1
|
Kang X, Liu J, Wang D, Tian C, Fu H. Tandem Pt/TiO 2 and Fe 3C catalysts for direct transformation of CO 2 to light hydrocarbons under high space velocity. J Colloid Interface Sci 2025; 678:1165-1175. [PMID: 39284271 DOI: 10.1016/j.jcis.2024.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/24/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
CO2 hydrogenation to hydrocarbons under high space velocity is crucial for industrial applications, but traditional Fe-based catalysts often suffer from the low activity and poor stability. Herein, we report a new tandem catalyst system combining Pt/TiO2 catalysts with Fe3C catalysts for the direct conversion of CO2 into C2-C4 hydrocarbons under high space velocity. The Pt/TiO2 component promotes *CO intermediate production with an enhanced Reverse Water-Gas Shift (RWGS) reaction efficiency, providing a highly reactive species for the Fe3C catalyst to achieve Fischer-Tropsch synthesis (FTS). By maximizing the contact interface between the Pt/TiO2 and Fe-based components through a granule mixing configuration, we achieve significant enhancements in both CO2 conversion rate (24.0 %) and C2-C4 hydrocarbons selectivity (51.1 %) under the gaseous hourly space velocity (GHSV) of 100000 mL gcat-1h-1. Besides, excellent stability is achieved by the tandem catalysts with continuous catalysis for up to 80 h without significant decrease in activity. Through modulation of the reduction states of iron oxide, we effectively tune the composition of Fe-based catalyst, thereby tailoring the product distribution. Through this work, we not only offer a promising avenue for reducing CO2 for efficient CO2 utilization but also highlight the importance of catalyst design in advancing sustainable chemical synthesis.
Collapse
Affiliation(s)
- Xin Kang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, China
| | - Jiancong Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, China.
| | - Dongxu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, China
| | - Chungui Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, China.
| |
Collapse
|
2
|
Rabee AIM, Abed H, Vuong TH, Bartling S, Kraußer L, Atia H, Rockstroh N, Kondratenko EV, Brückner A, Rabeah J. CeO 2-Supported Single-Atom Cu Catalysts Modified with Fe for RWGS Reaction: Deciphering the Role of Fe in the Reaction Mechanism by In Situ/Operando Spectroscopic Techniques. ACS Catal 2024; 14:10913-10927. [PMID: 39050904 PMCID: PMC11265290 DOI: 10.1021/acscatal.4c01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Reverse water-gas shift (RWGS) reaction has attracted much attention as a potential approach for CO2 valorization via the production of synthesis gas, especially over Fe-modified supported Cu catalysts on CeO2. However, most studies have focused solely on investigating the RWGS reaction over catalysts with high Cu and Fe loadings, thus leading to an increase in the complexity of the catalytic system and, hence, preventing the gain of any reliable information about the nature of the active sites and reaction mechanism. In this work, a CeO2-supported single-atom Cu catalyst modified with iron was synthesized and evaluated for the RWGS reaction. The catalytic results reveal a significant synergistic effect between CuCeO2 and Fe, demonstrating an activity up to three times higher than the combined catalytic activities of monometallic catalysts (Fe/CeO2 + CuCeO2) under identical conditions. Various ex situ and in situ/operando techniques are employed to unveil the concealed role of Fe in catalyst activity enhancement. The combined findings from hydrogen temperature-programmed reduction (H2-TPR) and operando electron paramagnetic resonance spectroscopy (EPR) reveal that the added Fe predominantly interacts with Cu-containing surface sites, resulting in the stabilization of higher proportions of Cu single sites. Near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and operando EPR results unveil a synergistic interplay of Fe with Cu-containing sites and CeO x domains, efficiently enhancing both the reoxidation of Cu+ in Cu+-Ov-Ce3+ moieties and the reducibility of Ce4+ in CeO x domains under RWGS conditions. Detailed mechanistic studies reveal that the RWGS reaction predominantly proceeds via the redox mechanism.
