1
|
Kang S, Kim J, Kim S, Chun H, Heo J, Reboul CF, Meana-Pañeda R, Van CTS, Choi H, Lee Y, Rhee J, Lee M, Kang D, Kim BH, Hyeon T, Han B, Ercius P, Lee WC, Elmlund H, Park J. Time-resolved Brownian tomography of single nanocrystals in liquid during oxidative etching. Nat Commun 2025; 16:1158. [PMID: 39880816 PMCID: PMC11779812 DOI: 10.1038/s41467-025-56476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025] Open
Abstract
Colloidal nanocrystals inherently undergo structural changes during chemical reactions. The robust structure-property relationships, originating from their nanoscale dimensions, underscore the significance of comprehending the dynamic structural behavior of nanocrystals in reactive chemical media. Moreover, the complexity and heterogeneity inherent in their atomic structures require tracking of structural transitions in individual nanocrystals at three-dimensional (3D) atomic resolution. In this study, we introduce the method of time-resolved Brownian tomography to investigate the temporal evolution of the 3D atomic structures of individual nanocrystals in solution. The methodology is applied to examine the atomic-level structural transformations of Pt nanocrystals during oxidative etching. The time-resolved 3D atomic maps reveal the structural evolution of dissolving Pt nanocrystals, transitioning from a crystalline to a disordered structure. Our study demonstrates the emergence of a phase at the nanometer length scale that has received less attention in bulk thermodynamics.
Collapse
Affiliation(s)
- Sungsu Kang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Joodeok Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Sungin Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Hoje Chun
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Junyoung Heo
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Cyril F Reboul
- National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, USA
| | - Rubén Meana-Pañeda
- National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, USA
| | - Cong T S Van
- National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, USA
| | - Hyesung Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Yunseo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Jinho Rhee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Minyoung Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Dohun Kang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Byung Hyo Kim
- Department of Material Science and Engineering, Soongsil University, Seoul, Republic of Korea
| | - Taeghwan Hyeon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Byungchan Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
| | - Peter Ercius
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Won Chul Lee
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Republic of Korea.
| | - Hans Elmlund
- National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, USA.
| | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, Republic of Korea.
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, Republic of Korea.
- Hyundai Motor Group-Seoul National University (HMG-SNU) Joint Battery Research Center (JBRC), Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Lin H, Luo C, Cheng F, Xie K. Engineering Active Interfaces on the Surface of Porous Single-Crystalline TiO 2 Monoliths for Enhanced Catalytic Activity and Stability. RESEARCH (WASHINGTON, D.C.) 2025; 8:0579. [PMID: 39810854 PMCID: PMC11729270 DOI: 10.34133/research.0579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025]
Abstract
The engineering design and construction of active interfaces represents a promising approach amidst numerous initiatives aimed at augmenting catalytic activity. Herein, we present a novel approach to incorporate interconnected pores within bulk single crystals for the synthesis of macroscopic porous single-crystalline rutile titanium oxide (R-TiO2). The porous single crystal (PSC) R-TiO2 couples a nanocrystalline framework as the solid phase with pores as the fluid phase within its structure, providing unique advantages in localized structure construction and in the field of catalysis. We successfully construct well-defined Ni cluster/TiO2 active interfaces by directly confining Ni clusters on the continuous lattice surface of PSC R-TiO2. We confirm that the lattice oxygen connected to the Ni clusters exhibits exceptional activation capability at temperatures close to room temperature compared to the pure phase PSC R-TiO2 monoliths. The PSC Ni/TiO2 catalyst demonstrates complete CO oxidation and stable catalytic performance during continuous operation in air at ~80 °C for 200 h.
Collapse
Affiliation(s)
- Huang Lin
- Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian College,
University of Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
| | - Cong Luo
- Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Fujian College,
University of Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
| | - Fangyuan Cheng
- Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian College,
University of Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
| | - Kui Xie
- Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian College,
University of Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
- School of Mechanical Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Qi F, Peng J, Liang Z, Guo J, Liu J, Fang T, Mao H. Strong metal-support interaction (SMSI) in environmental catalysis: Mechanisms, application, regulation strategies, and breakthroughs. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100443. [PMID: 39157790 PMCID: PMC11327470 DOI: 10.1016/j.ese.2024.100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 08/20/2024]
Abstract
The strong metal-support interaction (SMSI) in supported catalysts plays a dominant role in catalytic degradation, upgrading, and remanufacturing of environmental pollutants. Previous studies have shown that SMSI is crucial in supported catalysts' activity and stability. However, for redox reactions catalyzed in environmental catalysis, the enhancement mechanism of SMSI-induced oxygen vacancy and electron transfer needs to be clarified. Additionally, the precise control of SMSI interface sites remains to be fully understood. Here we provide a systematic review of SMSI's catalytic mechanisms and control strategies in purifying gaseous pollutants, treating organic wastewater, and valorizing biomass solid waste. We explore the adsorption and activation mechanisms of SMSI in redox reactions by examining interfacial electron transfer, interfacial oxygen vacancy, and interfacial acidic sites. Furthermore, we develop a precise regulation strategy of SMSI from systematical perspectives of interface effect, crystal facet effect, size effect, guest ion doping, and modification effect. Importantly, we point out the drawbacks and breakthrough directions for SMSI regulation in environmental catalysis, including partial encapsulation strategy, size optimization strategy, interface oxygen vacancy strategy, and multi-component strategy. This review article provides the potential applications of SMSI and offers guidance for its controlled regulation in environmental catalysis.
Collapse
Affiliation(s)
- Fuyuan Qi
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jianfei Peng
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Zilu Liang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jiliang Guo
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jiayuan Liu
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Tiange Fang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Wang S, Li X, Lai C, Zhang Y, Lin X, Ding S. Recent advances in noble metal-based catalysts for CO oxidation. RSC Adv 2024; 14:30566-30581. [PMID: 39324044 PMCID: PMC11421417 DOI: 10.1039/d4ra05102e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024] Open
Abstract
Carbon monoxide, one of the major pollutants in the air, is mainly produced due to the incomplete combustion of fossil fuels such as coal and oil. Among all the techniques developed for removing CO, catalytic oxidation has been considered one of the most effective approaches, and the commonly used catalysts include metal oxides and noble metals. Noble metal attracted extensive attention due to its good catalytic performance at low temperatures and high resistance to poisoning. The review summarizes the recent advances of noble metals including Pt, Pd, Au, Ru, Rh, and Ir in CO oxidation. The effect of support, metal doping, the particle size of noble metals, and the hydroxyl groups on CO oxidation is discussed. Besides, the metal-support interaction on the stability and activity is also involved in this review. Finally, the challenges and opportunities of supported noble metal catalysts in practical CO oxidation are proposed.
