1
|
Ferreira P, Neves RPP, Miranda FP, Cunha AV, Havenith RWA, Ramos MJ, Fernandes PA. DszA Catalyzes C-S Bond Cleavage through N 5-Hydroperoxyl Formation. J Chem Inf Model 2024; 64:4218-4230. [PMID: 38684937 PMCID: PMC11134501 DOI: 10.1021/acs.jcim.4c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Due to its detrimental impact on human health and the environment, regulations demand ultralow sulfur levels on fossil fuels, in particular in diesel. However, current desulfurization techniques are expensive and cannot efficiently remove heteroaromatic sulfur compounds, which are abundant in crude oil and concentrate in the diesel fraction after distillation. Biodesulfurization via the four enzymes of the metabolic 4S pathway of the bacterium Rhodococcus erythropolis (DszA-D) is a possible solution. However, the 4S pathway needs to operate at least 500 times faster for industrial applicability, a goal currently pursued through enzyme engineering. In this work, we unveil the catalytic mechanism of the flavin monooxygenase DszA. Surprisingly, we found that this enzyme follows a recently proposed atypical mechanism that passes through the formation of an N5OOH intermediate at the re side of the cofactor, aided by a well-defined, predominantly hydrophobic O2 pocket. Besides clarifying the unusual chemical mechanism of the complex DszA enzyme, with obvious implications for understanding the puzzling chemistry of flavin-mediated catalysis, the result is crucial for the rational engineering of DszA, contributing to making biodesulfurization attractive for the oil refining industry.
Collapse
Affiliation(s)
- Pedro Ferreira
- LAQV,REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Rui P. P. Neves
- LAQV,REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Filipa P. Miranda
- LAQV,REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Ana V. Cunha
- Department
of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp 2000, Belgium
| | - Remco W. A. Havenith
- Stratingh
Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
- Ghent
Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan
281 (S3), Ghent B-9000, Belgium
| | - Maria J. Ramos
- LAQV,REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Pedro A. Fernandes
- LAQV,REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| |
Collapse
|
2
|
Wang J, Ren T, Sun G, Zhang N, Zhao L, Zhong R. Mechanism of AGT-Mediated Repair of dG-dC Cross-Links in the Drug Resistance to Chloroethylnitrosoureas: Molecular Docking, MD Simulation, and ONIOM (QM/MM) Investigation. J Chem Inf Model 2024; 64:3411-3429. [PMID: 38511939 DOI: 10.1021/acs.jcim.3c01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Chloroethylnitrosoureas (CENUs) are important chemotherapies applied in the treatment of cancer. They exert anticancer activity by inducing DNA interstrand cross-links (ICLs) via the formation of two O6-alkylguanine intermediates, O6-chloroethylguanine (O6-ClEtG) and N1,O6-ethanoguanine (N1,O6-EtG). However, O6-alkylguanine-DNA alkyltransferase (AGT), a DNA-repair enzyme, can restore the O6-alkylguanine damages and thereby obstruct the formation of ICLs (dG-dC cross-link). In this study, the inhibitory mechanism of ICL formation was investigated to elucidate the drug resistance of CENUs mediated by AGT in detail. Based on the structures of the substrate-enzyme complexes obtained from docking and MD simulations, two ONIOM (QM/MM) models with different sizes of the QM region were constructed. The model with a larger QM region, which included the substrate (O6-ClEtG or N1,O6-EtG), a water molecule, and five residues (Tyr114, Cys145, His146, Lys165, and Glu172) in the active pocket of AGT, accurately described the repairing reaction and generated the results coinciding with the experimental outcomes. The repair process consists of two sequential steps: hydrogen transfer to form a thiolate anion on Cys145 and alkyl transfer from the O6 site of guanine (the rate-limiting step). The repair of N1,O6-EtG was more favorable than that of O6-ClEtG from both kinetics and thermodynamics aspects. Moreover, the comparison of the repairing process with the formation of dG-dC cross-link and the inhibition of AGT by O6-benzylguanine (O6-BG) showed that the presence of AGT could effectively interrupt the formation of ICLs leading to drug resistance, and the inhibition of AGT by O6-BG that was energetically more favorable than the repair of O6-ClEtG could not prevent the repair of N1,O6-EtG. Therefore, it is necessary to completely eliminate AGT activity before CENUs medication to enhance the chemotherapeutic effectiveness. This work provides reasonable explanations for the supposed mechanism of AGT-mediated drug resistance of CENUs and will assist in the development of novel CENU chemotherapies and their medication strategies.