1
|
Kodama K, Todoroki N. Progress in Experimental Methods Using Model Electrodes for the Development of Noble-Metal-Based Oxygen Electrocatalysts in Fuel Cells and Water Electrolyzers. SMALL METHODS 2025:e2401851. [PMID: 39888223 DOI: 10.1002/smtd.202401851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/02/2025] [Indexed: 02/01/2025]
Abstract
Hydrogen plays a key role in maximizing the benefits of renewable energy, and the widespread adoption of water electrolyzers and fuel cells, which convert the chemical energy of hydrogen and electrical energy into each other, is strongly desired. Electrocatalysts used in these devices, typically in the form of nanoparticles, are crucial components because they significantly affect cell performance, but their raw materials rely on limited resources. In catalyst research, electrochemical experimental studies using model catalysts, such as single-crystal electrodes, have provided valuable information on reaction and degradation mechanisms, as well as catalyst development strategies aimed at overcoming the trade-off between activity and durability, across spatial scales ranging from the atomic to the nanoscale. Traditionally, these experiments are conducted using well-defined, simple model surfaces like bare single-crystal electrodes in pure systems. However, in recent years, experimental methods using more complex interfaces-while still precisely controlling elemental distribution, microstructure, and modification patterns-have been established. This paper reviews the history of those studies focusing on noble-metal-based electrocatalysts for oxygen reduction reactions and oxygen evolution reactions, which account for the majority of efficiency losses in fuel cells and water electrolyzers, respectively. Furthermore, potential future research themes in experimental studies using model electrodes are identified.
Collapse
Affiliation(s)
- Kensaku Kodama
- Toyota Central R&D Labs., Inc., Nagakute, 480-1192, Japan
| | | |
Collapse
|
2
|
Ke J, Zhu W, Ji Y, Chen J, Li C, Wang Y, Wang Q, Huang WH, Hu Z, Li Y, Shao Q, Lu J. Optimizing Acidic Oxygen Evolution Reaction via Modulation Doping in Van der Waals Layered Iridium Oxide. Angew Chem Int Ed Engl 2025:e202422740. [PMID: 39757984 DOI: 10.1002/anie.202422740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/07/2025]
Abstract
Anodic oxygen evolution reaction (OER) exhibits a sluggish four-electron transfer process, necessitating catalysts with exceptional catalytic activity to enhance its kinetic rate. Van der Waals layered oxides are ideal materials for catalyst design, yet its stability for acidic OER remains large obstacle. Doping provides a crucial way to improve the activity and stability simultaneously. However, doping in Van der Waals layered oxides remains a great challenge since it easily leads to lattice distortion or even the crystal structure damage. In this work, we successfully doping acid-resistant niobium (Nb) into Van der Waals layered edge-shared 1T phase iridium oxide (1 T-IrO2) via alkali-assisted thermal method. 1 T-IrO2 with a 5 % Nb doping (Nb0.05Ir0.95O2) only required an overpotential of 191 mV to achieve a current density of 10 mA cm-2 in 0.5 M H2SO4, 56 mV lower than that of 1T-IrO2. When applied in proton exchange membrane water electrolyzer, Nb0.05Ir0.95O2 show stable operation at a high current density of 1.2 A cm-2 for over 50 days. Density functional theory calculation reveals that doping Nb changes the potential-determining step from the *OOH deprotonation process in 1 T-IrO2 to the *O-OH coupling process in Nb0.05Ir0.95O2.