Collapse
Affiliation(s)
- Sheng Wang
- National Energy Group Science and Technology Research Institute Nanjing 210031 Jiangsu China
| | - Xiaoman Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University Nanjing 210096 Jiangsu China
| | - Chengyue Lai
- Chengdu Academy of Environmental Sciences Chengdu 610072 China
| | - Yaping Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University Nanjing 210096 Jiangsu China
| | - Xiao Lin
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University Nanjing 210096 Jiangsu China
| | - Shipeng Ding
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University Nanjing 210096 Jiangsu China
| |
Collapse
|
5
|
Sriram B, Wang SF, Kameoka S. A Comparative Study of Hydrothermally Leached Al 3TM and Al 3TM-Rh (TM=Zr, V, Ce) Intermetallic Compounds for Catalytic Oxidation of Carbon Monoxide. CHEMSUSCHEM 2024:e202401444. [PMID: 39221979 DOI: 10.1002/cssc.202401444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Rise of the mute assassin "carbon monoxide (CO)" levels impact all aerobic life. The elevated rates of CO concentration endure climatic and geographical characteristics that exacerbate air pollution. Herein, a simple approach for hydrothermal leaching (HyTL) of Al3TM-Rh0.5 (Target material (TM)=Zr, V, Ce) and Al3TM (TM=Zr, V, Ce) intermetallic compounds produces leached products of ZrO2, VO2, and CeO2 with Rhodium (Rh) as an active component. The characterization result reveals the HyTL process and the presence of the active Rh element that elevated the performance of HyTL-Al3Zr-Rh0.5 towards CO conversion compared to other samples. Further, the cubic ZrO2 phase selectively forms after HyTL at 130 °C even though the formation of the cubic ZrO2 phase takes place at a high temperature. Moreover, the presence of Rh promotes higher catalytic activity in all the cases with low temperatures. The advancement in the present study towards the catalytic oxidation of CO over the hydrothermally leached ZrO2-Rh nanocatalyst guarantees the perspective of the aggregation-activation process.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Satoshi Kameoka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
6
|
Chen J, Li Z, Tan W, Xie Y, Cao J, Zhang Q, Ning P, Hao J. Facilely Fabricated Single-Site Pt δ+-O(OH) x- Species Associated with Alkali on Zirconia Exhibiting Superior Catalytic Oxidation Reactivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12685-12696. [PMID: 38959026 DOI: 10.1021/acs.est.4c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Fabrication of robust isolated atom catalysts has been a research hotspot in the environment catalysis field for the removal of various contaminants, but there are still challenges in improving the reactivity and stability. Herein, through facile doping alkali metals in Pt catalyst on zirconia (Pt-Na/ZrO2), the atomically dispersed Ptδ+-O(OH)x- associated with alkali metal via oxygen bridge was successfully fabricated. This novel catalyst presented remarkably higher CO and hydrocarbon (HCs: C3H8, C7H8, C3H6, and CH4) oxidation activity than its counterpart (Pt/ZrO2). Systematically direct and solid evidence from experiments and density functional theory calculations demonstrated that the fabricated electron-rich Ptδ+-O(OH)x- related to Na species rather than the original Ptδ+-O(OH)x-, serving as the catalytically active species, can readily react with CO adsorbed on Ptδ+ to produce CO2 with significantly decreasing energy barrier in the rate-determining step from 1.97 to 0.93 eV. Additionally, owing to the strongly adsorbed and activated water by Na species, those fabricated single-site Ptδ+-O(OH)x- linked by Na species could be easily regenerated during the oxidation reaction, thus considerably boosting its oxidation reactivity and durability. Such facile construction of the alkali ion-linked active hydroxyl group was also realized by Li and K modification which could guide to the design of efficient catalysts for the removal of CO and HCs from industrial exhaust.
Collapse
Affiliation(s)
- Jianjun Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhiyu Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Tan
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinyan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Qiulin Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Jiming Hao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Lin J, Zhao S, Yang J, Huang WH, Chen CL, Chen T, Zhao Y, Chen G, Qiu Y, Gu L. Hydrogen Spillover Induced PtCo/CoO x Interfaces with Enhanced Catalytic Activity for CO Oxidation at Low Temperatures in Humid Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309181. [PMID: 38100297 DOI: 10.1002/smll.202309181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/24/2023] [Indexed: 12/17/2023]
Abstract
The development of catalysts with abundant active interfaces for superior low-temperature catalytic CO oxidation is critical to meet increasingly rigorous emission requirements, yet still challenging. Herein, this work reports a PtCo/CoOx/Al2O3 catalyst with PtCo clusters and enriched Pt─O─Co interfaces induced by hydrogen spillover from the Pt sites and self-oxidation process in air, exhibiting excellent performance for CO oxidation at low temperatures and humid conditions. The combination of structural characterizations and in situ Fourier transform infrared spectroscopy reveals that the PtCo cluster effectively prevents CO saturation/poisoning on the Pt surface. Additionally, the presence of Pt─O─Co interfaces in the PtCo/CoOx/Al2O3 catalyst provides a significant number of active sites for oxygen activation and ─OH formation. This facilitates efficient generation of CO2 at ambient temperature by coupling with nearby adsorbed CO molecules, resulting in superior low-temperature activity and long-term stability for CO oxidation under humid conditions. This work provides a facile route toward rationalizing the design of catalysts with more active interfaces for superior low-temperature CO oxidation under humid conditions for practical applications.