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Zhang Z, Chu R, Wei W, Song W, Ye C, Chen X, Wu J, Liu L, Gao C. Systems engineering of Escherichia coli for high-level glutarate production from glucose. Nat Commun 2024; 15:1032. [PMID: 38310110 PMCID: PMC10838341 DOI: 10.1038/s41467-024-45448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
Glutarate is a key monomer in polyester and polyamide production. The low efficiency of the current biosynthetic pathways hampers its production by microbial cell factories. Herein, through metabolic simulation, a lysine-overproducing E. coli strain Lys5 is engineered, achieving titer, yield, and productivity of 195.9 g/L, 0.67 g/g glucose, and 5.4 g/L·h, respectively. Subsequently, the pathway involving aromatic aldehyde synthase, monoamine oxidase, and aldehyde dehydrogenase (AMA pathway) is introduced into E. coli Lys5 to produce glutarate from glucose. To enhance the pathway's efficiency, rational mutagenesis on the aldehyde dehydrogenase is performed, resulting in the development of variant Mu5 with a 50-fold increase in catalytic efficiency. Finally, a glutarate tolerance gene cbpA is identified and genomically overexpressed to enhance glutarate productivity. With enzyme expression optimization, the glutarate titer, yield, and productivity of E. coli AMA06 reach 88.4 g/L, 0.42 g/g glucose, and 1.8 g/L·h, respectively. These findings hold implications for improving glutarate biosynthesis efficiency in microbial cell factories.
Collapse
Affiliation(s)
- Zhilan Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Ruyin Chu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210000, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
Xiong J, Cui R, Li Z, Zhang W, Zhang R, Fu Z, Liu X, Li Z, Chen K, Zheng M. Transfer learning enhanced graph neural network for aldehyde oxidase metabolism prediction and its experimental application. Acta Pharm Sin B 2024; 14:623-634. [PMID: 38322350 PMCID: PMC10840476 DOI: 10.1016/j.apsb.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/07/2023] [Accepted: 10/11/2023] [Indexed: 02/08/2024] Open
Abstract
Aldehyde oxidase (AOX) is a molybdoenzyme that is primarily expressed in the liver and is involved in the metabolism of drugs and other xenobiotics. AOX-mediated metabolism can result in unexpected outcomes, such as the production of toxic metabolites and high metabolic clearance, which can lead to the clinical failure of novel therapeutic agents. Computational models can assist medicinal chemists in rapidly evaluating the AOX metabolic risk of compounds during the early phases of drug discovery and provide valuable clues for manipulating AOX-mediated metabolism liability. In this study, we developed a novel graph neural network called AOMP for predicting AOX-mediated metabolism. AOMP integrated the tasks of metabolic substrate/non-substrate classification and metabolic site prediction, while utilizing transfer learning from 13C nuclear magnetic resonance data to enhance its performance on both tasks. AOMP significantly outperformed the benchmark methods in both cross-validation and external testing. Using AOMP, we systematically assessed the AOX-mediated metabolism of common fragments in kinase inhibitors and successfully identified four new scaffolds with AOX metabolism liability, which were validated through in vitro experiments. Furthermore, for the convenience of the community, we established the first online service for AOX metabolism prediction based on AOMP, which is freely available at https://aomp.alphama.com.cn.
