1
|
Lu S, Zhu H, Xue N, Chen S, Liu G, Dou W. Acceleration mechanism of riboflavin on Fe 0-to-microbe electron transfer in corrosion of EH36 steel by Pseudomonas aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173613. [PMID: 38815822 DOI: 10.1016/j.scitotenv.2024.173613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/07/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Riboflavin (RF), as a common electron mediator that can accelerate extracellular electron transfer (EET), is usually used as a probe to confirm EET-microbiologically influenced corrosion (MIC). However, the acceleration mechanism of RF on EET-MIC is still unclear, especially the effect on gene expression in bacteria. In this study, a 13-mer antimicrobial peptide E6 and tetrakis hydroxymethyl phosphonium sulfate (THPS) were used as new tools to investigate the acceleration mechanism of RF on Fe0-to-microbe EET in corrosion of EH36 steel caused by Pseudomonas aeruginosa. 60 min after 20 ppm (v/v) THPS and 20 ppm THPS & 100 nM E6 were injected into P. aeruginosa 1 and P. aeruginosa 2 (two glass bottles containing P. aeruginosa with different treatments) at the 3-d incubation, respectively, P. aeruginosa 1 and P. aeruginosa 2 had a similar planktonic cell count, whereas the sessile cell count in P. aeruginosa 1 was 1.3 log higher than that in P. aeruginosa 2. After the 3-d pre-growth and subsequent 7-d incubation, the addition of 20 ppm (w/w) RF increased the weight loss and maximum pit depth of EH36 steel in P. aeruginosa 1 by 0.7 mg cm-2 and 4.1 μm, respectively, while only increasing those in P. aeruginosa 2 by 0.4 mg cm-2 and 1.7 μm, respectively. This suggests that RF can be utilized by P. aeruginosa biofilms since the corrosion rate should be elevated by the same value if it only acts on the planktonic cells. Furthermore, the EET capacity of P. aeruginosa biofilm was enhanced by RF because the protein expression of cytochrome c (Cyt c) gene in sessile cells was significantly increased in the presence of RF, which accelerated EET-MIC by P. aeruginosa against EH36 steel.
Collapse
Affiliation(s)
- Shihang Lu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Haixia Zhu
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, China
| | - Nianting Xue
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shiqiang Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Guangzhou Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Wenwen Dou
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
2
|
Cui Z, Sheng W. Thoughts about Choosing a Proper Counter Electrode. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zipei Cui
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092, P.R. China
| | - Wenchao Sheng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092, P.R. China
| |
Collapse
|
3
|
Li FM, Huang L, Zaman S, Guo W, Liu H, Guo X, Xia BY. Corrosion Chemistry of Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200840. [PMID: 35334145 DOI: 10.1002/adma.202200840] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Electrocatalysts are the core components of many sustainable energy conversion technologies that are considered the most potential solution to the worldwide energy and environmental crises. The reliability of structure and composition pledges that electrocatalysts can achieve predictable and stable performance. However, during the electrochemical reaction, electrocatalysts are influenced directly by the applied potential, the electrolyte, and the adsorption/desorption of reactive species, triggering structural and compositional corrosion, which directly affects the catalytic behaviors of electrocatalysts (performance degradation or enhancement) and invalidates the established structure-activity relationship. Therefore, it is necessary to elucidate the corrosion behavior and mechanism of electrocatalysts to formulate targeted corrosion-resistant strategies or use corrosion reconstruction synthesis techniques to guide the preparation of efficient and stable electrocatalysts. Herein, the most recent developments in electrocatalyst corrosion chemistry are outlined, including corrosion mechanisms, mitigation strategies, and corrosion syntheses/reconstructions based on typical materials and important electrocatalytic reactions. Finally, potential opportunities and challenges are also proposed to foresee the possible development in this field. It is believed that this contribution will raise more awareness regarding nanomaterial corrosion chemistry in energy technologies and beyond.
Collapse
Affiliation(s)
- Fu-Min Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Lei Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Shahid Zaman
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Wei Guo
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Hongfang Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Xingpeng Guo
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
4
|
Fu X, Zhang J, Zhan S, Xia F, Wang C, Ma D, Yue Q, Wu J, Kang Y. High-Entropy Alloy Nanosheets for Fine-Tuning Hydrogen Evolution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xianbiao Fu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jiahao Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Shaoqi Zhan
- Department of Chemistry─BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, U.K
| | - Fanjie Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Chengjie Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Dongsheng Ma
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Qin Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yijin Kang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| |
Collapse
|
5
|
Weber P, Weber DJ, Dosche C, Oezaslan M. Highly Durable Pt-Based Core–Shell Catalysts with Metallic and Oxidized Co Species for Boosting the Oxygen Reduction Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Philipp Weber
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Daniel J. Weber
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Carsten Dosche
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Mehtap Oezaslan
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technical University of Braunschweig, Braunschweig 38106, Germany
| |
Collapse
|
6
|
Jerkiewicz G. Applicability of Platinum as a Counter-Electrode Material in Electrocatalysis Research. ACS Catal 2022. [DOI: 10.1021/acscatal.1c06040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gregory Jerkiewicz
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
7
|
Campos-Roldán CA, Pailloux F, Blanchard PY, Jones DJ, Rozière J, Cavaliere S. Rational Design of Carbon-Supported Platinum–Gadolinium Nanoalloys for Oxygen Reduction Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Frédéric Pailloux
- Institut P’, CNRS−Université de Poitiers−ISAE-ENSMA−UPR 3346, 11 Boulevard Marie et Pierre Curie, Site du Futuroscope, TSA 41123, 86073 Poitiers Cédex 9, France
| | | | - Deborah J. Jones
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier Cedex 5, France
| | - Jacques Rozière
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier Cedex 5, France
| | - Sara Cavaliere
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier Cedex 5, France
- Institut Universitaire de France (IUF), 75231 Paris Cedex 05, France
| |
Collapse
|
8
|
Tang C, Chen L, Li H, Li L, Jiao Y, Zheng Y, Xu H, Davey K, Qiao SZ. Tailoring Acidic Oxygen Reduction Selectivity on Single-Atom Catalysts via Modification of First and Second Coordination Spheres. J Am Chem Soc 2021; 143:7819-7827. [PMID: 33983725 DOI: 10.1021/jacs.1c03135] [Citation(s) in RCA: 285] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Product selectivity in multielectron electrocatalytic reactions is crucial to energy conversion efficiency and chemical production. However, a present practical drawback is the limited understanding of actual catalytic active sites. Here, using as a prototype single-atom catalysts (SACs) in acidic oxygen reduction reaction (ORR), we report the structure-property relationship of catalysts and show for the first time that molecular-level local structure, including first and second coordination spheres (CSs), rather than individual active atoms, synergistically determines the electrocatalytic response. ORR selectivity on Co-SACs can be tailored from a four-electron to a two-electron pathway by modifying first (N or/and O coordination) and second (C-O-C groups) CSs. Using combined theoretical predictions and experiments, including X-ray absorption fine structure analyses and in situ infrared spectroscopy, we confirm that the unique selectivity change originates from the structure-dependent shift of active sites from the center Co atom to the O-adjacent C atom. We show this optimizes the electronic structure and *OOH adsorption behavior on active sites to give the present "best" activity and selectivity of >95% for acidic H2O2 electrosynthesis.
Collapse
Affiliation(s)
- Cheng Tang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Ling Chen
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Haijing Li
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Laiquan Li
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yan Jiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yao Zheng
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Haolan Xu
- Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - Kenneth Davey
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|