Collapse
Affiliation(s)
- Jiajin Lin
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, 510000, China
| | - Shuaiqi Zhao
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Jin Yang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, 510000, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology (NTUST), Hsinchu, 30076, Taiwan
| | - Chi-Liang Chen
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology (NTUST), Hsinchu, 30076, Taiwan
| | - Tingyu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, 510000, China
| | - Yun Zhao
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, 510000, China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, 510000, China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, 510000, China
| | - Lin Gu
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Laboratory of Advanced Materials and Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
8
|
Han X, Zhang L, Zhang R, Wang K, Wang X, Li B, Tao Z, Song S, Zhang H. Boosting the catalytic performance of Al 2O 3-supported Pd catalysts by introducing CeO 2 promoters. Dalton Trans 2024. [PMID: 38258661 DOI: 10.1039/d3dt03676f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Maintaining the stability of noble metals is the key to the long-term stability of supported catalysts. In response to the instability of noble metal species at high temperatures, we developed a synergistic strategy of dual oxide supports. By designing and constructing ceria components with small sizes, we have achieved unity in the ability of catalytic materials to supply oxygen and stabilize metal species. In this study, we prepared Al2O3-CeO2-Pd (AlCePd) catalysts containing trace amounts of Ce through the hydrolysis of cerium acetate, which achieved 100% CO conversion at 160 °C. More importantly, the activity remained at its initial 100% in the long-term durability testing, demonstrating the high stability of AlCePd. In contrast, the CO conversion of the CeO2-Pd (CePd) catalyst decreased from 100% to 54% within 3 h. Through comprehensive studies, we found that this excellent catalytic performance stems from the stabilizing effect of an alumina support and the possible reverse oxygen spillover effect of small-sized ceria components, where small-sized ceria components provide active oxygen for independent Pd species, making it possible for the CO adsorbed on Pd to react with this oxygen species.
Collapse
Affiliation(s)
- Xiaoxiao Han
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Lingling Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Rui Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Ke Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Bo Li
- Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, PR China.
| | - Zhiping Tao
- Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, PR China.
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Tan W, Xie S, Zhang X, Ye K, Almousawi M, Kim D, Yu H, Cai Y, Xi H, Ma L, Ehrlich SN, Gao F, Dong L, Liu F. Fine-Tuning of Pt Dispersion on Al 2O 3 and Understanding the Nature of Active Pt Sites for Efficient CO and NH 3 Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:454-466. [PMID: 38147632 DOI: 10.1021/acsami.3c11897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Fine-tuning the dispersion of active metal species on widely used supports is a research hotspot in the catalysis community, which is vital for achieving a balance between the atomic utilization efficiency and the intrinsic activity of active sites. In this work, using bayerite Al(OH)3 as support directly or after precalcination at 200 or 550 °C, Pt/Al2O3 catalysts with distinct Pt dispersions from single atoms to clusters (ca. 2 nm) were prepared and evaluated for CO and NH3 removal. Richer surface hydroxyl groups on AlOx(OH)y support were proved to better facilitate the dispersion of Pt. However, Pt/Al2O3 with relatively lower Pt dispersion could exhibit better activity in CO/NH3 oxidation reactions. Further reaction mechanism study revealed that the Pt sites on Pt/Al2O3 with lower Pt dispersion could be activated to Pt0 species much easier under the CO oxidation condition, on which a higher CO adsorption capacity and more efficient O2 activation were achieved simultaneously. Compared to Pt single atoms, PtOx clusters could also better activate NH3 into -NH2 and -HNO species. The higher CO adsorption capacity and the more efficient NH3/O2 activation ability on Pt/Al2O3 with relatively lower Pt dispersion well explained its higher CO/NH3 oxidation activity. This study emphasizes the importance of avoiding a singular pursuit of single-atom catalyst synthesis and instead focusing on achieving the most effective Pt species on Al2O3 support for targeted reactions. This approach avoids unnecessary limitations and enables a more practical and efficient strategy for Pt catalyst fabrication in emission control applications.
Collapse
Affiliation(s)
- Wei Tan
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Xing Zhang
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Kailong Ye
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Murtadha Almousawi
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Daekun Kim
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Haowei Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yandi Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hanchen Xi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lu Ma
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Steven N Ehrlich
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Fei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
10
|
Albrahim MA, Shrotri A, Unocic RR, Hoffman AS, Bare SR, Karim AM. Size-Dependent Dispersion of Rhodium Clusters into Isolated Single Atoms at Low Temperature and the Consequences for CO Oxidation Activity. Angew Chem Int Ed Engl 2023; 62:e202308002. [PMID: 37488071 DOI: 10.1002/anie.202308002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Understanding the dynamic structural evolution of supported metal clusters under reaction conditions is crucial to develop structure reactivity relations. Here, we followed the structure of different size Rh clusters supported on Al2 O3 using in situ/operando spectroscopy and ex situ aberration-corrected electron microscopy. We report a dynamic evolution of rhodium clusters into thermally stable isolated single atoms upon exposure to oxygen and during CO oxidation. Rh clusters partially disperse into single atoms at room temperature and the extent of dispersion increases as the Rh size decreases and as the reaction temperature increases. A strong correlation is found between the extent of dispersion and the CO oxidation kinetics. More importantly, dispersing Rh clusters into single atoms increases the activity at room temperature by more than two orders of magnitude due to the much lower activation energy on single atoms (40 vs. 130 kJ/mol). This work demonstrates that the structure and reactivity of small Rh clusters are very sensitive to the reaction environment.
Collapse
Affiliation(s)
- Malik A Albrahim
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24060, USA
| | - Abhijit Shrotri
- Institute for Catalysis, Hokkaido University Kita ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Raymond R Unocic
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37830, USA
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - Ayman M Karim
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24060, USA
| |
Collapse
|
11
|
Liu H, Qiang S, Wu F, Zhu XD, Liu X, Yu J, Liu YT, Ding B. Scalable Synthesis of Flexible Single-Atom Monolithic Catalysts for High-Efficiency, Durable CO Oxidation at Low Temperature. ACS NANO 2023; 17:19431-19440. [PMID: 37737011 DOI: 10.1021/acsnano.3c07888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The creation of single-atom catalysts in a large-size, high-yield, and stable form represents an important direction for high-efficiency industrial catalysis in the future. Herein, we report a strategy to synthesize flexible single-atom monolithic catalysts (SAMCs) based on the hierarchical 3D assembly of single-atom-loaded oxide ceramic nanofibers. The nanofibers, which can be produced in a continuous and scalable manner, serve as an ideal support for single atoms spontaneously and almost completely exposed at the surface through the Kirkendall effect-enabled in situ ion migration during the spinning process, resulting in both high yield and large loading quantity. Moreover, the hierarchical 3D assembly of these nanofibers into a porous, flexible structure endows the SAMCs with the advantages of sufficient infiltration and oscillation tolerance when faced with high-throughput gaseous media, leading to both high catalytic efficiency and excellent durability. As a proof-of-concept demonstration, a Pt SAMC is synthesized, which exhibits 100% CO oxidation at low temperature (∼170 °C), excellent invariance toward high-frequency (10 Hz) oscillation, and high structural stability from 25 to 300 °C. This work is beneficial for the large-scale production of SAMCs in broad industrial applications.