Collapse
Affiliation(s)
- Jiacheng Xiong
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongrong Cui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojun Li
- College of Computer and Information Engineering, Dezhou University, Dezhou 253023, China
- AI Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215000, China
| | - Wei Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runze Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zunyun Fu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Liu
- AI Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215000, China
| | - Zhenghao Li
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Kaixian Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Levine DS, Jacobson LD, Bochevarov AD. Large Computational Survey of Intrinsic Reactivity of Aromatic Carbon Atoms with Respect to a Model Aldehyde Oxidase. J Chem Theory Comput 2023; 19:9302-9317. [PMID: 38085599 DOI: 10.1021/acs.jctc.3c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Aldehyde oxidase (AOX) and other related molybdenum-containing enzymes are known to oxidize the C-H bonds of aromatic rings. This process contributes to the metabolism of pharmaceutical compounds and, therefore, is of vital importance to drug pharmacokinetics. The present work describes an automated computational workflow and its use for the prediction of intrinsic reactivity of small aromatic molecules toward a minimal model of the active site of AOX. The workflow is based on quantum chemical transition state searches for the underlying single-step oxidation reaction, where the automated protocol includes identification of unique aromatic C-H bonds, creation of three-dimensional reactant and product complex geometries via a templating approach, search for a transition state, and validation of reaction end points. Conformational search on the reactants, products, and the transition states is performed. The automated procedure has been validated on previously reported transition state barriers and was used to evaluate the intrinsic reactivity of nearly three hundred heterocycles commonly found in approved drug molecules. The intrinsic reactivity of more than 1000 individual aromatic carbon sites is reported. Stereochemical and conformational aspects of the oxidation reaction, which have not been discussed in previous studies, are shown to play important roles in accurate modeling of the oxidation reaction. Observations on structural trends that determine the reactivity are provided and rationalized.
Collapse
Affiliation(s)
- Daniel S Levine
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, United States
| | - Leif D Jacobson
- Schrödinger, Inc., 101 SW Main Street, Suite 1300, Portland, Oregon 97204, United States
| | - Art D Bochevarov
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, United States
| |
Collapse
|
6
|
Sagiroglugil M, Yasar F. Catalytic Reaction Mechanism of Bacterial GH92 α-1,2-Mannosidase: A QM/MM Metadynamics Study. Chemphyschem 2023; 24:e202300628. [PMID: 37782219 DOI: 10.1002/cphc.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/23/2023] [Accepted: 10/01/2023] [Indexed: 10/03/2023]
Abstract
The catalytic mechanism of aC a + 2 ${C{a}^{+2}}$ -dependent family 92 α ${{\rm \alpha }}$ -mannosidase, which is abundantly present in human gut flora and malfunctions leading to the lysosomal storage disease α-mannosidosis, has been investigated using quantum mechanics/molecular mechanics and metadynamics methods. Computational efforts show that the enzyme follows a conformational itinerary of and theC a + 2 ${C{a}^{+2}}$ ion serves a dual purpose, as it not only distorts the sugar ring but also plays a crucial role in orchestrating the arrangement of catalytic residues. This orchestration, in turn, contributes to the facilitation of O S 2 ${{{\rm \ }}^{{\rm O}}{{\rm S}}_{2}}$ conformers for the ensuing reaction. This mechanistic insight is well-aligned with the experimental predictions of the catalytic pathway, and the computed energies are of the same order of magnitude as the experimental estimations. Hence, our results extend the mechanistic understanding of glycosidases.
Collapse
Affiliation(s)
- Mert Sagiroglugil
- Department of Physics Engineering, Hacettepe University, Üniversiteler Mahallesi Beytepe Kampüsü, 06800, Ankara, Turkey
- Current Address: Departament de Química Inorgànica i Orgànica (Seccióde Química Orgànica), Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028, Barcelona, Spain
| | - Fatih Yasar
- Department of Physics Engineering, Hacettepe University, Üniversiteler Mahallesi Beytepe Kampüsü, 06800, Ankara, Turkey
| |
Collapse
|
7
|
Foteva V, Fisher JJ, Qiao Y, Smith R. Does the Micronutrient Molybdenum Have a Role in Gestational Complications and Placental Health? Nutrients 2023; 15:3348. [PMID: 37571285 PMCID: PMC10421405 DOI: 10.3390/nu15153348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Molybdenum is an essential trace element for human health and survival, with molybdenum-containing enzymes catalysing multiple reactions in the metabolism of purines, aldehydes, and sulfur-containing amino acids. Recommended daily intakes vary globally, with molybdenum primarily sourced through the diet, and supplementation is not common. Although the benefits of molybdenum as an anti-diabetic and antioxidant inducer have been reported in the literature, there are conflicting data on the benefits of molybdenum for chronic diseases. Overexposure and deficiency can result in adverse health outcomes and mortality, although physiological doses remain largely unexplored in relation to human health. The lack of knowledge surrounding molybdenum intake and the role it plays in physiology is compounded during pregnancy. As pregnancy progresses, micronutrient demand increases, and diet is an established factor in programming gestational outcomes and maternal health. This review summarises the current literature concerning varied recommendations on molybdenum intake, the role of molybdenum and molybdoenzymes in physiology, and the contribution these play in gestational outcomes.