Collapse
Affiliation(s)
- Jia Ke
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, P. R. China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, P. R. China
| | - Jinxin Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, P. R. China
| | - Chenchen Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Qun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, P. R. China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Centre, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Zhiwei Hu
- Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Street 40, Dresden, 01187, Germany
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, P. R. China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| |
Collapse
|
3
|
Qiu L, Wu Z, Liu Y, Qin Z, Liu Y, Zhang J, Deng Y, Hu W. Mn Doping at High-Activity Octahedral Vacancies of γ-Fe 2O 3 for Oxygen Reduction Reaction Electrocatalysis in Metal-Air Batteries. Angew Chem Int Ed Engl 2024:e202421918. [PMID: 39628092 DOI: 10.1002/anie.202421918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Indexed: 12/17/2024]
Abstract
γ-Fe2O3 with the intrinsic cation vacancies is an ideal substrate for heteroatom doping into the highly active octahedral sites in spinel oxide catalysts. However, it is still a challenge to confirm the vacancy location of γ-Fe2O3 through experiments and obtain enhanced catalytic performance by preferential occupation of octahedral sites for heteroatom doping. Here, a Mn-doped γ-Fe2O3 incorporated with carbon nanotubes catalyst was developed to successfully achieve preferential doping into highly active octahedral sites by employing γ-Fe2O3 as the precursor. Further, the vacancy in γ-Fe2O3 was only located on octahedral sites rather than tetrahedral ones, which was first proved by direct experimental evidence through the clarification doping sites of Mn. Notably, the catalyst shows outstanding activity towards oxygen reduction reaction with the half-wave potential of 0.82 V and 0.64 V vs. reversible hydrogen electrode in alkaline and neutral electrolytes, respectively, as well as the maximum power density of 179 mWcm-2 and 403 mWcm-2 for Mg-air batteries and Al-air batteries, respectively. It could be attributed to the synergistic effect of the doping Mn on octahedral sites and the substrate γ-Fe2O3 along with the modification of the adsorption/desorption properties for oxygen-containing intermediates as well as the optimization of the reaction energy barriers.
Collapse
Affiliation(s)
- Liuzhe Qiu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China.Institution
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhong Wu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Yingjie Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhenbo Qin
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Yichun Liu
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Yida Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China.Institution
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
4
|
Wang H, Yan Z, Cheng F, Chen J. Advances in Noble Metal Electrocatalysts for Acidic Oxygen Evolution Reaction: Construction of Under-Coordinated Active Sites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401652. [PMID: 39189476 PMCID: PMC11348273 DOI: 10.1002/advs.202401652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Indexed: 08/28/2024]
Abstract
Renewable energy-driven proton exchange membrane water electrolyzer (PEMWE) attracts widespread attention as a zero-emission and sustainable technology. Oxygen evolution reaction (OER) catalysts with sluggish OER kinetics and rapid deactivation are major obstacles to the widespread commercialization of PEMWE. To date, although various advanced electrocatalysts have been reported to enhance acidic OER performance, Ru/Ir-based nanomaterials remain the most promising catalysts for PEMWE applications. Therefore, there is an urgent need to develop efficient, stable, and cost-effective Ru/Ir catalysts. Since the structure-performance relationship is one of the most important tools for studying the reaction mechanism and constructing the optimal catalytic system. In this review, the recent research progress from the construction of unsaturated sites to gain a deeper understanding of the reaction and deactivation mechanism of catalysts is summarized. First, a general understanding of OER reaction mechanism, catalyst dissolution mechanism, and active site structure is provided. Then, advances in the design and synthesis of advanced acidic OER catalysts are reviewed in terms of the classification of unsaturated active site design, i.e., alloy, core-shell, single-atom, and framework structures. Finally, challenges and perspectives are presented for the future development of OER catalysts and renewable energy technologies for hydrogen production.
