1
|
Shen J, Pan Z. A supported Ni 2 dual-atoms site hollow urchin-like carbon catalyst for synergistic CO 2 electroreduction. J Colloid Interface Sci 2024; 673:486-495. [PMID: 38879990 DOI: 10.1016/j.jcis.2024.06.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Dual-atoms catalysts (DACs), while inheriting the advantages of maximum atom utilization ratio and excellent selectivity of single-atom catalysts (SACs), can better enhance the catalytic activity through the synergy of adjacent atoms. Therefore, DACs are considered to be very potential catalysts for CO2 to CO conversion. Its catalytic activity is greatly influenced by the coordination environment and morphology. Here, hollow urchin-like NiNC catalysts (Ni-NC(HU)-x, x = 100, 50, 25, 0) were synthesized using urchin-like nickel particles as template. By adjusting the amount of additional nitrogen source, the percentage content of pyridinic-N was adjusted as well as further affecting the coordination environment. Among them, Ni-NC(HU)-50, which had the highest content of pyridinic-N, formed a dual-atoms coordination structure and had the best catalytic performance that the CO Faradaic efficiency (FECO) reached 97.2 % at -0.9 V vs. reversible hydrogen electrode (RHE) and sustained above 95 % within 50 h. In-situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and density functional theory (DFT) calculations showed that Ni-NC(HU)-50 exhibited the best performance of CO2 reduction reaction (CO2RR) by lowering the *COOH formation free energy barrier and its favorable dual desorption mechanism of *COL and *COB.
Collapse
Affiliation(s)
- Jianhua Shen
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhenping Pan
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Berger F, Schumann J, Réocreux R, Stamatakis M, Michaelides A. Bringing Molecules Together: Synergistic Coadsorption at Dopant Sites of Single Atom Alloys. J Am Chem Soc 2024; 146. [PMID: 39356554 PMCID: PMC11487606 DOI: 10.1021/jacs.4c07621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Bringing molecules together on a catalytic surface is a prerequisite for bimolecular and recombination reactions. However, in the absence of attractive interactions between reactants, such as hydrogen bonds, this poses a challenge. In contrast, based on density functional theory, we show that coadsorption at active sites of single-atom alloys (SAAs) is favored and that coadsorption is a general phenomenon observed for catalytically relevant adsorbates on a broad range of SAAs under temperature and pressure conditions commonly employed for catalysis. Dopants located in both terrace sites and in step edge defects exhibit a preference for coadsorption, displaying similar periodic trends. Using kinetic Monte Carlo simulations, we compare the reactivity of a model reaction on both a pure metal and an SAA and show that the preference for coadsorption significantly alters the overall reaction energy profile, even when the barriers for the rate-determining elementary step are identical. In our models, the coadsorption preference enhances the catalytic activity of the SAA surface by several orders of magnitude compared to the pure metal. We also report infrared (IR) spectroscopic signatures of coadsorption, which facilitate experimental detection. Analysis reveals that in these systems repulsive lateral interactions between nearby molecules are more than compensated for by the enhanced binding at dopant sites. Among the broad range of systems considered, SAAs containing early transition metals (TMs) exhibit the strongest coadsorption preference, which can be rationalized by assuming the existence of an optimal number of electrons involved in binding. The strong coadsorption preference, together with facile product desorption from early TMs, renders these systems attractive candidates for catalysis. Moreover, these SAAs could open new routes for reduction reactions because coadsorption with hydrogen is favored.
Collapse
Affiliation(s)
- Fabian Berger
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW Cambridge, U.K.
| | - Julia Schumann
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW Cambridge, U.K.
- Thomas
Young Centre and Department of Chemical Engineering, University College London, WC1E 7JE London, U.K.
| | - Romain Réocreux
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW Cambridge, U.K.
- Thomas
Young Centre and Department of Chemical Engineering, University College London, WC1E 7JE London, U.K.
| | - Michail Stamatakis
- Thomas
Young Centre and Department of Chemical Engineering, University College London, WC1E 7JE London, U.K.
