1
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Kim D, Oh LS, Park JH, Kim HJ, Lee S, Lim E. Perovskite-based electrocatalysts for oxygen evolution reaction in alkaline media: A mini review. Front Chem 2022; 10:1024865. [PMID: 36277352 PMCID: PMC9585187 DOI: 10.3389/fchem.2022.1024865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022] Open
Abstract
Water electrolysis is one of the attractive technologies for producing clean and sustainable hydrogen fuels with high purity. Among the various kinds of water electrolysis systems, anion exchange membrane water electrolysis has received much attention by combining the advantages of alkaline water electrolysis and proton exchange membrane water electrolysis. However, the sluggish kinetics of the oxygen evolution reaction, which is based on multiple and complex reaction mechanisms, is regarded as a major obstacle for the development of high-efficiency water electrolysis. Therefore, the development of high-performance oxygen evolution reaction electrocatalysts is a prerequisite for the commercialization and wide application of water electrolysis systems. This mini review highlights the current progress of representative oxygen evolution reaction electrocatalysts that are based on a perovskite structure in alkaline media. We first summarize the research status of various kinds of perovskite-based oxygen evolution reaction electrocatalysts, reaction mechanisms and activity descriptors. Finally, the challenges facing the development of perovskite-based oxygen evolution reaction electrocatalysts and a perspective on their future are discussed.
Collapse
Affiliation(s)
- Dongkyu Kim
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, South Korea
| | - Lee Seul Oh
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, South Korea
| | - Jong Hyeok Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, South Korea
| | - Hyung Ju Kim
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, South Korea
| | - Seonggyu Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology (KIT), Gumi, South Korea
- Department of Energy Engineering Convergence, Kumoh National Institute of Technology (KIT), Gumi, South Korea
| | - Eunho Lim
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| |
Collapse
|
3
|
Wang JG, Zhang L, Xie J, Weizmann Y, Li D, Li J. Single Particle Hopping as an Indicator for Evaluating Electrocatalysts. NANO LETTERS 2022; 22:5495-5502. [PMID: 35727011 DOI: 10.1021/acs.nanolett.2c01631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The design and screening of electrocatalysts for gas evolution reactions suffer from little understanding of multiphase processes at the electrode-electrolyte interface. Due to the complexity of the multiphase interface, it is still a great challenge to capture gas evolution dynamics under operando conditions to precisely portray the intrinsic catalytic performance of the interface. Here, we establish a single particle imaging method to real-time monitor a potential-dependent vertical motion or hopping of electrocatalysts induced by electrogenerated gas nanobubbles. The hopping feature of a single particle is closely correlated with intrinsic activities of electrocatalysts and thus is developed as an indicator to evaluate gas evolution performance of various electrocatalysts. This optical indicator diminishes interference from heterogeneous morphologies, non-Faradaic processes, and parasitic side reactions that are unavoidable in conventional electrochemical measurements, therefore enabling precise evaluation and high-throughput screening of catalysts for gas evolution systems.
Collapse
Affiliation(s)
- Jun-Gang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jing Xie
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yossi Weizmann
- Department of Chemistry, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Di Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 10084, China
| | - Jinghong Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 10084, China
| |
Collapse
|
4
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 213] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
5
|
Nickel iron oxide electrocatalysts for electrochemical OER activity. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Lu X, Li M, Peng Y, Xi X, Li M, Chen Q, Dong A. Direct Probing of the Oxygen Evolution Reaction at Single NiFe 2O 4 Nanocrystal Superparticles with Tunable Structures. J Am Chem Soc 2021; 143:16925-16929. [PMID: 34612638 DOI: 10.1021/jacs.1c08592] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Due to the precisely controllable size, shape, and composition, self-assembled nanocrystal superlattices exhibit unique collective properties and find wide applications in catalysis and energy conversion. Identifying their intrinsic electrocatalytic activity is challenging, as their averaged properties on ensembles can hardly be dissected from binders or additives. We here report the direct measurement of the oxygen evolution reaction at single superparticles self-assembled from ∼8 nm NiFe2O4 and/or ∼4 nm Au nanocrystals using scanning electrochemical cell microscopy. Combined with coordinated scanning electron microscopy, it is found that the turnover frequency (TOF) estimated from single NiFe2O4 superparticles at 1.92 V vs RHE ranges from 0.2 to 11 s-1 and is sensitive to size only when it is smaller than ∼800 nm in diameter. After the incorporation of Au nanocrystals, the TOF increases by ∼6-fold and levels off with further increasing Au content. Our study demonstrates the first direct single entity electrochemical study on individual nanocrystal superlattices with tunable structures and unravels the intrinsic structure-activity relationship that is not accessible by other methods.
Collapse
Affiliation(s)
- Xiaoxi Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Mingzhong Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yu Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiangyun Xi
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Man Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qianjin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Angang Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|