Collapse
Affiliation(s)
- Vladimira Foteva
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Joshua J. Fisher
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Yixue Qiao
- Academy of Pharmacy, Xi’an Jiaotong Liverpool University, Suzhou 215000, China;
| | - Roger Smith
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| |
Collapse
|
8
|
Ferreira P, Fernandes P, Ramos M. The archaeal non-heme iron-containing Sulfur Oxygenase Reductase. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Zhang M, Yi Y, Gao B, Su H, Bao Y, Shi X, Wang H, Li F, Ye M, Qiao X. Functional Characterization and Protein Engineering of a Triterpene 3‐/6‐/2′‐
O
‐Glycosyltransferase Reveal a Conserved Residue Critical for the Regiospecificity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Yang Yi
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Bai‐Han Gao
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Hui‐Fei Su
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Yang‐Oujie Bao
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Xiao‐Meng Shi
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Hai‐Dong Wang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Fu‐Dong Li
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics and School of Life Sciences University of Science and Technology of China Hefei Anhui 230026 China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| |
Collapse
|
10
|
Zhang M, Yi Y, Gao BH, Su HF, Bao YO, Shi XM, Wang HD, Li FD, Ye M, Qiao X. Functional Characterization and Protein Engineering of a Triterpene 3-/6-/2'-O-Glycosyltransferase Reveal a Conserved Residue Critical for the Regiospecificity. Angew Chem Int Ed Engl 2021; 61:e202113587. [PMID: 34894044 DOI: 10.1002/anie.202113587] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 01/13/2023]
Abstract
Engineering the function of triterpene glucosyltransferases (GTs) is challenging due to the large size of the sugar acceptors. In this work, we identified a multifunctional glycosyltransferase AmGT8 catalyzing triterpene 3-/6-/2'-O-glycosylation from the medicinal plant Astragalus membranaceus. To engineer its regiospecificity, a small mutant library was built based on semi-rational design. Variants A394F, A394D, and T131V were found to catalyze specific 6-O, 3-O, and 2'-O glycosylation, respectively. The origin of regioselectivity of AmGT8 and its A394F variant was studied by molecular dynamics and hydrogen deuterium exchange mass spectrometry. Residue 394 is highly conserved as A/G and is critical for the regiospecificity of the C- and O-GTs TcCGT1 and GuGT10/14. Finally, astragalosides III and IV were synthesized by mutants A394F, T131V and P192E. This work reports biocatalysts for saponin synthesis and gives new insights into protein engineering of regioselectivity in plant GTs.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Bai-Han Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Hui-Fei Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yang-Oujie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Xiao-Meng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Hai-Dong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Fu-Dong Li
- National Science Center for Physical Sciences at Microscale, Division of Molecular & Cell Biophysics and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| |
Collapse
|
11
|
Mota C, Diniz A, Coelho C, Santos-Silva T, Esmaeeli M, Leimkühler S, Cabrita EJ, Marcelo F, Romão MJ. Interrogating the Inhibition Mechanisms of Human Aldehyde Oxidase by X-ray Crystallography and NMR Spectroscopy: The Raloxifene Case. J Med Chem 2021; 64:13025-13037. [PMID: 34415167 DOI: 10.1021/acs.jmedchem.1c01125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human aldehyde oxidase (hAOX1) is mainly present in the liver and has an emerging role in drug metabolism, since it accepts a wide range of molecules as substrates and inhibitors. Herein, we employed an integrative approach by combining NMR, X-ray crystallography, and enzyme inhibition kinetics to understand the inhibition modes of three hAOX1 inhibitors-thioridazine, benzamidine, and raloxifene. These integrative data indicate that thioridazine is a noncompetitive inhibitor, while benzamidine presents a mixed type of inhibition. Additionally, we describe the first crystal structure of hAOX1 in complex with raloxifene. Raloxifene binds tightly at the entrance of the substrate tunnel, stabilizing the flexible entrance gates and elucidating an unusual substrate-dependent mechanism of inhibition with potential impact on drug-drug interactions. This study can be considered as a proof-of-concept for an efficient experimental screening of prospective substrates and inhibitors of hAOX1 relevant in drug discovery.
