of Pd SAs, clusters, and VO s on TiO2 in boosting the photocatalytic reaction. The presence of Pd SAs facilitates the generation and stabilization of abundant VO s by the formation of PdOTi3+ atomic interface, while Pd clusters promote the photogenerated charge separation and afford the optimum active sites for H2 evolution. Surface VO s of TiO2 guarantee the efficient adsorption and dissociation/activation of reactant molecules. This study reveals the effect of active-site engineering on the photocatalysis and is expected to shed substantial light on future structure design and modulation of semiconductor photocatalysts.
Collapse
Affiliation(s)
- Ting Wang
- Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Xueqin Tao
- Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Xiaoli Li
- Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Kun Zhang
- Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Shoujie Liu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Benxia Li
- Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
35
|
Li JY, Li YH, Qi MY, Lin Q, Tang ZR, Xu YJ. Selective Organic Transformations over Cadmium Sulfide-Based Photocatalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01567] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jing-Yu Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Yue-Hua Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Ming-Yu Qi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Qiong Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Zi-Rong Tang
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Yi-Jun Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| |
Collapse
|