Collapse
Affiliation(s)
- Huimin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
5
|
Magnussen OM, Drnec J, Qiu C, Martens I, Huang JJ, Chattot R, Singer A. In Situ and Operando X-ray Scattering Methods in Electrochemistry and Electrocatalysis. Chem Rev 2024; 124:629-721. [PMID: 38253355 PMCID: PMC10870989 DOI: 10.1021/acs.chemrev.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024]
Abstract
Electrochemical and electrocatalytic processes are of key importance for the transition to a sustainable energy supply as well as for a wide variety of other technologically relevant fields. Further development of these processes requires in-depth understanding of the atomic, nano, and micro scale structure of the materials and interfaces in electrochemical devices under reaction conditions. We here provide a comprehensive review of in situ and operando studies by X-ray scattering methods, which are powerful and highly versatile tools to provide such understanding. We discuss the application of X-ray scattering to a wide variety of electrochemical systems, ranging from metal and oxide single crystals to nanoparticles and even full devices. We show how structural data on bulk phases, electrode-electrolyte interfaces, and nanoscale morphology can be obtained and describe recent developments that provide highly local information and insight into the composition and electronic structure. These X-ray scattering studies yield insights into the structure in the double layer potential range as well as into the structural evolution during electrocatalytic processes and phase formation reactions, such as nucleation and growth during electrodeposition and dissolution, the formation of passive films, corrosion processes, and the electrochemical intercalation into battery materials.
Collapse
Affiliation(s)
- Olaf M. Magnussen
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
- Ruprecht-Haensel
Laboratory, Kiel University, 24118 Kiel, Germany
| | - Jakub Drnec
- ESRF,
Experiments Division, 38000 Grenoble, France
| | - Canrong Qiu
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
| | | | - Jason J. Huang
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| | - Raphaël Chattot
- ICGM,
Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier Cedex 5, France
| | - Andrej Singer
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
6
|
Chiang YC, Pu ZH, Wang Z. Study on Oxygen Evolution Reaction of Ir Nanodendrites Supported on Antimony Tin Oxide. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2264. [PMID: 37570580 PMCID: PMC10420946 DOI: 10.3390/nano13152264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
In this study, the iridium nanodendrites (Ir NDs) and antimony tin oxide (ATO)-supported Ir NDs (Ir ND/ATO) were prepared by a surfactant-mediated method to investigate the effect of ATO support and evaluate the electrocatalytic activity for the oxygen evolution reaction (OER). The nano-branched Ir ND structures were successfully prepared alone or supported on ATO. The Ir NDs exhibited major diffraction peaks of the fcc Ir metal, though the Ir NDs consisted of metallic Ir as well as Ir oxides. Among the Ir ND samples, Ir ND2 showed the highest mass-based OER catalytic activity (116 mA/mg at 1.8 V), while it suffered from high degradation in activity after a long-term test. On the other hand, Ir ND2/ATO had OER activity of 798 mA/mg, and this activity remained >99% after 100 cycles of LSV and the charge transfer resistance increased by less than 3 ohm. The enhanced durability of the OER mass activities of Ir ND2/ATO catalysts over Ir NDs and Ir black could be attributed to the small crystallite size of Ir and the increase in the ratio of Ir (III) to Ir (IV), improving the interactions between the Ir NDs and the ATO support.
Collapse
Affiliation(s)
- Yu-Chun Chiang
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 320, Taiwan; (Z.-H.P.); (Z.W.)
- Fuel Cell Center, Yuan Ze University, Taoyuan 320, Taiwan
| | - Zhi-Hui Pu
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 320, Taiwan; (Z.-H.P.); (Z.W.)
| | - Ziyi Wang
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 320, Taiwan; (Z.-H.P.); (Z.W.)