- Department
of Chemistry, University of Oxford, OX1 3QZ Oxford, U.K.
| | - Angelos Michaelides
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW Cambridge, U.K.
| |
Collapse
|
3
|
Hicks MH, Nie W, Boehme AE, Atwater HA, Agapie T, Peters JC. Electrochemical CO 2 Reduction in Acidic Electrolytes: Spectroscopic Evidence for Local pH Gradients. J Am Chem Soc 2024; 146:25282-25289. [PMID: 39215715 PMCID: PMC11403608 DOI: 10.1021/jacs.4c09512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Inspired by recent advances in electrochemical CO2 reduction (CO2R) under acidic conditions, herein we leverage in situ spectroscopy to inform the optimization of CO2R at low pH. Using attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and fluorescent confocal laser scanning microscopy, we investigate the role that alkali cations (M+) play on electrochemical CO2R. This study hence provides important information related to the local electrode surface pH under bulk acidic conditions for CO2R, both in the presence and absence of an organic film layer, at variable [M+]. We show that in an acidic electrolyte, an appropriate current density can enable CO2R in the absence of metal cations. In situ local pH measurements suggest the local [H+] must be sufficiently depleted to promote H2O reduction as the competing reaction with CO2R. Incrementally incorporating [K+] leads to increases in the local pH that promotes CO2R but only at proton consumption rates sufficient to drive the pH up dramatically. Stark tuning measurements and analysis of surface water structure reveal no change in the electric field with [M+] and a desorption of interfacial water, indicating that improved CO2R performance is driven by suppression of H+ mass transport and modification of the interfacial solvation structure. In situ pH measurements confirm increasing local pH, and therefore decreased local [CO2], with [M+], motivating alternate means of modulating proton transport. We show that an organic film formed via in situ electrodeposition of an organic additive provides a means to achieve selective CO2R (FECO2R ∼ 65%) over hydrogen evolution reaction in the presence of strong acid (pH 1) and low cation concentrations (≤0.1 M) at both low and high current densities.
Collapse
Affiliation(s)
- Madeline H Hicks
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Liquid Sunlight Alliance (LiSA), California Institute of Technology, Pasadena, California 91125, United States
| | - Weixuan Nie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Liquid Sunlight Alliance (LiSA), California Institute of Technology, Pasadena, California 91125, United States
| | - Annette E Boehme
- Department of Applied Physics and Material Science, California Institute of Technology, Pasadena, California 91125, United States
- Liquid Sunlight Alliance (LiSA), California Institute of Technology, Pasadena, California 91125, United States
| | - Harry A Atwater
- Department of Applied Physics and Material Science, California Institute of Technology, Pasadena, California 91125, United States
- Liquid Sunlight Alliance (LiSA), California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Liquid Sunlight Alliance (LiSA), California Institute of Technology, Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Liquid Sunlight Alliance (LiSA), California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Lake WR, Meng J, Dawlaty JM, Lian T, Hammes-Schiffer S. Electro-inductive Effects and Molecular Polarizability for Vibrational Probes on Electrode Surfaces. J Phys Chem Lett 2024; 15:9100-9104. [PMID: 39197102 DOI: 10.1021/acs.jpclett.4c02183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
A microscopic understanding of electric fields and molecular polarization at interfaces will aid in the design of electrocatalytic systems. Herein, variants of 4-mercaptobenzonitrile are designed to test different schemes for breaking the continuous conjugation between a gold electrode surface and a nitrile group. Periodic density functional theory calculations predict applied potential dependencies of the CN vibrational frequencies similar to those observed experimentally. The CN frequency response decreased more when the conjugation was broken between the benzene ring and the nitrile group than between the electrode and the benzene ring, highlighting molecular polarizability effects. The systems with continuous or broken conjugation are dominated by electro-inductive effects or through-space electrostatic effects, respectively. Analysis of the fractional charge transfer between the electrode and the molecule as well as the occupancy of the CN antibonding orbital provides further insights. Balancing the effects of molecular polarizability, electro-induction, and through-space electrostatics has broad implications for electrocatalyst design.