Collapse
Affiliation(s)
- Abdallah I. M. Rabee
- Leibniz-Institut
für Katalyse, Albert-Einstein-Str. 29A, 18059 Rostock, Germany
- Chemistry
Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt
| | - Hayder Abed
- Leibniz-Institut
für Katalyse, Albert-Einstein-Str. 29A, 18059 Rostock, Germany
| | - Thanh Huyen Vuong
- Leibniz-Institut
für Katalyse, Albert-Einstein-Str. 29A, 18059 Rostock, Germany
| | - Stephan Bartling
- Leibniz-Institut
für Katalyse, Albert-Einstein-Str. 29A, 18059 Rostock, Germany
| | - Laura Kraußer
- Leibniz-Institut
für Katalyse, Albert-Einstein-Str. 29A, 18059 Rostock, Germany
| | - Hanan Atia
- Leibniz-Institut
für Katalyse, Albert-Einstein-Str. 29A, 18059 Rostock, Germany
| | - Nils Rockstroh
- Leibniz-Institut
für Katalyse, Albert-Einstein-Str. 29A, 18059 Rostock, Germany
| | | | - Angelika Brückner
- Leibniz-Institut
für Katalyse, Albert-Einstein-Str. 29A, 18059 Rostock, Germany
- Department
Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Jabor Rabeah
- Leibniz-Institut
für Katalyse, Albert-Einstein-Str. 29A, 18059 Rostock, Germany
- State
Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization,
Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, 730000 Lanzhou, P. R. China
| |
Collapse
|
3
|
Wang K, Li Z, Gao X, Ma Q, Zhang J, Zhao TS, Tsubaki N. Novel heterogeneous Fe-based catalysts for carbon dioxide hydrogenation to long chain α-olefins-A review. ENVIRONMENTAL RESEARCH 2024; 242:117715. [PMID: 37996000 DOI: 10.1016/j.envres.2023.117715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
The thermocatalytic conversion of carbon dioxide (CO2) into high value-added chemicals provides a strategy to address the environmental problems caused by excessive carbon emissions and the sustainable production of chemicals. Significant progress has been made in the CO2 hydrogenation to long chain α-olefins, but controlling C-O activation and C-C coupling remains a great challenge. This review focuses on the recent advances in catalyst design concepts for the synthesis of long chain α-olefins from CO2 hydrogenation. We have systematically summarized and analyzed the ingenious design of catalysts, reaction mechanisms, the interaction between active sites and supports, structure-activity relationship, influence of reaction process parameters on catalyst performance, and catalyst stability, as well as the regeneration methods. Meanwhile, the challenges in the development of the long chain α-olefins synthesis from CO2 hydrogenation are proposed, and the future development opportunities are prospected. The aim of this review is to provide a comprehensive perspective on long chain α-olefins synthesis from CO2 hydrogenation to inspire the invention of novel catalysts and accelerate the development of this process.
Collapse
Affiliation(s)
- Kangzhou Wang
- School of Materials and New Energy, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Ziqin Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Xinhua Gao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China.
| | - Qingxiang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Jianli Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China.