Collapse
Affiliation(s)
- Hualei Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Siyu Qiang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Fan Wu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiao-Dong Zhu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xiaoyan Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yi-Tao Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
12
|
Li M, Li T, Jing Y. Nb 2S 2C Monolayers with Transition Metal Atoms Embedded at the S Vacancy Are Promising Single-Atom Catalysts for CO Oxidation. ACS OMEGA 2023; 8:31051-31059. [PMID: 37663518 PMCID: PMC10468833 DOI: 10.1021/acsomega.3c02984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/07/2023] [Indexed: 09/05/2023]
Abstract
Single atoms anchored on stable and robust two-dimensional (2D) materials are attractive catalysts for carbon monoxide (CO) oxidation. Here, 3d (Fe-Zn), 4d (Ru-Cd), and 5d (Os-Hg) transition metal-decorated Nb2S2C monolayers were systematically studied as potential single-atom catalysts for low-temperature CO oxidation reactions by performing first-principles calculations. Sulfur vacancies are essential for stabilizing the transition metals anchored on the surface of defective Nb2S2C. After estimating the structure stability, the aggregation trend of the embedded metal atoms, and adsorption strength of reactants and products, Zn-decorated defective Nb2S2C is predicted to be a promising catalyst to facilitate CO oxidation through the Langmuir-Hinshelwood (LH) mechanism with an energy barrier of only 0.25 eV. Our investigation indicates that defective carbosulfides can be promising substrates to generate efficient and low-cost single-atom catalysts for low-temperature CO oxidation.
Collapse
Affiliation(s)
- Manman Li
- Jiangsu Co-Innovation Centre
of Efficient Processing and Utilization of Forest Resources, College
of Chemical Engineering, Nanjing Forestry
University, Nanjing 210037, China
| | - Tianchun Li
- Jiangsu Co-Innovation Centre
of Efficient Processing and Utilization of Forest Resources, College
of Chemical Engineering, Nanjing Forestry
University, Nanjing 210037, China
| | - Yu Jing
- Jiangsu Co-Innovation Centre
of Efficient Processing and Utilization of Forest Resources, College
of Chemical Engineering, Nanjing Forestry
University, Nanjing 210037, China
| |
Collapse
|
13
|
Li Q, Zhou W, Deng C, Lu C, Huang P, Xia D, Tan L, Zhou C, Zhang YW, Dong L. Hydroxyl-Decorated Pt as a Robust Water-Resistant Catalyst for Catalytic Benzene Oxidation. Inorg Chem 2023; 62:13544-13553. [PMID: 37561968 DOI: 10.1021/acs.inorgchem.3c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
In catalytic oxidation reactions, the presence of environmental water poses challenges to the performance of Pt catalysts. This study aims to overcome this challenge by introducing hydroxyl groups onto the surface of Pt catalysts using the pyrolysis reduction method. Two silica supports were employed to investigate the impact of hydroxyl groups: SiO2-OH with hydroxyl groups and SiO2-C without hydroxyl groups. Structural characterization confirmed the presence of Pt-Ox, Pt-OHx, and Pt0 species in the Pt/SiO2-OH catalysts, while only Pt-Ox and Pt0 species were observed in the Pt/SiO2-C catalysts. Catalytic performance tests demonstrated the remarkable capacity of the 0.5 wt % Pt/SiO2-OH catalyst, achieving complete conversion of benzene at 160 °C under a high space velocity of 60,000 h-1. Notably, the catalytic oxidation capacity of the Pt/SiO2-OH catalyst remained largely unaffected even in the presence of 10 vol % water vapor. Moreover, the catalyst exhibited exceptional recyclability and stability, maintaining its performance over 16 repeated cycles and a continuous operation time of 70 h. Theoretical calculations revealed that the construction of Pt-OHx sites on the catalyst surface was beneficial for modulating the d-band structure, which in turn enhanced the adsorption and activation of reactants. This finding highlights the efficacy of decorating the Pt surface with hydroxyl groups as an effective strategy for improving the water resistance, catalytic activity, and long-term stability of Pt catalysts.
Collapse
Affiliation(s)
- Qun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Wenyu Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- Institute of High Performance Computing (IHPC), Agency of Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Chunyan Deng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Peng Huang
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Dong Xia
- Manchester Fuel Cell Innovation Centre, Department of Natural Sciences, Manchester Metropolitan University, Manchester M15 6BH, U.K
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency of Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
14
|
Chen J, Xiong S, Liu H, Shi J, Mi J, Liu H, Gong Z, Oliviero L, Maugé F, Li J. Reverse oxygen spillover triggered by CO adsorption on Sn-doped Pt/TiO 2 for low-temperature CO oxidation. Nat Commun 2023; 14:3477. [PMID: 37311800 DOI: 10.1038/s41467-023-39226-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
The spillover of oxygen species is fundamentally important in redox reactions, but the spillover mechanism has been less understood compared to that of hydrogen spillover. Herein Sn is doped into TiO2 to activate low-temperature (<100 °C) reverse oxygen spillover in Pt/TiO2 catalyst, leading to CO oxidation activity much higher than that of most oxide-supported Pt catalysts. A combination of near-ambient-pressure X-ray photoelectron spectroscopy, in situ Raman/Infrared spectroscopies, and ab initio molecular dynamics simulations reveal that the reverse oxygen spillover is triggered by CO adsorption at Pt2+ sites, followed by bond cleavage of Ti-O-Sn moieties nearby and the appearance of Pt4+ species. The O in the catalytically indispensable Pt-O species is energetically more favourable to be originated from Ti-O-Sn. This work clearly depicts the interfacial chemistry of reverse oxygen spillover that is triggered by CO adsorption, and the understanding is helpful for the design of platinum/titania catalysts suitable for reactions of various reactants.