Collapse
Affiliation(s)
- Cristiano Mota
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Ana Diniz
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Catarina Coelho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Teresa Santos-Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Mariam Esmaeeli
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Eurico J Cabrita
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Filipa Marcelo
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Maria João Romão
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
12
|
Ferreira P, Fernandes PA, Ramos MJ. THE CATALYTIC MECHANISM OF THE RETAINING GLYCOSYLTRANSFERASE MANNOSYLGLYCERATE SYNTHASE. Chemistry 2021; 27:13998-14006. [PMID: 34355437 DOI: 10.1002/chem.202101724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 11/07/2022]
Abstract
To protect their intracellular proteins, extremophile microorganisms synthesize molecules called compatible solutes. These molecules are the result of the attachment of a small negatively charged molecule to a sugar molecule. It has been found that these molecules, not only protect the microorganism against osmotic stress, as initially thought, but also against other extreme conditions. The observation that these molecules can confer protection against extreme conditions to isolated enzymes from different organisms made them an exciting prospect for potential biotechnological applications. One of the most widespread compatible solute in hyperthermophile organisms is the molecule 2-O-α-D-mannosyl-D-glycerate (MG). In addition to confer protection to proteins against extreme conditions, MG was found to prevent Alzheimer's β-amyloid aggregation and reduce α-synuclein fibril formation in Parkinson's disease. In this work we studied, using computational methods, the catalytic mechanism of the synthesis of MG by the enzyme mannosylglycerate synthase (MGS) from the thermophilic bacteria Rhodothermus marinus . MGS is a promiscuous enzyme, accepting a variety of sugar donors and acceptors. This feature can be used to synthesize other molecules with potential biotechnological applications beyond MG. The unravelling of the catalytic mechanism with atomistic resolution and the associated free energies and electrostatic profiles of the stationary states obtained in the present work will help future investigations to full explore the potential of MGS.
Collapse
Affiliation(s)
- Pedro Ferreira
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Pedro A Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Maria J Ramos
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
13
|
Structural, Mechanistic, and Functional Insights into an Arthrobacter nicotinovorans Molybdenum Hydroxylase Involved in Nicotine Degradation. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26144387. [PMID: 34299660 PMCID: PMC8305194 DOI: 10.3390/molecules26144387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/09/2023]
Abstract
Arthrobacter nicotinovorans decomposes nicotine through the pyridine pathway. 6-hydroxypseudooxynicotine 2-oxidoreductase (also named ketone dehydrogenase, Kdh) is an important enzyme in nicotine degradation pathway of A. nicotinovorans, and is responsible for the second hydroxylation of nicotine. Kdh belongs to the molybdenum hydroxylase family, and catalyzes the oxidation of 6-hydroxy-pseudooxynicotine (6-HPON) to 2,6-dihydroxy-pseudooxynicotine (2,6-DHPON). We determined the crystal structure of the Kdh holoenzyme from A. nicotinovorans, with its three subunits KdhL, KdhM, and KdhS, and their associated cofactors molybdopterin cytosine dinucleotide (MCD), two iron-sulfur clusters (Fe2S2), and flavin adenine dinucleotide (FAD), respectively. In addition, we obtained a structural model of the substrate 6-HPON-bound Kdh through molecular docking, and performed molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) calculations to unveil the catalytic mechanism of Kdh. The residues Glu345, Try551, and Glu748 of KdhL were found to participate in substrate binding, and Phe269 and Arg383 of KdhL were found to contribute to stabilize the MCD conformation. Furthermore, site-directed mutagenesis and enzymatic activity assays were performed to support our structural and computational results, which also revealed a trend of increasing catalytic efficiency with the increase in the buffer pH. Lastly, our electrochemical results demonstrated electron transfer among the various cofactors of Kdh. Therefore, our work provides a comprehensive structural, mechanistic, and functional study on the molybdenum hydroxylase Kdh in the nicotine degradation pathway of A. nicotinovorans.