| | - Tian-Sheng Zhao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| |
Collapse
|
4
|
Insights into the Role of Sensitive Surface Lattice Oxygen Species on Promoting Methane Conversion. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
5
|
Li D, Zhao Y, Miao Y, Zhou C, Zhang LP, Wu LZ, Zhang T. Accelerating Electron-Transfer Dynamics by TiO 2 -Immobilized Reversible Single-Atom Copper for Enhanced Artificial Photosynthesis of Urea. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207793. [PMID: 36271589 DOI: 10.1002/adma.202207793] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Photocatalysis as a sustainable technology is expected to provide a novel sight for the green synthesis of urea directly using N2 , CO2 , and H2 O under mild conditions. However, the fundamental issue of inefficient electron transfer in photocatalysis strongly hinders its feasibility, especially for the above multi-electron-demanding urea synthesis. Herein, an effective strategy of accelerating electron-transfer dynamics is reported by TiO2 -immobilized reversible single-atom copper (denoted as Cu SA-TiO2 ) to enhance the performance for photosynthesis of urea from N2 , CO2 , and H2 O. As revealed by a series of quasi-in-situ characterizations (e.g., electron paramagnetic resonance, and wavelength-resolved and femtosecond time-resolved spectroscopies), the expedited dynamics behaviors originating from reversible single-atom copper in as-designed Cu SA-TiO2 (electron extraction rate: over 30 times faster than the reference photocatalysts) allow the assurance of abundant and continual photogenerated electrons for multi-electron-demanding co-photoactivation of N2 and CO2 , resulting in considerable rates of urea production. The strategy above for improving the photoelectron-extraction ability of photocatalysts will offer a high-efficiency and promising route for artificial urea photosynthesis and other multi-electron-demanding photocatalytic reactions.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yingxuan Miao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li-Ping Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Enhanced CuAl2O4 Catalytic Activity via Alkalinization Treatment toward High CO2 Conversion during Reverse Water Gas Shift Reaction. Catalysts 2022. [DOI: 10.3390/catal12121511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
CO2 catalytic conversion to CO would likely be an important part of CO2 mitigation and utilization. In this work, CuAl2O4 was developed with a spinel structure that acts as an active and stable catalyst for this reaction. Here, the fundamental characteristics of CuAl2O4 catalyst were studied to understand the catalytic mechanism for the Reverse Water Gas Shift reaction. Based on the catalytic mechanism, the CuAl2O4 catalyst was found to have exceptional catalytic activity due to the high dispersion of copper on its surface, and it could have higher catalytic activity by increasing the oxygen vacancies on the surface of the catalyst via alkalinization treatment. By combining with XPS spectra, the relationship between the Raman mode and the oxygen vacancy structure on the CuAl2O4 surface was proved. Through these studies, it was proved that alkalinization treatment can regulate the oxygen vacancies on the surface of the catalyst and thus enhance the catalytic activity.
Collapse
|
7
|
Song X, Yang C, Li X, Wang Z, Pei C, Zhao ZJ, Gong J. On the Role of Hydroxyl Groups on Cu/Al 2O 3 in CO 2 Hydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiwen Song
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Chengsheng Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Xianghong Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Zhongyan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| |
Collapse
|
8
|
Cui L, Liu C, Yao B, Edwards PP, Xiao T, Cao F. A review of catalytic hydrogenation of carbon dioxide: From waste to hydrocarbons. Front Chem 2022; 10:1037997. [PMID: 36304742 PMCID: PMC9592991 DOI: 10.3389/fchem.2022.1037997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/21/2022] [Indexed: 12/01/2022] Open
Abstract
With the rapid development of industrial society and humankind’s prosperity, the growing demands of global energy, mainly based on the combustion of hydrocarbon fossil fuels, has become one of the most severe challenges all over the world. It is estimated that fossil fuel consumption continues to grow with an annual increase rate of 1.3%, which has seriously affected the natural environment through the emission of greenhouse gases, most notably carbon dioxide (CO2). Given these recognized environmental concerns, it is imperative to develop clean technologies for converting captured CO2 to high-valued chemicals, one of which is value-added hydrocarbons. In this article, environmental effects due to CO2 emission are discussed and various routes for CO2 hydrogenation to hydrocarbons including light olefins, fuel oils (gasoline and jet fuel), and aromatics are comprehensively elaborated. Our emphasis is on catalyst development. In addition, we present an outlook that summarizes the research challenges and opportunities associated with the hydrogenation of CO2 to hydrocarbon products.