Collapse
Affiliation(s)
- William R Lake
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jinhui Meng
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
5
|
Fu W, Li Y, Chen J, Chen J, Xi S, Zhang J, Wang L. Preserving Molecular Tuning for Enhanced Electrocatalytic CO 2-to-Ethanol Conversion. Angew Chem Int Ed Engl 2024:e202407992. [PMID: 39140436 DOI: 10.1002/anie.202407992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Modifying catalyst surface with small molecular-additives presents a promising avenue for enhancing electrocatalytic performance. However, challenges arise in preserving the molecular-additives and maximizing their tuning effect, particularly at high current densities. Herein, we develop an effective strategy to preserve the molecular-additives on electrode surface by applying a thin protective layer. Taking 4-dimethylaminopyridine (DMAP) as an example of a molecular-additive, the hydrophobic protection layer on top of the DMAP-functionalized Cu-catalyst effectively prevents its leaching during CO2 electroreduction (CO2R). Consequently, the confined DMAP molecules substantially promote the CO2-to-multicarbon conversion at low overpotentials. For instance, at a potential as low as -0.47 V vs. reversible hydrogen electrode, the DMAP-functionalized Cu exhibits over 80 % selectivity towards multi-carbon products, while the pristine Cu shows only ~35 % selectivity for multi-carbon products. Notably, ethanol appears as the primary product on DMAP-functionalized Cu, with selectivity approaching 50 % at a high current density of 400 mA cm-2. Detailed kinetic analysis, in situ spectroscopies, and theoretical calculations indicate that DMAP-induced electron accumulations on surface Cu-sites decrease the reaction energy for C-C coupling. Additionally, the interactions between DMAP and oxygenated intermediates facilitate the ethanol formation pathway in CO2R. Overall, this study showcases an effective strategy to guide future endeavors involving molecular tuning effects.
Collapse
Affiliation(s)
- Weiwei Fu
- Department of Chemical and Biomolecular Engineering, National University of, Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Yuke Li
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis, 138632, Singapore
| | - Jiayi Chen
- Department of Chemical and Biomolecular Engineering, National University of, Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Jingyi Chen
- Department of Chemical and Biomolecular Engineering, National University of, Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
| | - Jia Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis, 138632, Singapore
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of, Singapore, 4 Engineering Drive 4, 117585, Singapore
- Centre for Hydrogen Innovations, National University of, Singapore, 1 Engineering Drive 3, Singapore
| |
Collapse
|
6
|
Zhang Y, Chen Y, Wang X, Feng Y, Dai Z, Cheng M, Zhang G. Low-coordinated copper facilitates the *CH 2CO affinity at enhanced rectifying interface of Cu/Cu 2O for efficient CO 2-to-multicarbon alcohols conversion. Nat Commun 2024; 15:5172. [PMID: 38890306 PMCID: PMC11189494 DOI: 10.1038/s41467-024-49247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
The carbon-carbon coupling at the Cu/Cu2O Schottky interface has been widely recognized as a promising approach for electrocatalytic CO2 conversion into value-added alcohols. However, the limited selectivity of C2+ alcohols persists due to the insufficient control over rectifying interface characteristics required for precise bonding of oxyhydrocarbons. Herein, we present an investigation into the manipulation of the coordination environment of Cu sites through an in-situ electrochemical reconstruction strategy, which indicates that the construction of low-coordinated Cu sites at the Cu/Cu2O interface facilitates the enhanced rectifying interfaces, and induces asymmetric electronic perturbation and faster electron exchange, thereby boosting C-C coupling and bonding oxyhydrocarbons towards the nucleophilic reaction process of *H2CCO-CO. Impressively, the low-coordinated Cu sites at the Cu/Cu2O interface exhibit superior faradic efficiency of 64.15 ± 1.92% and energy efficiency of ~39.32% for C2+ alcohols production, while maintaining stability for over 50 h (faradic efficiency >50%, total current density = 200 mA cm-2) in a flow-cell electrolyzer. Theoretical calculations, operando synchrotron radiation Fourier transform infrared spectroscopy, and Raman experiments decipher that the low-coordinated Cu sites at the Cu/Cu2O interface can enhance the coverage of *CO and adsorption of *CH2CO and CH2CHO, facilitating the formation of C2+ alcohols.