Collapse
|
14
|
Khrenova MG, Bulavko ES, Mulashkin FD, Nemukhin AV. Mechanism of Guanosine Triphosphate Hydrolysis by the Visual Proteins Arl3-RP2: Free Energy Reaction Profiles Computed with Ab Initio Type QM/MM Potentials. Molecules 2021; 26:3998. [PMID: 34208932 PMCID: PMC8271468 DOI: 10.3390/molecules26133998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
We report the results of calculations of the Gibbs energy profiles of the guanosine triphosphate (GTP) hydrolysis by the Arl3-RP2 protein complex using molecular dynamics (MD) simulations with ab initio type QM/MM potentials. The chemical reaction of GTP hydrolysis to guanosine diphosphate (GDP) and inorganic phosphate (Pi) is catalyzed by GTPases, the enzymes, which are responsible for signal transduction in live cells. A small GTPase Arl3, catalyzing the GTP → GDP reaction in complex with the activating protein RP2, constitute an essential part of the human vision cycle. To simulate the reaction mechanism, a model system is constructed by motifs of the crystal structure of the Arl3-RP2 complexed with a substrate analog. After selection of reaction coordinates, energy profiles for elementary steps along the reaction pathway GTP + H2O → GDP + Pi are computed using the umbrella sampling and umbrella integration procedures. QM/MM MD calculations are carried out, interfacing the molecular dynamics program NAMD and the quantum chemistry program TeraChem. Ab initio type QM(DFT)/MM potentials are computed with atom-centered basis sets 6-31G** and two hybrid functionals (PBE0-D3 and ωB97x-D3) of the density functional theory, describing a large QM subsystem. Results of these simulations of the reaction mechanism are compared to those obtained with QM/MM calculations on the potential energy surface using a similar description of the QM part. We find that both approaches, QM/MM and QM/MM MD, support the mechanism of GTP hydrolysis by GTPases, according to which the catalytic glutamine side chain (Gln71, in this system) actively participates in the reaction. Both approaches distinguish two parts of the reaction: the cleavage of the phosphorus-oxygen bond in GTP coupled with the formation of Pi, and the enzyme regeneration. Newly performed QM/MM MD simulations confirmed the profile predicted in the QM/MM minimum energy calculations, called here the pathway-I, and corrected its relief at the first elementary step from the enzyme-substrate complex. The QM/MM MD simulations also revealed another mechanism at the part of enzyme regeneration leading to pathway-II. Pathway-II is more consistent with the experimental kinetic data of the wild-type complex Arl3-RP2, whereas pathway-I explains the role of the mutation Glu138Gly in RP2 slowing down the hydrolysis rate.
Collapse
Affiliation(s)
- Maria G. Khrenova
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (M.G.K.); (F.D.M.)
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Egor S. Bulavko
- Biology Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia;
| | - Fedor D. Mulashkin
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (M.G.K.); (F.D.M.)
| | - Alexander V. Nemukhin
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (M.G.K.); (F.D.M.)
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, 119334 Moscow, Russia
| |
Collapse
|
15
|
Soltani S, Hallaj-Nezhadi S, Rashidi MR. A comprehensive review of in silico approaches for the prediction and modulation of aldehyde oxidase-mediated drug metabolism: The current features, challenges and future perspectives. Eur J Med Chem 2021; 222:113559. [PMID: 34119831 DOI: 10.1016/j.ejmech.2021.113559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 01/09/2023]
Abstract
The importance of aldehyde oxidase (AOX) in drug metabolism necessitates the development and application of the in silico rational drug design methods as an integral part of drug discovery projects for the early prediction and modulation of AOX-mediated metabolism. The current study represents an up-to-date and thorough review of in silico studies of AOX-mediated metabolism and modulation methods. In addition, the challenges and the knowledge gap that should be covered have been discussed. The importance of aldehyde oxidase (AOX) in drug metabolism is a hot topic in drug discovery. Different strategies are available for the modulation of the AOX-mediated metabolism of drugs. Application of the rational drug design methods as an integral part of drug discovery projects is necessary for the early prediction of AOX-mediated metabolism. The current study represents a comprehensive review of AOX molecular structure, AOX-mediated reactions, AOX substrates, AOX inhibition, approaches to modify AOX-mediated metabolism, prediction of AOX metabolism/substrates/inhibitors, and the AOX related structure-activity relationship (SAR) studies. Furthermore, an up-to-date and thorough review of in silico studies of AOX metabolism has been carried out. In addition, the challenges and the knowledge gap that should be covered in the scientific literature have been discussed in the current review.