Collapse
Affiliation(s)
- Lingrui Cui
- Engineering Research Center of Large Scale Reactor, East China University of Science and Technology, Shanghai, China
| | - Cao Liu
- Engineering Research Center of Large Scale Reactor, East China University of Science and Technology, Shanghai, China
| | - Benzhen Yao
- OXCCU Tech Ltd, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, United Kingdom
| | - Peter P. Edwards
- OXCCU Tech Ltd, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, United Kingdom
| | - Tiancun Xiao
- OXCCU Tech Ltd, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, United Kingdom
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
- *Correspondence: Fahai Cao, ; Tiancun Xiao,
| | - Fahai Cao
- Engineering Research Center of Large Scale Reactor, East China University of Science and Technology, Shanghai, China
- *Correspondence: Fahai Cao, ; Tiancun Xiao,
| |
Collapse
|
9
|
Song Z, Tang W, Chen Z, Wan Z, Chan CLJ, Wang C, Ye W, Fan Z. Temperature-Modulated Selective Detection of Part-per-Trillion NO 2 Using Platinum Nanocluster Sensitized 3D Metal Oxide Nanotube Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203212. [PMID: 36058651 DOI: 10.1002/smll.202203212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Semiconductor chemiresistive gas sensors play critical roles in a smart and sustainable city where a safe and healthy environment is the foundation. However, the poor limits of detection and selectivity are the two bottleneck issues limiting their broad applications. Herein, a unique sensor design with a 3D tin oxide (SnO2 ) nanotube array as the sensing layer and platinum (Pt) nanocluster decoration as the catalytic layer, is demonstrated. The Pt/SnO2 sensor significantly enhances the sensitivity and selectivity of NO2 detection by strengthening the adsorption energy and lowering the activation energy toward NO2 . It not only leads to ultrahigh sensitivity to NO2 with a record limit of detection of 107 parts per trillion, but also enables selective NO2 sensing while suppressing the responses to interfering gases. Furthermore, a wireless sensor system integrated with sensors, a microcontroller, and a Bluetooth unit is developed for the practical indoor and on-road NO2 detection applications. The rational design of the sensors and their successful demonstration pave the way for future real-time gas monitoring in smart home and smart city applications.
Collapse
Affiliation(s)
- Zhilong Song
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
- Institute for Energy Research, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Wenying Tang
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhesi Chen
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhu'an Wan
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Chak Lam Jonathan Chan
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Chen Wang
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wenhao Ye
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
10
|
Influence of oxygen vacancies of CeO2 on reverse water gas shift reaction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Song L, Yi X, Ouyang S, Ye J. Photothermal synthesis of a CuO x &FeO y catalyst with a layered double hydroxide-derived pore-confined frame to achieve photothermal CO 2 hydrogenation to CO with a rate of 136 mmol min -1 g cat -1. NANOSCALE ADVANCES 2022; 4:3391-3397. [PMID: 36131705 PMCID: PMC9419767 DOI: 10.1039/d2na00315e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Solar-driven CO2 conversion into the industrial chemical CO via the reverse water-gas reaction is an ideal technological approach to achieve the key step of carbon neutralization. The high reaction temperature is cost-free due to the photothermal conversion brought about by solar irradiation and is beneficial to the catalytic efficiency. However, the thermostability of adopted catalysts is a great challenge. Herein, we develop an in situ photothermal synthesis to obtain a CuO x &FeO y catalyst with a layered double hydroxide-derived pore-confined frame. The optimized sample delivers a CO generation rate of 136.3 mmol min-1 gcat -1 with the selectivity of ∼100% at a high reaction temperature of 1015 °C. The efficient catalytic activity can be attributed to the fact that the pore-confined frame substrate prevents the growth of CuO x and FeO y nanoparticles during the high-temperature reaction and the basic groups on the substrate promote the adsorption and activation of CO2.