Collapse
Affiliation(s)
- Yangyang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Yanxu Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaowen Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Yafei Feng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Zechuan Dai
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Mingyu Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Genqiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
7
|
Yang F, Jiang S, Liu S, Beyer P, Mebs S, Haumann M, Roth C, Dau H. Dynamics of bulk and surface oxide evolution in copper foams for electrochemical CO 2 reduction. Commun Chem 2024; 7:66. [PMID: 38548895 PMCID: PMC10978924 DOI: 10.1038/s42004-024-01151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Oxide-derived copper (OD-Cu) materials exhibit extraordinary catalytic activities in the electrochemical carbon dioxide reduction reaction (CO2RR), which likely relates to non-metallic material constituents formed in transitions between the oxidized and the reduced material. In time-resolved operando experiment, we track the structural dynamics of copper oxide reduction and its re-formation separately in the bulk of the catalyst material and at its surface using X-ray absorption spectroscopy and surface-enhanced Raman spectroscopy. Surface-species transformations progress within seconds whereas the subsurface (bulk) processes unfold within minutes. Evidence is presented that electroreduction of OD-Cu foams results in kinetic trapping of subsurface (bulk) oxide species, especially for cycling between strongly oxidizing and reducing potentials. Specific reduction-oxidation protocols may optimize formation of bulk-oxide species and thereby catalytic properties. Together with the Raman-detected surface-adsorbed *OH and C-containing species, the oxide species could collectively facilitate *CO adsorption, resulting an enhanced selectivity towards valuable C2+ products during CO2RR.
Collapse
Affiliation(s)
- Fan Yang
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| | - Shan Jiang
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| | - Si Liu
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| | - Paul Beyer
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| | - Stefan Mebs
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany.
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| | - Christina Roth
- Electrochemical Process Engineering, Universität Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Holger Dau
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany.
| |
Collapse
|
8
|
Banerji LC, Jang H, Gardner AM, Cowan AJ. Studying the cation dependence of CO 2 reduction intermediates at Cu by in situ VSFG spectroscopy. Chem Sci 2024; 15:2889-2897. [PMID: 38404396 PMCID: PMC10882457 DOI: 10.1039/d3sc05295h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024] Open
Abstract
The nature of the electrolyte cation is known to have a significant impact on electrochemical reduction of CO2 at catalyst|electrolyte interfaces. An understanding of the underlying mechanism responsible for catalytic enhancement as the alkali metal cation group is descended is key to guide catalyst development. Here, we use in situ vibrational sum frequency generation (VSFG) spectroscopy to monitor changes in the binding modes of the CO intermediate at the electrochemical interface of a polycrystalline Cu electrode during CO2 reduction as the electrolyte cation is varied. A CObridge mode is observed only when using Cs+, a cation that is known to facilitate CO2 reduction on Cu, supporting the proposed involvement of CObridge sites in CO coupling mechanisms during CO2 reduction. Ex situ measurements show that the cation dependent CObridge modes correlate with morphological changes of the Cu surface.
Collapse
Affiliation(s)
- Liam C Banerji
- Department of Chemistry, Stephenson Institute for Renewable Energy, University of Liverpool Liverpool UK
| | - Hansaem Jang
- Department of Chemistry, Stephenson Institute for Renewable Energy, University of Liverpool Liverpool UK
| | - Adrian M Gardner
- Department of Chemistry, Stephenson Institute for Renewable Energy, University of Liverpool Liverpool UK
- Early Career Laser Laboratory, University of Liverpool Liverpool UK
| | - Alexander J Cowan
- Department of Chemistry, Stephenson Institute for Renewable Energy, University of Liverpool Liverpool UK
| |
Collapse
|
9
|
Liu Q, Jiang Q, Li L, Yang W. Spontaneous Reconstruction of Copper Active Sites during the Alkaline CORR: Degradation and Recovery of the Performance. J Am Chem Soc 2024; 146:4242-4251. [PMID: 38300828 DOI: 10.1021/jacs.3c14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Understanding the reconstruction of electrocatalysts under operational conditions is essential for studying their catalytic mechanisms and industrial applications. Herein, using spatiotemporally resolved Raman spectroscopy with CO as a probe molecule, we resolved the spontaneous reconstruction of Cu active sites during cathodic CO reduction reactions (CORRs). Quasi-in situ focused ion beam transmission electron microscopy (FIB-TEM) revealed that under prolonged electrolysis, the Cu surface can reconstruct to form nanometer-sized Cu particles with (111)/(100) facets and abundant grain boundaries, which strongly favor the formation of an inactive *CObridge binding site and deteriorate the CORR performance. A short period of anodic oxidation can efficiently remove these reconstructed nanoparticles by quick dissolution of Cu, thus providing an effective strategy to regenerate the Cu catalysts and recover their CORR performance. This study provides real-time in situ observations of Cu reconstruction and changes in the binding of key reaction intermediates, highlighting the decisive role of the local active site, rather than the macroscopic morphology, on adsorption of key reaction intermediates and thus CORR performance.