| |
Collapse
|
7
|
Huang B, Cui Y, Liu X, Zheng C, Wang H, Guan L. Dense-Packed RuO 2 Nanorods with In Situ Generated Metal Vacancies Loaded on SnO 2 Nanocubes for Proton Exchange Membrane Water Electrolyzer with Ultra-Low Noble Metal Loading. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301516. [PMID: 37086123 DOI: 10.1002/smll.202301516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Proton exchange membrane water electrolyzer (PEMWE) is a green hydrogen production technology that can be coupled with intermittent power sources such as wind and photoelectric power. To achieve cost-effective operations, low noble metal loading on the anode catalyst layer is desired. In this study, a catalyst with RuO2 nanorods coated outside SnO2 nanocubes is designed, which forms continuous networks and provides high conductivity. This allows for the reduction of Ru contents in catalysts. Furthermore, the structure evolutions on the RuO2 surface are carefully investigated. The etched RuO2 surfaces are seen as the consequence of Co leaching, and theoretical calculations demonstrate that it is more effective in driving oxygen evolution. For electrochemical tests, the catalysts with 23 wt% Ru exhibit an overpotential of 178 mV at 10 mA cm-2 , which is much higher than most state-of-art oxygen evolution catalysts. In a practical PEMWE, the noble metal Ru loading on the anode side is only 0.3 mg cm-2 . The cell achieves 1.61 V at 1 A cm-2 and proper stability at 500 mA cm-2 , demonstrating the effectiveness of the designed catalyst.
Collapse
Affiliation(s)
- Bing Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350000, China
- College of Material Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqi Cui
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350000, China
| | - Xuwei Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350000, China
| | - Caixia Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350000, China
| | - Hao Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350000, China
| | - Lunhui Guan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350000, China
| |
Collapse
|
8
|
Park SY, An JW, Baek JH, Woo HJ, Lee WJ, Kwon SH, Bera S. Activity-Stability Trends of the Sb-SnO 2@RuO x Heterostructure toward Acidic Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15332-15343. [PMID: 36940264 DOI: 10.1021/acsami.2c21017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Accomplishments of enhanced activity and durability are a major concern in the design of catalysts for acidic water oxidation. To date, most studied supported metal catalysts undergo fast degradation in strongly acidic and oxidative environments due to improper controlling of the interface stability caused by their lattice mismatches. Here, we evaluate the activity-stability trends of in situ crystallized antimony-doped tin oxide (Sb-SnO2)@RuOx (Sb-SnO2@RuOx) heterostructure nanosheets (NSs) for acidic water oxidation. The catalyst prepared by atomic layer deposition of a conformal Ru film on antimony-doped tin sulfide (Sb-SnS2) NSs followed by heat treatment highlights comparable activity but longer stability than that of the ex situ catalyst (where Ru was deposited on Sb-SnO2 followed by heating). Air calcination for in situ crystallization allows the formation of hierarchical mesoporous Sb-SnO2 NSs from as-prepared Sb-SnS2 NSs and parallel in situ transformation from Ru to RuOx, resulting in a compact heterostructure. The significance of this approach significantly resists corrosive dissolution, which is justified by the enhanced oxygen evolution reaction (OER) stability of the catalyst compared to most of the state-of-the-art ruthenium-based catalysts including Carbon@RuOx (which shows ∼10 times higher dissolution) as well as Sb-SnO2@Com. RuOx and Com. RuO2. This study demonstrates the controlled interface stability of heterostructure catalysts toward enhancing OER activity and stability.