Collapse
Affiliation(s)
- Lizhu Song
- TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University Tianjin 300072 P. R. China
| | - Xinli Yi
- TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University Tianjin 300072 P. R. China
| | - Shuxin Ouyang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Jinhua Ye
- TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University Tianjin 300072 P. R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0047 Japan
| |
Collapse
|
12
|
Sr1-xKxFeO3 Perovskite Catalysts with Enhanced RWGS Reactivity for CO2 Hydrogenation to Light Olefins. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The catalytic hydrogenation of CO2 to light olefins (C2–C4) is among the most practical approaches to CO2 utilization as an essential industrial feedstock. To achieve a highly dispersed active site and enhance the reactivity of the reverse water–gas shift (RWGS) reaction, ABO3-type perovskite catalysts Sr1-xKxFeO3 with favorable thermal stability and redox activity are reported in this work. The role of K-substitution in the structure–performance relationship of the catalysts was investigated. It indicated that K-substitution expedited the oxygen-releasing process of the SrFeO3 and facilitated the synchronous formation of active-phase Fe3O4 for the reverse water–gas shift (RWGS) reaction and Fe5C2 for the Fischer–Tropsch synthesis (FTS). At the optimal substitution amount, the conversion of CO2 and the selectivity of light olefins achieved 30.82% and 29.61%, respectively. Moreover, the selectivity of CO was up to 45.57% even when H2/CO2=4 due to CO2-splitting reactions over the reduced Sr2Fe2O5. In addition, the reversibility of perovskite catalysts ensured the high dispersion of the active-phase Fe3O4 and Fe5C2 in the SrCO3 phase. As the rate-determining step of the CO2 hydrogenation reaction to light olefins over Sr1-xKxFeO3 perovskite catalysts, FTS should be further tailored by partial substitution of the B site. In sum, the perovskite-derived catalyst investigated in this work provided a new idea for the rational design of a catalyst for CO2 hydrogenation to produce light olefins.
Collapse
|
13
|
Vu TTN, Desgagnés A, Fongarland P, Vanoye L, Bornette F, Iliuta MC. Synergetic effect of metal–support for enhanced performance of the Cu–ZnO–ZrO 2/UGSO catalyst for CO 2 hydrogenation to methanol. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01317g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Novel Cu–ZnO–ZrO2/UGSO catalysts for CO2 hydrogenation to methanol were developed using a metallurgical residue as catalytic support, focusing on (i) the synergy of Cu/Zn/Zr and UGSO composition and (ii) UGSO modification, on catalytic activity and stability.
Collapse
Affiliation(s)
- Thi Thanh Nguyet Vu
- Chemical Engineering Department, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Alex Desgagnés
- Chemical Engineering Department, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Pascal Fongarland
- CP2M/CNRS/CPE Lyon, Université Claude-Bernard Lyon 1, Villeurbanne, France
| | - Laurent Vanoye
- CP2M/CNRS/CPE Lyon, Université Claude-Bernard Lyon 1, Villeurbanne, France
| | - Frédéric Bornette
- CP2M/CNRS/CPE Lyon, Université Claude-Bernard Lyon 1, Villeurbanne, France
| | - Maria C. Iliuta
- Chemical Engineering Department, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
14
|
Alam MI, Cheula R, Moroni G, Nardi L, Maestri M. Mechanistic and multiscale aspects of thermo-catalytic CO 2 conversion to C 1 products. Catal Sci Technol 2021; 11:6601-6629. [PMID: 34745556 PMCID: PMC8521205 DOI: 10.1039/d1cy00922b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/26/2021] [Indexed: 12/04/2022]
Abstract
The increasing environmental concerns due to anthropogenic CO2 emissions have called for an alternate sustainable source to fulfill rising chemical and energy demands and reduce environmental problems. The thermo-catalytic activation and conversion of abundantly available CO2, a thermodynamically stable and kinetically inert molecule, can significantly pave the way to sustainably produce chemicals and fuels and mitigate the additional CO2 load. This can be done through comprehensive knowledge and understanding of catalyst behavior, reaction kinetics, and reactor design. This review aims to catalog and summarize the advances in the experimental and theoretical approaches for CO2 activation and conversion to C1 products via heterogeneous catalytic routes. To this aim, we analyze the current literature works describing experimental analyses (e.g., catalyst characterization and kinetics measurement) as well as computational studies (e.g., microkinetic modeling and first-principles calculations). The catalytic reactions of CO2 activation and conversion reviewed in detail are: (i) reverse water-gas shift (RWGS), (ii) CO2 methanation, (iii) CO2 hydrogenation to