Collapse
Affiliation(s)
- Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Shangchao Xiong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China.
| | - Haiyan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Jianqiang Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Jinxing Mi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Hao Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Laetitia Oliviero
- Laboratoire Catalyse et Spectrochimie, ENSICAEN, Université de Caen, CNRS, 6 bd du Maréchal Juin, 14050, Caen, France
| | - Françoise Maugé
- Laboratoire Catalyse et Spectrochimie, ENSICAEN, Université de Caen, CNRS, 6 bd du Maréchal Juin, 14050, Caen, France
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
15
|
Qin C, Ruan S, Xu K, He C, Shi Y, Feng B, Zhang L. Theoretical study on the reaction kinetics of CO oxidation by nitrogen-doped graphene catalysts with different ligand structures. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
16
|
Experimental studies of water recovered from Pt/Al2O3 catalyst combustion. REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-023-02371-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
17
|
Wang H, Yao R, Zhang R, Ma H, Gao J, Liang M, Zhao Y, Miao Z. CeO 2-Supported TiO 2-Pt Nanorod Composites as Efficient Catalysts for CO Oxidation. Molecules 2023; 28:1867. [PMID: 36838854 PMCID: PMC9959209 DOI: 10.3390/molecules28041867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Supported Pt-based catalysts have been identified as highly selective catalysts for CO oxidation, but their potential for applications has been hampered by the high cost and scarcity of Pt metals as well as aggregation problems at relatively high temperatures. In this work, nanorod structured (TiO2-Pt)/CeO2 catalysts with the addition of 0.3 at% Pt and different atomic ratios of Ti were prepared through a combined dealloying and calcination method. XRD, XPS, SEM, TEM, and STEM measurements were used to confirm the phase composition, surface morphology, and structure of synthesized samples. After calcination treatment, Pt nanoparticles were semi-inlayed on the surface of the CeO2 nanorod, and TiO2 was highly dispersed into the catalyst system, resulting in the formation of (TiO2-Pt)/CeO2 with high specific surface area and large pore volume. The unique structure can provide more reaction path and active sites for catalytic CO oxidation, thus contributing to the generation of catalysts with high catalytic activity. The outstanding catalytic performance is ascribed to the stable structure and proper TiO2 doping as well as the combined effect of Pt, TiO2, and CeO2. The research results are of importance for further development of high catalytic performance nanoporous catalytic materials.
Collapse
Affiliation(s)
- Haiyang Wang
- Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China
| | - Ruijuan Yao
- Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China
| | - Ruiyin Zhang
- Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China
| | - Hao Ma
- Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China
| | - Jianjing Gao
- Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China
| | - Miaomiao Liang
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| | - Yuzhen Zhao
- Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China
| | - Zongcheng Miao
- Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
18
|
Wang Y, Hao M. Metal Nanoclusters Synthesized in Alkaline Ethylene Glycol: Mechanism and Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:565. [PMID: 36770526 PMCID: PMC9922003 DOI: 10.3390/nano13030565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The "unprotected" metal and alloy nanoclusters (UMCs) prepared by the alkaline ethylene glycol method, which are stabilized with simple ions and solvent molecules, have the advantages of a small particle size, a narrow size distribution, good stability, highly efficient preparation, easy separation, surface modification and transfer between different phases. They can be composited with diverse materials to prepare catalytic systems with controllable structures, providing an effective means of studying the different factors' effects on the catalytic properties separately. UMCs have been widely used in the development of high-performance catalysts for a variety of functional systems. This paper will review the research progress on the formation mechanism of the unprotected metal nanoclusters, exploring the structure-function relationship of metal nanocluster catalysts and the preparation of excellent metal catalysts using the unprotected metal nanoclusters as building blocks or starting materials. A principle of the influence of carriers, ligands and modifiers in metal nanocluster catalysts on the catalytic properties is proposed.
Collapse
Affiliation(s)
- Yuan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Sunan Institute for Molecular Engineering, Peking University, Changshu 215500, China
| | - Menggeng Hao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Chen T, Chen J, Wu J, Song W, Hu S, Feng X, Chen Z, Yuan E, Ji W, Au CT. Atomic-Layer-Deposition Derived Pt subnano Clusters on the (110) Facet of Hexagonal Al 2O 3 Plates: Efficient for Formic Acid Decomposition and Water Gas Shift. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tingting Chen
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Jitian Chen
- University of Toronto, TorontoM5S1A1, Ontario, Canada
| | - Jianghua Wu
- National Laboratory of Solid-State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Wenjing Song
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Shihao Hu
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Xinzhen Feng
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Zhaoxu Chen
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Enxian Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou225002, Jiangsu, China
| | - Weijie Ji
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Chak-Tong Au
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong999077, Hong Kong
| |
Collapse
|
20
|
Hu Y, Liu X, Zou Y, Xie H, Zhu T. Nature of support plays vital roles in H2O promoted CO oxidation over Pt catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Chen Y, Lin J, Jia B, Wang X, Jiang S, Ma T. Isolating Single and Few Atoms for Enhanced Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201796. [PMID: 35577552 DOI: 10.1002/adma.202201796] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/16/2022] [Indexed: 05/27/2023]
Abstract
Atomically dispersed metal catalysts have triggered great interest in the field of catalysis owing to their unique features. Isolated single or few metal atoms can be anchored on substrates via chemical bonding or space confinement to maximize atom utilization efficiency. The key challenge lies in precisely regulating the geometric and electronic structure of the active metal centers, thus significantly influencing the catalytic properties. Although several reviews have been published on the preparation, characterization, and application of single-atom catalysts (SACs), the comprehensive understanding of SACs, dual-atom catalysts (DACs), and atomic clusters has never been systematically summarized. Here, recent advances in the engineering of local environments of state-of-the-art SACs, DACs, and atomic clusters for enhanced catalytic performance are highlighted. Firstly, various synthesis approaches for SACs, DACs, and atomic clusters are presented. Then, special attention is focused on the elucidation of local environments in terms of electronic state and coordination structure. Furthermore, a comprehensive summary of isolated single and few atoms for the applications of thermocatalysis, electrocatalysis, and photocatalysis is provided. Finally, the potential challenges and future opportunities in this emerging field are presented. This review will pave the way to regulate the microenvironment of the active site for boosting catalytic processes.
