1
|
Bellomi S, Cano-Blanco DC, Barlocco I, Delgado JJ, Chen X, Prati L, Ferri D, Dimitratos N, Roldan A, Villa A. Probing the Metal/Oxide Interface of IrCoCeO x in N 2H 4·H 2O Decomposition: An Experimental and Computational Study. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54897-54906. [PMID: 39344045 DOI: 10.1021/acsami.4c12306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Understanding the structure of a functional catalyst is crucial to disclosing the complexity of heterogeneous processes and improving their efficiency. Herein, coprecipitated cobalt-ceria (CoCeOx) oxides doped with Ir (IrCoCeOx) were synthesized and used to assess the performances of metal/oxide interfaces in the N2H4·H2O decomposition performed in aqueous NaOH. Kinetic experiments in batch showed that CoO is the active phase of CoCeOx and that the copresence of Ir and Co (IrCoCeOx) enhanced H2 productivity. A comprehensive characterization (X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy, and in situ diffuse reflectance infrared Fourier transform spectroscopy) combined with robust computational modeling based on the density functional theory was employed to attribute the IrCoCeOx performance enhancement to the Ir/CoO metal/oxide interface, the active site of the reaction. On these sites, the improved H2 productivity in the presence of aqueous NaOH was studied operando through modulated excitation-attenuated total reflectance infrared coupled with phase sensitive detection. The formation of surface Co-hydroxyl and -imido groups at the Ir/CoO interface induced the preferential breakage of the N-H bond of N2H4·H2O, favoring the production of H2.
Collapse
Affiliation(s)
- Silvio Bellomi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133 Milano, Italy
| | - Daniel C Cano-Blanco
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ilaria Barlocco
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133 Milano, Italy
| | - Juan J Delgado
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, E-11510 Puerto Real (Cádiz), Spain
| | - Xiaowei Chen
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, E-11510 Puerto Real (Cádiz), Spain
| | - Laura Prati
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133 Milano, Italy
| | - Davide Ferri
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Nikolaos Dimitratos
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum Università di Bologna, Viale Risorgimento 4, 40126 Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, U.K
| | - Alberto Villa
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133 Milano, Italy
| |
Collapse
|
2
|
Geitner R, Schuett T, Zechel S, Schubert US. Advancements and Challenges in the Synthesis of Oxymethylene Ethers (OMEs) as Sustainable Transportation Fuels. Chemistry 2024; 30:e202401570. [PMID: 38877302 DOI: 10.1002/chem.202401570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/16/2024]
Abstract
The urgent need for sustainable alternatives to fossil fuels in the transportation sector is driving research into novel energy carriers that can meet the high energy density requirements of heavy-duty vehicles without exacerbating the climate change. This concept article examines the synthesis, mechanisms, and challenges associated with oxymethylene ethers (OMEs), a promising class of synthetic fuels potentially derived from carbon dioxide and hydrogen. We highlight the importance of OMEs in the transition towards non-fossil energy sources due to their compatibility with the existing Diesel infrastructure and their cleaner combustion profile. The synthesis mechanisms, including the Schulz-Flory distribution and its implications for OME chain length specificity, and the role of various catalysts and starting materials are discussed in depth. Despite advancements in the field, significant challenges remain, such as overcoming the Schulz-Flory distribution, efficiently managing water as an undesirable byproduct, and improving the overall energy efficiency of the OME synthesis. Addressing these challenges is crucial for OMEs to become a viable alternative fuel, contributing to the reduction of greenhouse gas emissions and the transition to a sustainable energy future in the transportation sector.
Collapse
Affiliation(s)
- Robert Geitner
- Institute for Chemistry and Bioengineering, Technical University Ilmenau, Weimarer Str. 32, 98693, Ilmenau, Germany
| | - Timo Schuett
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Stefan Zechel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstrasse 12-14, 07743, Jena, Germany
| |
Collapse
|
3
|
Chu T, Zhou Z, Tian P, Yu T, Lian C, Zhang B, Xuan FZ. Nanofluidic sensing inspired by the anomalous water dynamics in electrical angstrom-scale channels. Nat Commun 2024; 15:7329. [PMID: 39187549 PMCID: PMC11347597 DOI: 10.1038/s41467-024-51877-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Manipulation of confined water dynamics by voltage keeps great importance for diverse applications. However, limitations on the membrane functions, voltage-control range, and unclear dynamics need to be addressed. Herein, we report an anomalous electrically controlled gating phenomenon on cation-intercalated multi-layer Ti3C2 membranes and reveal the confined water dynamics. The water permeation rate was improved rapidly following the application and rise of voltage and finally reached a maximum rate at 0.9 V. The permeation rate starts to decrease from 0.9 V. Below 0.9 V, the electric field affects the charge and polarity of water molecules and then leads to ordered and denser rearrangement in the two-dimensional (2D) channel to accelerate the permeation rate. Above 0.9 V, with the assistance of metal cations, the surge in current induced aggregation of water molecules into clusters, thereby limiting the water mobility. Based on these findings, a high-performance humidity sensor was developed by simultaneously optimizing the response and recovery speeds through electric manipulation. This work provides flexible strategies in intelligent membrane design and nanofluidic sensing.