methanol, and (iv) dry reforming of methane (DRM). This review is divided into six sections. The first section provides an overview of the energy and environmental problems of our society, in which promising strategies and possible pathways to utilize anthropogenic CO2 are highlighted. In the second section, the discussion follows with the description of materials and mechanisms of the available thermo-catalytic processes for CO2 utilization. In the third section, the process of catalyst deactivation by coking is presented, and possible solutions to the problem are recommended based on experimental and theoretical literature works. In the fourth section, kinetic models are reviewed. In the fifth section, reaction technologies associated with the conversion of CO2 are described, and, finally, in the sixth section, concluding remarks and future directions are provided.
Collapse
Affiliation(s)
- Md Imteyaz Alam
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Raffaele Cheula
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Gianluca Moroni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Luca Nardi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| |
Collapse
|
15
|
Wei J, Yao R, Han Y, Ge Q, Sun J. Towards the development of the emerging process of CO 2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. Chem Soc Rev 2021; 50:10764-10805. [PMID: 34605829 DOI: 10.1039/d1cs00260k] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The emerging process of CO2 hydrogenation through heterogenous catalysis into important bulk chemicals provides an alternative strategy for sustainable and low-cost production of valuable chemicals, and brings an important chance for mitigating CO2 emissions. Direct synthesis of the family of unsaturated heavy hydrocarbons such as α-olefins and aromatics via CO2 hydrogenation is more attractive and challenging than the production of short-chain products to modern society, suffering from the difficult control between C-O activation and C-C coupling towards long-chain hydrocarbons. In the past several years, rapid progress has been achieved in the development of efficient catalysts for the process and understanding of their catalytic mechanisms. In this review, we provide a comprehensive, authoritative and critical overview of the substantial progress in the synthesis of α-olefins and aromatics from CO2 hydrogenation via direct and indirect routes. The rational fabrication and design of catalysts, proximity effects of multi-active sites, stability and deactivation of catalysts, reaction mechanisms and reactor design are systematically discussed. Finally, current challenges and potential applications in the development of advanced catalysts, as well as opportunities of next-generation CO2 hydrogenation techniques for carbon neutrality in future are proposed.
Collapse
Affiliation(s)
- Jian Wei
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ruwei Yao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Han
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingjie Ge
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jian Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
16
|
Pu T, Shen L, Xu J, Peng C, Zhu M. Revealing the dependence of CO
2
activation on hydrogen dissociation ability over supported nickel catalysts. AIChE J 2021. [DOI: 10.1002/aic.17458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tiancheng Pu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Liang Shen
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Jing Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Chong Peng
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC Dalian China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
17
|
Gu M, Dai S, Qiu R, Ford ME, Cao C, Wachs IE, Zhu M. Structure–Activity Relationships of Copper- and Potassium-Modified Iron Oxide Catalysts during Reverse Water–Gas Shift Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03792] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mengwei Gu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runfa Qiu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Michael E. Ford
- Operando Molecular Spectroscopy & Catalysis Laboratory, Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Chenxi Cao
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Israel E. Wachs
- Operando Molecular Spectroscopy & Catalysis Laboratory, Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
18
|
Yuan X, Pu T, Gu M, Zhu M, Xu J. Strong Metal–Support Interactions between Nickel and Iron Oxide during CO 2 Hydrogenation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03936] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaohan Yuan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tiancheng Pu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengwei Gu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Xu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