Collapse
Affiliation(s)
- Yang Chen
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shuaiyu Jiang
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
22
|
Feng X, Wang Z, Mu L, Chen Z, Liang J, Xiao C. The different evolution behaviors of carbonate-like species on Pt/CeO2 and Pt/Al2O3 by in situ DRIFTS-MS study. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Zhang Z, He G, Li Y, Zhang C, Ma J, He H. Effect of Hydroxyl Groups on Metal Anchoring and Formaldehyde Oxidation Performance of Pt/Al 2O 3. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10916-10924. [PMID: 35770877 DOI: 10.1021/acs.est.2c01278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pt/Al2O3 catalysts showing excellent activity and stability have been used in various reactions, including HCHO oxidation. Herein, we prepared Pt-Na/Al2O3 catalysts with a Pt content of 0.05 wt % to reveal the key factors determining the anchoring of Pt as well as the catalytic activity and mechanism of HCHO oxidation. Pt-Na/nano-Al2O3 (denoted as Pt-Na/nAl2O3) catalysts with 0.05 wt % Pt content could completely oxidize HCHO to CO2 at room temperature, which is the lowest Pt content used in HCHO catalytic oxidation to our knowledge. After Na addition, terminal hydroxyl groups (denoted as HO-μter) on nano-Al2O3 were transformed to doubly bridging hydroxyl groups between Na and Al (denoted as HO-μbri(Na-Al)), which atomically dispersed Pt species. Pt anchoring further promoted the regeneration of HO-μbri(Na-Al) by activating O2 and H2O, oxidizing HCHO to CO2 directly by the fast reaction step ([HCOO-] + [OH]a → CO2 + H2O). Our study revealed that the HO-μbri(Na-Al) synergistically generated by HO-μter and Na species provided anchoring sites for Pt species.
Collapse
Affiliation(s)
- Zhilin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaobin Li
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
24
|
Liu H, Li Y, Djitcheu X, Liu L. Recent advances in single-atom catalysts for thermally driven reactions. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Deng Y, Tian P, Liu S, He H, Wang Y, Ouyang L, Yuan S. Enhanced catalytic performance of atomically dispersed Pd on Pr-doped CeO 2 nanorod in CO oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127793. [PMID: 34839976 DOI: 10.1016/j.jhazmat.2021.127793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Single-atom noble metal catalysts have been widely studied for catalytic oxidation of CO. Regulating the coordination environment of single metal atom site is an effective strategy to improve the intrinsic catalytic activity of single atom catalyst. In this work, single atom Pd catalyst supported on Pr-doped CeO2 nanorods was prepared, and the performance and nature of Pr-coordinated atomic Pd site in CO catalytic oxidation are systematically investigated. The structure characterization using AC-HAADF-STEM, EXAFS, XRD and Raman spectroscopy demonstrate the formation of single atom Pd site and abundant surface oxygen vacancies on the surface of Pr-doped CeO2 nanorod. With the combination of the XPS characterization and DFT calculations, the oxidation state of Pd on Pr-doped CeO2 nanorod is determined lower than that on CeO2 nanorod. The turnover frequency of CO oxidation is markedly increased from 8.4 × 10-3 to 31.9 × 10-3 s with Pr-doping at 130 ºC and GHSV of 70,000 h-1. Combined with kinetic studies, DRIFT and DFT calculations, the doped-Pr atoms reduced the formation energy of oxygen vacancies and generate more oxygen vacancies around the atomically dispersed Pd sites on the surface of cerium oxide, which reduces the dissociation energy of oxygen, thereby accelerating the reaction rate of CO oxidation.
Collapse
Affiliation(s)
- Yanbo Deng
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Pengfei Tian
- Key Laboratory of Pressure Systems and Safety (Ministry of Education), School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China Key Laboratory of Pressure Systems and Safety (Ministry of Education), School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shijie Liu
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Huaqiang He
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuan Wang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Like Ouyang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
26
|
Xie S, Zhang X, Xu P, Hatcher B, Liu Y, Ma L, Ehrlich SN, Hong S, Liu F. Effect of surface acidity modulation on Pt/Al2O3 single atom catalyst for carbon monoxide oxidation and methanol decomposition. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Li G, Zhao Z, Zhao T, Li W, Wei Z, Duan X, Zhang Z, Cheng J, Hao Z. Tin-doped manganese octahedral molecular sieve catalysts with efficient water resistance for CO oxidation. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
28
|
Wu X, Fischer M, Nolte A, Lenßen P, Wang B, Ohlerth T, Wöll D, Heufer KA, Pischinger S, Simon U. Perovskite Catalyst for In-Cylinder Coating to Reduce Raw Pollutant Emissions of Internal Combustion Engines. ACS OMEGA 2022; 7:5340-5349. [PMID: 35187349 PMCID: PMC8851438 DOI: 10.1021/acsomega.1c06530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/13/2022] [Indexed: 05/16/2023]
Abstract
Aiming to achieve the highest combustion efficiency and less pollutant emission, a catalytic coating for cylinder walls in internal combustion engines was developed and tested under several conditions. The coating consists of a La0.8Sr0.2CoO3 (LSCO) catalyst on an aluminum-based ceramic support. Atomic force microscopy was applied to investigate the surface roughness of the LSCO coating, while in situ diffuse infrared Fourier transform spectroscopy was used to obtain the molecular understanding of adsorption and conversion. In addition, the influence of LSCO-coated substrates on the flame quenching distance was studied in a constant-volume combustion chamber. Investigations conclude that an LSCO coating leads to a reduction of flame quenching at low wall temperatures but a negligible effect at high temperatures. Finally, the influence of LSCO coatings on the in-cylinder wall-near gas composition was investigated using a fast gas sampling methodology with sample durations below 1 ms. Ion molecule reaction mass spectrometry and Fourier transform infrared spectroscopy revealed a significant reduction of hydrocarbons and carbon monoxide when LSCO coating was applied.