Collapse
Affiliation(s)
- Su-Young Park
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jung-Won An
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Ji-Hu Baek
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun-Jae Woo
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Woo-Jae Lee
- Institute of Materials Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Se-Hun Kwon
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
- Institute of Materials Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Susanta Bera
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
- Institute of Materials Technology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
9
|
Zavala LA, Kumar K, Martin V, Maillard F, Maugé F, Portier X, Oliviero L, Dubau L. Direct Evidence of the Role of Co or Pt, Co Single-Atom Promoters on the Performance of MoS 2 Nanoclusters for the Hydrogen Evolution Reaction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Luz A. Zavala
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, UNICAEN, 6, bd du Maréchal Juin, 14050 Caen, France
| | - Kavita Kumar
- Université Grenoble Alpes, CNRS, Grenoble INP, Université Savoie Mont Blanc, LEPMI, 38000 Grenoble, France
| | - Vincent Martin
- Université Grenoble Alpes, CNRS, Grenoble INP, Université Savoie Mont Blanc, LEPMI, 38000 Grenoble, France
| | - Frédéric Maillard
- Université Grenoble Alpes, CNRS, Grenoble INP, Université Savoie Mont Blanc, LEPMI, 38000 Grenoble, France
| | - Françoise Maugé
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, UNICAEN, 6, bd du Maréchal Juin, 14050 Caen, France
| | - Xavier Portier
- Centre de recherche sur les Ions, les Matériaux et la Photonique, CEA, UMR CNRS 6252, Normandie Université, ENSICAEN, UNICAEN, CNRS, 6, bd du Maréchal Juin, 14050 Caen, France
| | - Laetitia Oliviero
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, UNICAEN, 6, bd du Maréchal Juin, 14050 Caen, France
| | - Laetitia Dubau
- Université Grenoble Alpes, CNRS, Grenoble INP, Université Savoie Mont Blanc, LEPMI, 38000 Grenoble, France
| |
Collapse
|
10
|
Krivina RA, Zlatar M, Stovall TN, Lindquist GA, Eascalera-López D, Cook AK, Hutchison JE, Cherevko S, Boettcher SW. Oxygen Evolution Electrocatalysis in Acids: Atomic Tuning of the Stability Number for Submonolayer IrO x on Conductive Oxides from Molecular Precursors. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Raina A. Krivina
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Matej Zlatar
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - T. Nathan Stovall
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Grace A. Lindquist
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Daniel Eascalera-López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Amanda K. Cook
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - James E. Hutchison
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany
| | - Shannon W. Boettcher
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
11
|
Chattot R, Roiron C, Kumar K, Martin V, Campos Roldan CA, Mirolo M, Martens I, Castanheira L, Viola A, Bacabe R, Cavaliere S, Blanchard PY, Dubau L, Maillard F, Drnec J. Break-In Bad: On the Conditioning of Fuel Cell Nanoalloy Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Raphaël Chattot
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34095 Cedex 5, France
| | - Camille Roiron
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP* (*Institute of Engineering and Management Univ. Grenoble Alpes), LEPMI, Grenoble 38000, France
| | - Kavita Kumar
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP* (*Institute of Engineering and Management Univ. Grenoble Alpes), LEPMI, Grenoble 38000, France
| | - Vincent Martin
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP* (*Institute of Engineering and Management Univ. Grenoble Alpes), LEPMI, Grenoble 38000, France
| | | | - Marta Mirolo
- ESRF, the European Synchrotron, 71 Avenue des Martyrs, CS40220, Grenoble 38043 Cedex 9, France
| | - Isaac Martens
- ESRF, the European Synchrotron, 71 Avenue des Martyrs, CS40220, Grenoble 38043 Cedex 9, France
| | - Luis Castanheira
- Symbio, 14 Rue Jean-Pierre Timbaud, Espace des Vouillands 2, Fontaine 38600, France
| | - Arnaud Viola
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP* (*Institute of Engineering and Management Univ. Grenoble Alpes), LEPMI, Grenoble 38000, France
| | - Rémi Bacabe
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34095 Cedex 5, France
| | - Sara Cavaliere
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34095 Cedex 5, France
- Institut Universitaire de France (IUF), Paris 75231 Cedex 5, France
| | | | - Laetitia Dubau