Collapse
Affiliation(s)
- Somaieh Soltani
- Pharmaceutical Analysis Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Somayeh Hallaj-Nezhadi
- Drug Applied Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Rashidi
- Stem Cell and Regenerative Medicine Institute and Pharmacy faculty, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
16
|
Ribeiro PMG, Fernandes HS, Maia LB, Sousa SF, Moura JJG, Cerqueira NMFSA. The complete catalytic mechanism of xanthine oxidase: a computational study. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01029d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this article, quantum mechanical/molecular mechanical (QM/MM) methods were used to study the full catalytic mechanism of xanthine oxidase (XO).
Collapse
Affiliation(s)
- Pedro M. G. Ribeiro
- UCIBIO@REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina da Universidade do Porto
- Alameda Professor Hernâni Monteiro
| | - Henrique S. Fernandes
- UCIBIO@REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina da Universidade do Porto
- Alameda Professor Hernâni Monteiro
| | - Luísa B. Maia
- LAQV
- REQUIMTE
- NOVA School of Science and Technology
- Campus de Caparica
- 2829-516 Caparica
| | - Sérgio F. Sousa
- UCIBIO@REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina da Universidade do Porto
- Alameda Professor Hernâni Monteiro
| | - José J. G. Moura
- LAQV
- REQUIMTE
- NOVA School of Science and Technology
- Campus de Caparica
- 2829-516 Caparica
| | - Nuno M. F. S. A. Cerqueira
- UCIBIO@REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina da Universidade do Porto
- Alameda Professor Hernâni Monteiro
| |
Collapse
|
17
|
Palermo G, Spinello A, Saha A, Magistrato A. Frontiers of metal-coordinating drug design. Expert Opin Drug Discov 2020; 16:497-511. [PMID: 33874825 DOI: 10.1080/17460441.2021.1851188] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: The occurrence of metal ions in biomolecules is required to exert vital cellular functions. Metal-containing biomolecules can be modulated by small-molecule inhibitors targeting their metal-moiety. As well, the discovery of cisplatin ushered the rational discovery of metal-containing-drugs. The use of both drug types exploiting metal-ligand interactions is well established to treat distinct pathologies. Therefore, characterizing and leveraging metal-coordinating drugs is a pivotal, yet challenging, part of medicinal chemistry.Area covered: Atomic-level simulations are increasingly employed to overcome the challenges met by traditional drug-discovery approaches and to complement wet-lab experiments in elucidating the mechanisms of drugs' action. Multiscale simulations, allow deciphering the mechanism of metal-binding inhibitors and metallo-containing-drugs, enabling a reliable description of metal-complexes in their biological environment. In this compendium, the authors review selected applications exploiting the metal-ligand interactions by focusing on understanding the mechanism and design of (i) inhibitors targeting iron and zinc-enzymes, and (ii) ruthenium and gold-based anticancer agents targeting the nucleosome and aquaporin protein, respectively.Expert opinion: The showcased applications exemplify the current role and the potential of atomic-level simulations and reveal how their synergic use with experiments can contribute to uncover fundamental mechanistic facets and exploit metal-ligand interactions in medicinal chemistry.
Collapse
Affiliation(s)
- Giulia Palermo
- Department of Bioengineering and Department of Chemistry, University of California Riverside, Riverside, United States
| | - Angelo Spinello
- National Research Council (CNR) of Italy, Institute of Material (IOM) @ International School for Advanced Studies (SISSA), Trieste, Italy
| | - Aakash Saha
- Department of Bioengineering, University of California Riverside, Riverside, United States
| | - Alessandra Magistrato
- National Research Council (CNR) of Italy, Institute of Material (IOM) @ International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|