19
|
|
20
|
Formation and influence of surface hydroxyls on product selectivity during CO2 hydrogenation by Ni/SiO2 catalysts. J Catal 2021. [DOI: 10.1016/j.jcat.2021.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Xu K, Wang M, Zhang Y, Shan W, He H. Promotion Effects of Barium and Cobalt on Manganese Oxide Catalysts for Soot Oxidation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ke Xu
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Wang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, China
| | - Wenpo Shan
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, China
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
22
|
Chen Q, Shen C, Zhu G, Zhang X, Lv CL, Zeng B, Wang S, Li J, Fan W, He L. Selectivity Switching of CO 2 Hydrogenation from HCOOH to CO with an In Situ Formed Ru–Li Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Qiongyao Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation (OSSO), Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoren Shen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation (OSSO), Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, China
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Gangli Zhu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation (OSSO), Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuehua Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation (OSSO), Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Chun-Lin Lv
- School of Pharmacy and Center on Translational Neuroscience, Minzu University of China, Beijing 100081, China
| | - Bo Zeng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation (OSSO), Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Junfen Li
- Dalian National Laboratory for Clean Energy, CAS, Dalian 116023, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Lin He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation (OSSO), Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Dalian National Laboratory for Clean Energy, CAS, Dalian 116023, China
| |
Collapse
|
23
|
Tian P, Gu M, Qiu R, Yang Z, Xuan F, Zhu M. Tunable Carbon Dioxide Activation Pathway over Iron Oxide Catalysts: Effects of Potassium. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pengfei Tian
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Mengwei Gu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runfa Qiu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zixu Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fuzhen Xuan
- Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
24
|
Mine S, Yamaguchi T, Ting KW, Maeno Z, Siddiki SMAH, Oshima K, Satokawa S, Shimizu KI, Toyao T. Reverse water-gas shift reaction over Pt/MoO x/TiO 2: reverse Mars–van Krevelen mechanism via redox of supported MoO x. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00289a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pt/MoOx/TiO2 shows excellent catalytic performance for the reverse water-gas shift reaction at 250 °C via reverse Mars–van Krevelen mechanism.
Collapse
Affiliation(s)
- Shinya Mine
- Institute for Catalysis
- Hokkaido University
- Japan
| | | | | | - Zen Maeno
- Institute for Catalysis
- Hokkaido University
- Japan
| | | | - Kazumasa Oshima
- Department of Materials and Life Science
- Faculty of Science and Technology
- Seikei University
- Musashino
- Japan
| | - Shigeo Satokawa
- Department of Materials and Life Science
- Faculty of Science and Technology
- Seikei University
- Musashino
- Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis
- Hokkaido University
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
- Kyoto University
| | - Takashi Toyao
- Institute for Catalysis
- Hokkaido University
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
- Kyoto University
| |
Collapse
|
25
|
Bilanin C, Tiburcio E, Ferrando‐Soria J, Armentano D, Leyva‐Pérez A, Pardo E. Crystallographic Visualization of a Double Water Molecule Addition on a Pt
1
‐MOF during the Low‐temperature Water‐Gas Shift Reaction. ChemCatChem 2020. [DOI: 10.1002/cctc.202001492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cristina Bilanin
- Instituto de Tecnología Química Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas. 46022 València Spain
| | - Estefanía Tiburcio
- Instituto de Ciencia Molecular (ICMol) Universidad de Valencia 46980 Paterna, València Spain
| | - Jesús Ferrando‐Soria
- Instituto de Ciencia Molecular (ICMol) Universidad de Valencia 46980 Paterna, València Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche Università della Calabria 87030 Rende, Cosenza Italy
| | - Antonio Leyva‐Pérez
- Instituto de Tecnología Química Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas. 46022 València Spain
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMol) Universidad de Valencia 46980 Paterna, València Spain
| |
Collapse
|