Collapse
Affiliation(s)
- Xiaochao Wu
- Institute
of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
- Center
for Automotive Catalytic Systems Aachen, RWTH Aachen University, 52062 Aachen, Germany
| | - Marcus Fischer
- Chair
for Thermodynamics of Mobile Energy Conversion Systems, RWTH Aachen University, Forckenbeckstraße 4, 52072 Aachen, Germany
| | - Adrian Nolte
- Chair
of High Pressure Gas Dynamics, RWTH Aachen
University, Schurzelter Str. 35, 52074 Aachen, Germany
| | - Pia Lenßen
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| | - Bangfen Wang
- Institute
of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
- Center
for Automotive Catalytic Systems Aachen, RWTH Aachen University, 52062 Aachen, Germany
| | - Thorsten Ohlerth
- Institute
of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Dominik Wöll
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| | - Karl Alexander Heufer
- Chair
of High Pressure Gas Dynamics, RWTH Aachen
University, Schurzelter Str. 35, 52074 Aachen, Germany
| | - Stefan Pischinger
- Chair
for Thermodynamics of Mobile Energy Conversion Systems, RWTH Aachen University, Forckenbeckstraße 4, 52072 Aachen, Germany
- Center
for Automotive Catalytic Systems Aachen, RWTH Aachen University, 52062 Aachen, Germany
| | - Ulrich Simon
- Institute
of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
- Center
for Automotive Catalytic Systems Aachen, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
29
|
Woźniak P, Małecka MA, Kraszkiewicz P, Miśta W, Bezkrovnyi O, Chinchilla L, Trasobares S. Confinement of nano-gold in 3D hierarchically structured gadolinium-doped ceria mesocrystal: synergistic effect of chemical composition and structural hierarchy in CO and propane oxidation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01214f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gadolinium-doped ceria hierarchical gold catalyst shows four-fold TOF increase compared to undoped non-hierarchical system, proving the synergistic effect of doping and structural hierarchy in propane oxidation.
Collapse
Affiliation(s)
- Piotr Woźniak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
| | - Małgorzata A. Małecka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
| | - Piotr Kraszkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
| | - Włodzimierz Miśta
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
| | - Oleksii Bezkrovnyi
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
| | - Lidia Chinchilla
- Departamento de Ciencia de los Materiales e Ing. Metalúrgica y Química Inorgánica, Universidad de Cádiz, Campus Universitario de Puerto Real, 11510, Cádiz, Spain
| | - Susana Trasobares
- Departamento de Ciencia de los Materiales e Ing. Metalúrgica y Química Inorgánica, Universidad de Cádiz, Campus Universitario de Puerto Real, 11510, Cádiz, Spain
| |
Collapse
|
30
|
Qi X, Shinagawa T, Lu X, Yui Y, Ibe M, Takanabe K. Surface coverage control for dramatic enhancement of thermal CO oxidation by precise potential tuning of metal supported catalysts. Chem Sci 2022; 13:9774-9783. [PMID: 36091892 PMCID: PMC9400665 DOI: 10.1039/d2sc03145k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
External potential control allows reactant coverage control on the catalyst, in this case to suppress excessive CO adsorption, leading to improved thermal CO oxidation performance.
Collapse
Affiliation(s)
- Xingyu Qi
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tatsuya Shinagawa
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Xiaofei Lu
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yuhki Yui
- Advanced Material Engineering Division, Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka, Japan
| | - Masaya Ibe
- Advanced Material Engineering Division, Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka, Japan
| | - Kazuhiro Takanabe
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
31
|
Yu K, Deng J, Shen Y, Wang A, Shi L, Zhang D. Efficient catalytic combustion of toluene at low temperature by tailoring surficial Pt 0 and interfacial Pt-Al(OH) x species. iScience 2021; 24:102689. [PMID: 34195567 PMCID: PMC8233202 DOI: 10.1016/j.isci.2021.102689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 11/15/2022] Open
Abstract
Exploring highly efficient and low-cost supported Pt catalysts is attractive for the application of volatile organic compounds (VOCs) combustion. Herein, efficient catalytic combustion of toluene at low temperature over Pt/γ-Al2O3 catalysts has been demonstrated by tailoring active Pt species spatially. Pt/γ-Al2O3 catalyst with low Pt-content (0.26 wt%) containing both interfacial Pt-Al(OH)x and surficial metallic Pt (Pt0) species exhibited super activity and water-resistant stability for toluene oxidation. The strong metal-support interaction located at the Al-OH-Pt interfaces elongated the Pt-O bond and contributed to the oxidation of toluene. Meanwhile, the OH group at the Al-OH-Pt interfaces had the strongest adsorption and activation capability for toluene and the derived intermediate species were subsequently oxidized by oxygen species activated by surficial Pt0 to yield carbon dioxide and water. This work initiated an inspiring sight to the design of active Pt species for the VOCs combustion.