Collapse
Affiliation(s)
- Qiliang Liu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030,Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, Zhejiang,China
| | - Qike Jiang
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Ling Li
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030,Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, Zhejiang,China
| | - Wenxing Yang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030,Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, Zhejiang,China
| |
Collapse
|
10
|
Wang M, Wang B, Zhang J, Xi S, Ling N, Mi Z, Yang Q, Zhang M, Leow WR, Zhang J, Lum Y. Acidic media enables oxygen-tolerant electrosynthesis of multicarbon products from simulated flue gas. Nat Commun 2024; 15:1218. [PMID: 38336956 PMCID: PMC10858036 DOI: 10.1038/s41467-024-45527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Renewable electricity powered electrochemical CO2 reduction (CO2R) offers a valuable method to close the carbon cycle and reduce our overreliance on fossil fuels. However, high purity CO2 is usually required as feedstock, which potentially decreases the feasibility and economic viability of the process. Direct conversion of flue gas is an attractive option but is challenging due to the low CO2 concentration and the presence of O2 impurities. As a result, up to 99% of the applied current can be lost towards the undesired oxygen reduction reaction (ORR). Here, we show that acidic electrolyte can significantly suppress ORR on Cu, enabling generation of multicarbon products from simulated flue gas. Using a composite Cu and carbon supported single-atom Ni tandem electrocatalyst, we achieved a multicarbon Faradaic efficiency of 46.5% at 200 mA cm-2, which is ~20 times higher than bare Cu under alkaline conditions. We also demonstrate stable performance for 24 h with a multicarbon product full-cell energy efficiency of 14.6%. Strikingly, this result is comparable to previously reported acidic CO2R systems using pure CO2. Our findings demonstrate a potential pathway towards designing efficient electrolyzers for direct conversion of flue gas to value-added chemicals and fuels.
Collapse
Affiliation(s)
- Meng Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Republic of Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Bingqing Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Republic of Singapore.
| | - Jiguang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Republic of Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833, Republic of Singapore
| | - Ning Ling
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Republic of Singapore
| | - Ziyu Mi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833, Republic of Singapore
| | - Qin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Republic of Singapore
| | - Mingsheng Zhang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Wan Ru Leow
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833, Republic of Singapore
| | - Jia Zhang
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Yanwei Lum
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Republic of Singapore.
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore.
| |
Collapse
|
11
|
Chen R, Zu X, Zhu J, Zhao Y, Li Y, Hu Z, Wang S, Fan M, Zhu S, Zhang H, Ye B, Sun Y, Xie Y. Dynamically Reconstructed Triple-Copper-Vacancy Associates Confined in Cu Nanowires Enabling High-Rate and Selective CO 2 Electroreduction to C 2+ Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314209. [PMID: 38331431 DOI: 10.1002/adma.202314209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Electrochemically reconstructed Cu-based catalysts always exhibit enhanced CO2 electroreduction performance; however, it still remains ambiguous whether the reconstructed Cu vacancies have a substantial impact on CO2 -to-C2+ reactivity. Herein, Cu vacancies are first constructed through electrochemical reduction of Cu-based nanowires, in which high-angle annular dark-field scanning transmission electron microscopy image manifests the formation of triple-copper-vacancy associates with different concentrations, confirmed by positron annihilation lifetime spectroscopy. In situ attenuated total reflection-surface enhanced infrared absorption spectroscopy discloses the triple-copper-vacancy associates favor *CO adsorption and fast *CO dimerization. Moreover, density-functional-theory calculations unravel the triple-copper-vacancy associates endow the nearby Cu sites with enriched and disparate local charge density, which enhances the *CO adsorption and reduces the CO-CO coupling barrier, affirmed by the decreased *CO dimerization energy barrier by 0.4 eV. As a result, the triple-copper-vacancy associates confined in Cu nanowires achieve a high Faradaic efficiency of over 80% for C2+ products in a wide current density range of 400-800 mA cm-2 , outperforming most reported Cu-based electrocatalysts.