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP* (*Institute of Engineering and Management Univ. Grenoble Alpes), LEPMI, Grenoble 38000, France
| | - Frédéric Maillard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP* (*Institute of Engineering and Management Univ. Grenoble Alpes), LEPMI, Grenoble 38000, France
| | - Jakub Drnec
- ESRF, the European Synchrotron, 71 Avenue des Martyrs, CS40220, Grenoble 38043 Cedex 9, France
| |
Collapse
|
12
|
Sun J, Zhao R, Niu X, Xu M, Xu Z, Qin Y, Zhao W, Yang X, Han Y, Wang Q. In-situ reconstructed hollow iridium-cobalt oxide nanosphere for boosting electrocatalytic oxygen evolution in acid. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Gao C, Zhang X, Zhan J, Cai B. Engineering of aerogel‐based electrocatalysts for oxygen evolution reaction. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Cunyuan Gao
- School of Chemistry and Chemical Engineering Shandong University Jinan China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering Shandong University Jinan China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering Shandong University Jinan China
| | - Bin Cai
- School of Chemistry and Chemical Engineering Shandong University Jinan China
| |
Collapse
|
14
|
Gao Z, Lai Y, Gong L, Zhang L, Xi S, Sun J, Zhang L, Luo F. Robust Th-MOF-Supported Semirigid Single-Metal-Site Catalyst for an Efficient Acidic Oxygen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhi Gao
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China
- Foshan (Southern China) Institute for New Materials, Foshan 528000, Guangdong, China
| | - Yulian Lai
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Lele Gong
- State Key Laboratory of Organic−Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lipeng Zhang
- State Key Laboratory of Organic−Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR, Singapore 627833, Singapore
| | - Jian Sun
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Feng Luo
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China
| |
Collapse
|
15
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 276] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
16
|
Lončar A, Escalera‐López D, Cherevko S, Hodnik N. Inter-relationships between Oxygen Evolution and Iridium Dissolution Mechanisms. Angew Chem Int Ed Engl 2022; 61:e202114437. [PMID: 34942052 PMCID: PMC9305877 DOI: 10.1002/anie.202114437] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 11/08/2022]
Abstract
The widespread utilization of proton exchange membrane (PEM) electrolyzers currently remains uncertain, as they rely on the use of highly scarce iridium as the only viable catalyst for the oxygen evolution reaction (OER), which is known to present the major energy losses of the process. Understanding the mechanistic origin of the different activities and stabilities of Ir-based catalysts is, therefore, crucial for a scale-up of green hydrogen production. It is known that structure influences the dissolution, which is the main degradation mechanism and shares common intermediates with the OER. In this Minireview, the state-of-the-art understanding of dissolution and its relationship with the structure of different iridium catalysts is gathered and correlated to different mechanisms of the OER. A perspective on future directions of investigation is also given.
Collapse
Affiliation(s)
- Anja Lončar
- Laboratory for ElectrocatalysisDepartment of Materials ChemistryNational Institute of ChemistryHajdrihova 191000LjubljanaSlovenia
- University of Nova GoricaVipavska 135000Nova GoricaSlovenia
| | - Daniel Escalera‐López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable EnergyForschungszentrum JülichCauerstrasse 191058ErlangenGermany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable EnergyForschungszentrum JülichCauerstrasse 191058ErlangenGermany
| | - Nejc Hodnik
- Laboratory for ElectrocatalysisDepartment of Materials ChemistryNational Institute of ChemistryHajdrihova 191000LjubljanaSlovenia
- University of Nova GoricaVipavska 135000Nova GoricaSlovenia
| |
Collapse
|
17
|
Du HL, Chatti M, Kerr B, Nguyen CK, Tran-Phu T, Hoogeveen DA, Cherepanov PV, Chesman ASR, Johannessen B, Tricoli A, Hocking RK, MacFarlane DR, Simonov AN. Durable electrooxidation of acidic water catalysed by a cobalt‐bismuth‐based oxide composite: an unexpected role of the F‐doped SnO2 substrate. ChemCatChem 2022. [DOI: 10.1002/cctc.202200013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Brittany Kerr
- Swinburne University of Technology Faculty of Science, Engineering and Technology AUSTRALIA
| | | | - Thanh Tran-Phu
- Australian National University Research School of Chemistry AUSTRALIA
| | | | | | | | | | | | - Rosalie K. Hocking