Collapse
Affiliation(s)
- Tianshu Chu
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, Shanghai, PR China
- School of Mechanical and Power Engineering and, East China University of Science and Technology, Shanghai, PR China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, PR China
| | - Ze Zhou
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, Shanghai, PR China
- School of Mechanical and Power Engineering and, East China University of Science and Technology, Shanghai, PR China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, PR China
| | - Pengfei Tian
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, Shanghai, PR China
- School of Mechanical and Power Engineering and, East China University of Science and Technology, Shanghai, PR China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, PR China
| | - Tingting Yu
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Bowei Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, Shanghai, PR China.
- School of Mechanical and Power Engineering and, East China University of Science and Technology, Shanghai, PR China.
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, PR China.
| | - Fu-Zhen Xuan
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, Shanghai, PR China.
- School of Mechanical and Power Engineering and, East China University of Science and Technology, Shanghai, PR China.
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, PR China.
| |
Collapse
|
4
|
Liu Q, van Bokhoven JA. Water structures on acidic zeolites and their roles in catalysis. Chem Soc Rev 2024; 53:3065-3095. [PMID: 38369933 DOI: 10.1039/d3cs00404j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The local reaction environment of catalytic active sites can be manipulated to modify the kinetics and thermodynamic properties of heterogeneous catalysis. Because of the unique physical-chemical nature of water, heterogeneously catalyzed reactions involving specific interactions between water molecules and active sites on catalysts exhibit distinct outcomes that are different from those performed in the absence of water. Zeolitic materials are being applied with the presence of water for heterogeneous catalytic reactions in the chemical industry and our transition to sustainable energy. Mechanistic investigation and in-depth understanding about the behaviors and the roles of water are essentially required for zeolite chemistry and catalysis. In this review, we focus on the discussions of the nature and structures of water adsorbed/stabilized on Brønsted and Lewis acidic zeolites based on experimental observations as well as theoretical calculation results. The unveiled functions of water structures in determining the catalytic efficacy of zeolite-catalyzed reactions have been overviewed and the strategies frequently developed for enhancing the stabilization of zeolite catalysts are highlighted. Recent advancement will contribute to the development of innovative catalytic reactions and the rationalization of catalytic performances in terms of activity, selectivity and stability with the presence of water vapor or in condensed aqueous phase.
Collapse
Affiliation(s)
- Qiang Liu
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland.
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland.
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
5
|
Voggenreiter J, Ferre A, Burger J. Scale-up of the Continuous Production of Poly(oxymethylene) Dimethyl Ethers from Methanol and Formaldehyde in Tubular Reactors. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Johannes Voggenreiter
- Laboratory of Chemical Process Engineering, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstrasse 53, 94315 Straubing, Germany
| | - Alvaro Ferre
- Laboratory of Chemical Process Engineering, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstrasse 53, 94315 Straubing, Germany
| | - Jakob Burger
- Laboratory of Chemical Process Engineering, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstrasse 53, 94315 Straubing, Germany
| |
Collapse
|
6
|
Drexler M, Haltenort P, Arnold U, Sauer J, Karakoulia SA, Triantafyllidis KS. Progress in the anhydrous production of oxymethylene ethers (OME) as a renewable diesel fuel in a liquid phase process. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Wu Q, Guo Y, Shang J, Shi D, Zhang Y, Chen K, Li H, Zhao Y, Jiao Q. Synthesis of Polyoxymethylene Dimethyl Ethers from Formaldehyde and Dimethoxymethane by the Coupling of Extraction and Catalytic Reaction. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Cao C, Liu G, Xin F, Lei Q, Qin X, Yin Y, Chen H, Ullah A. Analyses and rates of reactions influenced by water in synthesis of polyoxymethylene dimethyl ethers from trioxane and methylal. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Liu G, Xin F, Cao C, Zhang X, Lei Q, Chen H, Ren H. Apparent Kinetics and Prospective Operation on Synthesizing Poly(oxymethylene) Dimethyl Ethers over Shaped Zeolite BETA in Fixed-bed Reactor. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Drexler M, Haltenort P, Arnold U, Sauer J. Continuous Synthesis of Oxymethylene Ether Fuels from Dimethyl Ether in a Heterogeneously Catalyzed Liquid Phase Process. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202100173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marius Drexler
- Karlsruhe Institute of Technology (KIT) Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Philipp Haltenort
- Karlsruhe Institute of Technology (KIT) Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Ulrich Arnold
- Karlsruhe Institute of Technology (KIT) Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Jörg Sauer
- Karlsruhe Institute of Technology (KIT) Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
11
|
Baranowski CJ, Brandon J, Bahmanpour AM, Kröcher O. Grafting of Alkali Metals on Fumed Silica for the Catalytic Dehydrogenation of Methanol to Formaldehyde. ChemCatChem 2021. [DOI: 10.1002/cctc.202100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christophe J. Baranowski
- Institute of Chemical Sciences and Engineering École polytechnique fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Jack Brandon
- Institute of Chemical Sciences and Engineering École polytechnique fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Ali M. Bahmanpour
- Institute of Chemical Sciences and Engineering École polytechnique fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Oliver Kröcher
- Institute of Chemical Sciences and Engineering École polytechnique fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- Paul Scherrer Institut OVGA/112 5232 Villigen PSI Switzerland
| |
Collapse
|