Collapse
Affiliation(s)
- Runhua Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaolong Zu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Juncheng Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yuan Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yuhuan Li
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zexun Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shumin Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Minghui Fan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shan Zhu
- State Grid Anhui Electric Power Research Institute, Hefei, Anhui, 230601, P. R. China
| | - Hongjun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bangjiao Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yongfu Sun
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
12
|
Zhang H, Chen B, Liu T, Brudvig GW, Wang D, Waegele MM. Infrared Spectroscopic Observation of Oxo- and Superoxo-Intermediates in the Water Oxidation Cycle of a Molecular Ir Catalyst. J Am Chem Soc 2024; 146:878-883. [PMID: 38154046 DOI: 10.1021/jacs.3c11206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Molecular Ir catalysts have emerged as an important class of model catalysts for understanding structure-activity relationships in water oxidation, a reaction that is central to renewable fuel synthesis. Prior efforts have mostly focused on controlling and elucidating the emergence of active species from prepared precursors. However, the development of efficient and stable molecular Ir catalysts also necessitates probing of reaction intermediates. To date, relatively little is known about the key intermediates in the cycles of the molecular Ir catalysts. Herein, we probed the catalytic cycle of a homogeneous Ir catalyst ("blue dimer") at a Au electrode/aqueous electrolyte interface by combining surface-enhanced infrared absorption spectroscopy (SEIRAS) with phase-sensitive detection (PSD). Cyclic voltammograms (CVs) from 1.4 to 1.7 VRHE (RHE = reversible hydrogen electrode) give rise to a band at ∼818 cm-1, whereas CVs from 1.4 to ≥1.85 VRHE generate an additional band at ∼1146 cm-1. Isotope labeling experiments indicate that the bands at ∼818 and ∼1146 cm-1 are attributable to oxo (IrV═O) and superoxo (IrIV-OO•) moieties, respectively. This study establishes PSD-SEIRAS as a sensitive tool for probing water oxidation cycles at electrode/electrolyte interfaces and demonstrates that the relative abundance of two key intermediates can be tuned by the thermodynamic driving force of the reaction.
Collapse
Affiliation(s)
- Hongna Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Boqiang Chen
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tianying Liu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Dunwei Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Matthias M Waegele
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
13
|
Chang X, Xiong H, Lu Q, Xu B. Mechanistic Implications of Low CO Coverage on Cu in the Electrochemical CO and CO 2 Reduction Reactions. JACS AU 2023; 3:2948-2963. [PMID: 38034971 PMCID: PMC10685414 DOI: 10.1021/jacsau.3c00494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
Electrochemical CO or CO2 reduction reactions (CO(2)RR), powered by renewable energy, represent one of the promising strategies for upgrading CO2 to valuable products. To design efficient and selective catalysts for the CO(2)RR, a comprehensive mechanistic understanding is necessary, including a comprehensive understanding of the reaction network and the identity of kinetically relevant steps. Surface-adsorbed CO (COad) is the most commonly reported reaction intermediate in the CO(2)RR, and its surface coverage (θCO) and binding energy are proposed to be key to the catalytic performance. Recent experimental evidence sugguests that θCO on Cu electrode at electrochemical conditions is quite low (∼0.05 monolayer), while relatively high θCO is often assumed in literature mechanistic discussion. This Perspective briefly summarizes existing efforts in determining θCO on Cu surfaces, analyzes mechanistic impacts of low θCO on the reaction pathway and catalytic performance, and discusses potential fruitful future directions in advancing our understanding of the Cu-catalyzed CO(2)RR.