- Swinburne University of Technology - Hawthorn Campus: Swinburne University of Technology Faculty of Science, Engineering and Technology AUSTRALIA
| | | | - Alexandr Nikolaevich Simonov
- Monash University School of Chemistry and the ARC Centre of Excellence for Electromaterials Science Wellington Road 3800 Clayton AUSTRALIA
| |
Collapse
|
18
|
Lončar A, Escalera‐López D, Cherevko S, Hodnik N. Inter‐relationships between Oxygen Evolution and Iridium Dissolution Mechanisms. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anja Lončar
- Laboratory for Electrocatalysis Department of Materials Chemistry National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 5000 Nova Gorica Slovenia
| | - Daniel Escalera‐López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy Forschungszentrum Jülich Cauerstrasse 1 91058 Erlangen Germany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy Forschungszentrum Jülich Cauerstrasse 1 91058 Erlangen Germany
| | - Nejc Hodnik
- Laboratory for Electrocatalysis Department of Materials Chemistry National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 5000 Nova Gorica Slovenia
| |
Collapse
|
19
|
Cha JI, Baik C, Lee SW, Pak C. Improved utilization of IrOx on Ti4O7 supports in Membrane Electrode Assembly for Polymer Electrolyte Membrane Water Electrolyzer. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Wan H, Xiao X, Ma W, Zhang Y, Liu X, Liu Y, Chen G, Zhang N, Cao Y, Ma R. Electronic configuration modulation of tin dioxide by phosphorus dopant for pathway change in electrocatalytic water oxidation. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01169c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electronic configuration modulation of SnO2 nanoparticles was realized using a phosphorus dopant, contributing to the reaction pathway change of water oxidation.
Collapse
Affiliation(s)
- Hao Wan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xue Xiao
- State Key Laboratory of Powder Metallurgy and School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China
| | - Wei Ma
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ying Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiaohe Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
- State Key Laboratory of Powder Metallurgy and School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China
| | - Yanyu Liu
- College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, PR China
| | - Gen Chen
- State Key Laboratory of Powder Metallurgy and School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China
| | - Ning Zhang
- State Key Laboratory of Powder Metallurgy and School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China
| | - Yijun Cao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Renzhi Ma
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
21
|
Min B, Gao Q, Yan Z, Han X, Hosmer K, Campbell A, Zhu H. Powering the Remediation of the Nitrogen Cycle: Progress and Perspectives of Electrochemical Nitrate Reduction. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bokki Min
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| | - Qiang Gao
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| | - Zihao Yan
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| | - Xue Han
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| | - Kait Hosmer
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| | - Alayna Campbell
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| | - Huiyuan Zhu
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| |
Collapse
|
22
|
Dhawan H, Secanell M, Semagina N. State-of-the-Art Iridium-Based Catalysts for Acidic Water Electrolysis: A Minireview of Wet-Chemistry Synthesis Methods : Preparation routes for active and durable iridium catalysts. JOHNSON MATTHEY TECHNOLOGY REVIEW 2021. [DOI: 10.1595/205651321x16013966874707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the increasing demand for clean hydrogen production, both as a fuel and an indispensable reagent for chemical industries, acidic water electrolysis has attracted considerable attention in academic and industrial research. Iridium is a well-accepted active and corrosion-resistant
component of catalysts for oxygen evolution reaction (OER). However, its scarcity demands breakthroughs in catalyst preparation technologies to ensure its most efficient utilisation. This minireview focusses on the wet-chemistry synthetic methods of the most active and (potentially) durable
iridium catalysts for acidic OER, selected from the recent publications in the open literature. The catalysts are classified by their synthesis methods, with authors’ opinion on their practicality. The review may also guide the selection of the state-of-the-art iridium catalysts for
benchmarking purposes.