Collapse
Affiliation(s)
- Kun Yu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiang Deng
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yongjie Shen
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Aiyong Wang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Liyi Shi
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
32
|
Lan L, Xiang J, Huang L, Huang X, Zhou W, Li H, Zhu Y, Chen S. Synthesis of a highly stable
Pt
/
CeO
2
/
Al
2
O
3
catalyst for gasoline engine emission control by adjusting
Pt
distribution. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Li Lan
- College of Materials and Mechatronics Jiangxi Science and Technology Normal University Nanchang China
- College of Food and Bioengineering Chengdu University Chengdu China
| | - Junhuai Xiang
- College of Materials and Mechatronics Jiangxi Science and Technology Normal University Nanchang China
| | - Long Huang
- College of Materials and Mechatronics Jiangxi Science and Technology Normal University Nanchang China
| | - Xin Huang
- College of Mechanical Engineering Chengdu University Chengdu China
| | - Weiqi Zhou
- College of Mechanical Engineering Chengdu University Chengdu China
| | - Hongmei Li
- College of Food and Bioengineering Chengdu University Chengdu China
| | - Yi Zhu
- College of Chemistry Biology and Environment Yuxi Normal University Yuxi China
| | - Shanhu Chen
- College of Chemistry and Chemical Engineering Jiangxi Science and Technology Normal University Nanchang China
| |
Collapse
|
33
|
Thermal CO Oxidation and Photocatalytic CO 2 Reduction over Bare and M-Al 2O 3 (M = Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au) Cotton-Like Nanosheets. NANOMATERIALS 2021; 11:nano11051278. [PMID: 34068042 PMCID: PMC8152517 DOI: 10.3390/nano11051278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 11/16/2022]
Abstract
Aluminum oxide (Al2O3) has abundantly been used as a catalyst, and its catalytic activity has been tailored by loading transition metals. Herein, γ-Al2O3 nanosheets were prepared by the solvothermal method, and transition metals (M = Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au) were loaded onto the nanosheets. Big data sets of thermal CO oxidation and photocatalytic CO2 reduction activities were fully examined for the transition metal-loaded Al2O3 nanosheets. Their physicochemical properties were examined by scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction crystallography, and X-ray photoelectron spectroscopy. It was found that Rh, Pd, Ir, and Pt-loading showed a great enhancement in CO oxidation activity while other metals negated the activity of bare Al2O3 nanosheets. Rh-Al2O3 showed the lowest CO oxidation onset temperature of 172 °C, 201 °C lower than that of bare γ-Al2O3. CO2 reduction experiments were also performed to show that CO, CH3OH, and CH4 were common products. Ag-Al2O3 nanosheets showed the highest performances with yields of 237.3 ppm for CO, 36.3 ppm for CH3OH, and 30.9 ppm for CH4, 2.2×, 1.2×, and 1.6× enhancements, respectively, compared with those for bare Al2O3. Hydrogen production was found to be maximized to 20.7 ppm during CO2 reduction for Rh-loaded Al2O3. The present unique pre-screening test results provided very useful information for the selection of transition metals on Al2O3-based energy and environmental catalysts.
Collapse
|
34
|
Yuan K, Guo Y, Huang L, Zhou L, Yin HJ, Liu H, Yan CH, Zhang YW. Tunable Electronic Metal-Support Interactions on Ceria-Supported Noble-Metal Nanocatalysts in Controlling the Low-Temperature CO Oxidation Activity. Inorg Chem 2021; 60:4207-4217. [PMID: 33373226 DOI: 10.1021/acs.inorgchem.0c03219] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A fundamental study on the metal-support interactions of supported metal catalysts is of great importance for developing heterogeneous catalysts with high performance, is still attracting and challenging in many heterogeneous catalytic reactions. In this work, we report the catalytic performances of CeO2-supported noble-metal catalysts among single atoms, subnanoclusters (∼1 nm), and nanoparticles (2.2-2.7 nm) upon low-temperature CO oxidation reaction between 50 and 250 °C. The subnanoclusters and nanoparticles of Ru, Rh, and Ir showed much higher activities than those of the single atoms, while a Pd single-atom catalyst was more active than Pd subnanoclusters and nanoparticles. According to the results of multiple ex situ and in situ characterizations, the much different activities of Ru, Rh, Ir, and Pd were derived from the alterable electronic metal-support interactions (EMSI), which determine the concurrent reaction pathway including the famous Mars van Krevelen mechanism and carbonate-intermediate route on the most active metal sites of Mδ+ (0 < δ < 1) for Ru, Rh, and Ir and Pd2+ for Pd. Also, the moderate EMSI of CeO2-supported Rh subnanoclusters furthest benefited activation of the adsorbed CO molecule and ensured it the highest activity among CeO2-supported Ru, Rh, and Ir catalysts with similar metal deposit sizes.
Collapse
Affiliation(s)
- Kun Yuan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ling Huang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Liang Zhou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hai-Jing Yin
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haichao Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chun-Hua Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
35
|
Lan L, Huang X, Zhou W, Li H, Xiang J, Chen S, Chen Y. Development of a thermally stable Pt catalyst by redispersion between CeO 2 and Al 2O 3. RSC Adv 2021; 11:7015-7024. [PMID: 35423211 PMCID: PMC8694907 DOI: 10.1039/d1ra00059d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 11/25/2022] Open
Abstract
For catalytic systems consisting of Pt as the active component and CeO2-Al2O3 as the support material, the metal-support interaction between the Pt and CeO2 components is widely applied to inhibit aggregation of Pt species and thus enhance the thermal stability of the catalyst. In this work, a highly thermostable Pt catalyst was prepared by modifying the synthesis procedure for conventional Pt/CeO2/Al2O3 (Pt/Ce/Al) catalyst, that is, the CeO2 component was introduced after deposition of Pt on Al2O3. The obtained CeO2/Pt/Al2O3 (Ce/Pt/Al) catalyst exhibits significantly different aging behavior. During the hydrothermal aging process, redispersion of Pt species from the surface of Al2O3 to the surface of CeO2 occurs, resulting in a stronger metal-support interaction between Pt and CeO2. Thus, the formed Pt-O-Ce bond could act as an anchor to retard aggregation of Pt species and help Pt species stay at a more oxidative state. Consequently, excellent reduction capability and superior three-way catalytic performance are acquired by Ce/Pt/Al-a after hydrothermal aging treatment.
Collapse
Affiliation(s)
- Li Lan
- College of Materials and Mechatronics, Jiangxi Science and Technology Normal University Nanchang 330013 P.R. China
- College of Food and Bioengineering, Chengdu University Chengdu 610064 P.R. China
| | - Xin Huang
- College of Mechanical Engineering, Chengdu University Chengdu 610064 P.R. China
| | - Weiqi Zhou
- College of Mechanical Engineering, Chengdu University Chengdu 610064 P.R. China
| | - Hongmei Li
- College of Food and Bioengineering, Chengdu University Chengdu 610064 P.R. China
| | - Junhuai Xiang
- College of Materials and Mechatronics, Jiangxi Science and Technology Normal University Nanchang 330013 P.R. China
| | - Shanhu Chen
- College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 P.R. China
| | - Yaoqiang Chen
- College of Chemistry, Sichuan University Chengdu 610064 P.R. China
| |
Collapse
|