Collapse
Affiliation(s)
- Xiaoxia Chang
- College
of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Haocheng Xiong
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qi Lu
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Bingjun Xu
- College
of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
14
|
Gao W, Xu Y, Xiong H, Chang X, Lu Q, Xu B. CO Binding Energy is an Incomplete Descriptor of Cu-Based Catalysts for the Electrochemical CO 2 Reduction Reaction. Angew Chem Int Ed Engl 2023; 62:e202313798. [PMID: 37837328 DOI: 10.1002/anie.202313798] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/16/2023]
Abstract
CO binding energy has been employed as a descriptor in the catalyst design for the electrochemical CO2 reduction reactions (CO2 RR). The reliability of the descriptor has yet been experimentally verified due to the lack of suitable methods to determine CO binding energies. In this work, we determined the standard CO adsorption enthalpies (Δ H C O ∘ ${\Delta {H}_{CO}^{^\circ{}}}$ ) of undoped and doped oxide-derived Cu (OD-Cu) samples, and for the first time established the correlation ofΔ H C O ∘ ${\Delta {H}_{CO}^{^\circ{}}}$ with the Faradaic efficiencies (FE) for C2+ products. A clear volcano shaped dependence of the FE for C2+ products onΔ H C O ∘ ${\Delta {H}_{CO}^{^\circ{}}}$ is observed on OD-Cu catalysts prepared with the same hydrothermal durations, however, the trend becomes less clear when all catalysts investigated are taken into account. The relative abundance of Cu sites active for the CO2 -to-CO conversion and the further reduction of CO is identified as another key descriptor.
Collapse
Affiliation(s)
- Wenqiang Gao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
| | - Yifei Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
| | - Haocheng Xiong
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
| | - Qi Lu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
| |
Collapse
|
15
|
Wu ZZ, Zhang XL, Yang PP, Niu ZZ, Gao FY, Zhang YC, Chi LP, Sun SP, DuanMu JW, Lu PG, Li YC, Gao MR. Gerhardtite as a Precursor to an Efficient CO-to-Acetate Electroreduction Catalyst. J Am Chem Soc 2023; 145:24338-24348. [PMID: 37880928 DOI: 10.1021/jacs.3c09255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Carbon-carbon coupling electrochemistry on a conventional copper (Cu) catalyst still undergoes low selectivity among many different multicarbon (C2+) chemicals, posing a grand challenge to achieve a single C2+ product. Here, we demonstrate a laser irradiation synthesis of a gerhardtite mineral, Cu2(OH)3NO3, as a catalyst precursor to make a Cu catalyst with abundant stacking faults under reducing conditions. Such structural perturbation modulates electronic microenvironments of Cu, leading to improved d-electron back-donation to the antibonding orbital of *CO intermediates and thus strengthening *CO adsorption. With increased *CO coverage on the defect-rich Cu, we report an acetate selectivity of 56 ± 2% (compared to 31 ± 1% for conventional Cu) and a partial current density of 222 ± 7 mA per square centimeter in CO electroreduction. When run at 400 mA per square centimeter for 40 h in a flow reactor, this catalyst produces 68.3 mmol of acetate throughout. This work highlights the value of a Cu-containing mineral phase in accessing suitable structures for improved selectivity to a single desired C2+ product.