Collapse
Affiliation(s)
- Himanshi Dhawan
- Department of Chemical and Materials Engineering, University of Alberta 12th Floor, Donadeo Innovation Centre for Engineering, 9211 - 116 Street, NW Edmonton, Alberta, T6G 1H9 Canada
| | - Marc Secanell
- Department of Mechanical Engineering, University of Alberta 10-203 Donadeo Innovation Centre for Engineering, 9211 - 116 Street, NW Edmonton, Alberta, T6G 1H9 Canada
| | - Natalia Semagina
- Department of Chemical and Materials Engineering, University of Alberta 12th Floor, Donadeo Innovation Centre for Engineering, 9211 - 116 Street, NW Edmonton, Alberta, T6G 1H9 Canada
| |
Collapse
|
23
|
Improving the Catalytic Efficiency of NiFe-LDH/ATO by Air Plasma Treatment for Oxygen Evolution Reaction. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0447-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Daiane Ferreira da Silva C, Claudel F, Martin V, Chattot R, Abbou S, Kumar K, Jiménez-Morales I, Cavaliere S, Jones D, Rozière J, Solà-Hernandez L, Beauger C, Faustini M, Peron J, Gilles B, Encinas T, Piccolo L, Barros de Lima FH, Dubau L, Maillard F. Oxygen Evolution Reaction Activity and Stability Benchmarks for Supported and Unsupported IrOx Electrocatalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04613] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Camila Daiane Ferreira da Silva
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador Saocarlense, 400, São Carlos, SP Brazil
| | - Fabien Claudel
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France
| | - Vincent Martin
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France
| | - Raphaël Chattot
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France
| | - Sofyane Abbou
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France
| | - Kavita Kumar
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France
| | | | - Sara Cavaliere
- ICGM, University Montpellier, CNRS, ENSCM, 34095, Montpellier, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Deborah Jones
- ICGM, University Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Jacques Rozière
- ICGM, University Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Lluís Solà-Hernandez
- PSL University, Center for Processes, Renewable Energy and Energy Systems (PERSEE), MINES ParisTech, CS 10207 rue Claude Daunesse, F-06904, Sophia Antipolis, Cedex, France
| | - Christian Beauger
- PSL University, Center for Processes, Renewable Energy and Energy Systems (PERSEE), MINES ParisTech, CS 10207 rue Claude Daunesse, F-06904, Sophia Antipolis, Cedex, France
| | - Marco Faustini
- Laboratoire Chimie de la Matière Condensée de Paris, UMR 7574, Sorbonne Université CNRS, 75005 Paris, France
| | - Jennifer Peron
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - Bruno Gilles
- Université Grenoble Alpes, CNRS, Grenoble INP, SIMAP, 38000 Grenoble, France
| | - Thierry Encinas
- Université Grenoble Alpes, Grenoble INP, CMTC, 38000 Grenoble, France
| | - Laurent Piccolo
- Univ Lyon, Université Claude Bernard - Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, F-69626 Villeurbanne CEDEX, France
| | - Fabio Henrique Barros de Lima
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador Saocarlense, 400, São Carlos, SP Brazil
| | - Laetitia Dubau
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France
| | - Frédéric Maillard
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France
| |
Collapse
|
25
|
Rajan ZSHS, Binninger T, Kooyman PJ, Susac D, Mohamed R. Organometallic chemical deposition of crystalline iridium oxide nanoparticles on antimony-doped tin oxide support with high-performance for the oxygen evolution reaction. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00470g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organometallic chemical deposition (OMCD) of epitaxially anchored rutile IrO2 nanoparticles on Sb-doped SnO2 support, with high-performance towards the oxygen evolution reaction (OER).
Collapse
Affiliation(s)
- Ziba S. H. S. Rajan
- HySA/Catalysis Centre of Competence
- Catalysis Institute
- Department of Chemical Engineering
- University of Cape Town
- South Africa
| | | | - Patricia J. Kooyman
- Centre for Catalysis Research
- Catalysis Institute
- Department of Chemical Engineering
- University of Cape Town
- South Africa
| | - Darija Susac
- HySA/Catalysis Centre of Competence
- Catalysis Institute
- Department of Chemical Engineering
- University of Cape Town
- South Africa
| | - Rhiyaad Mohamed
- HySA/Catalysis Centre of Competence
- Catalysis Institute
- Department of Chemical Engineering
- University of Cape Town
- South Africa
| |
Collapse
|