Collapse
Affiliation(s)
- Zhi-Zheng Wu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Peng-Peng Yang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zhuang-Zhuang Niu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Fei-Yue Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Cai Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Li-Ping Chi
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Ping Sun
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jing-Wen DuanMu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Pu-Gan Lu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Ye-Cheng Li
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Lake WR, Meng J, Dawlaty JM, Lian T, Hammes-Schiffer S. Electro-inductive Effect Dominates Vibrational Frequency Shifts of Conjugated Probes on Gold Electrodes. J Am Chem Soc 2023; 145:22548-22554. [PMID: 37795975 DOI: 10.1021/jacs.3c07489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Interfacial electric fields play a critical role in electrocatalysis and are often characterized by using vibrational probes attached to an electrode surface. Understanding the physical principles dictating the impact of the applied electrode potential on the vibrational probe frequency is important. Herein, a comparative study is performed for two molecular probes attached to a gold electrode. Both probes contain a nitrile (CN) group, but 4-mercaptobenzonitrile (4-MBN) exhibits continuous conjugation from the electrode through the nitrile group, whereas this conjugation is interrupted for 2-(4-mercaptophenyl)acetonitrile (4-MPCN). Periodic density functional theory calculations predict that the CN vibrational frequency shift of the 4-MBN system is dominated by induction, which is a through-bond polarization effect, leading to a strong potential dependence that does not depend significantly on the orientation of the CN bond relative to the surface. In contrast, the CN vibrational frequency shift of the 4-MPCN system is influenced less by induction and more by through-space electric field effects, leading to a weaker potential dependence and a greater orientation dependence. These theoretical predictions were confirmed by surface-enhanced Raman spectroscopy experiments. Balancing through-bond and through-space electrostatic effects may assist in the fundamental understanding and design of electrocatalytic systems.
Collapse
Affiliation(s)
- William R Lake
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jinhui Meng
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | |
Collapse
|
17
|
Li Z, Wang L, Wang T, Sun L, Yang W. Steering the Dynamics of Reaction Intermediates and Catalyst Surface during Electrochemical Pulsed CO 2 Reduction for Enhanced C 2+ Selectivity. J Am Chem Soc 2023; 145:20655-20664. [PMID: 37639564 DOI: 10.1021/jacs.3c08005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Developing alternative electrolysis techniques is crucial for advancing electrocatalysis in addition to tremendous efforts of material developments. Recently, pulse electrochemical CO2 reduction reaction (CO2RR) has demonstrated dramatic selectivity improvement toward multicarbon (C2+) products compared to potentiostatic electrochemical CO2RR, yet the underlying mechanisms remain little understood. Herein, we develop a fast time-resolved in situ Raman spectroscopic method with a time resolution of 0.25 s. We reveal that pulse electrolysis improves the C2+ selectivity of CO2RR through dynamic controls of the surface CuxO/Cu composition that would be unachievable under potentiostatic electrolysis. The population of the surface-adsorbed CO intermediate (COads) is characterized to be the determining factor in controlling reaction selectivity, which depicts the C2+/C1 selectivity of CO2RR under pulse conditions. Meanwhile, the vibrational character of COads, despite transforming dynamically between the low-frequency and high-frequency modes is characterized not to be the key factor in controlling the reaction selectivity. Such an active control of catalyst surface compositions and reaction intermediates enabled by pulse electrolysis offer a general way of regulating the electrocatalysis performance of broad electrochemical reactions beyond CO2RR.
Collapse
Affiliation(s)
- Zhuofeng Li
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, China
| | - Wenxing Yang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, China
| |
Collapse
|
18
|
Deacon-Price C, da Silva AHM, Santana CS, Koper MTM, Garcia AC. Solvent Effect on Electrochemical CO 2 Reduction Reaction on Nanostructured Copper Electrodes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:14518-14527. [PMID: 37529666 PMCID: PMC10388345 DOI: 10.1021/acs.jpcc.3c03257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Indexed: 08/03/2023]
Abstract
The electrochemical reduction of CO2 (CO2RR) is a sustainable alternative for producing fuels and chemicals, although the production of highly desired hydrocarbons is still a challenge due to the higher overpotential requirement in combination with the competitive hydrogen evolution reaction (HER). Tailoring the electrolyte composition is a possible strategy to favor the CO2RR over the HER. In this work we studied the solvent effect on the CO2RR on a nanostructured Cu electrode in acetonitrile solvent with different amounts of water. Similar to what has been observed for aqueous media, our online gas chromatography results showed that CO2RR in acetonitrile solvent is also structure-dependent, since nanocube-covered copper (CuNC) was the only surface (in comparison to polycrystalline Cu) capable of producing a detectable amount of ethylene (10% FE), provided there is enough water present in the electrolyte (>500 mM). In situ Fourier Transform Infrared (FTIR) spectroscopy showed that in acetonitrile solvent the presence of CO2 strongly inhibits HER by driving away water from the interface. CO is by far the main product of CO2RR in acetonitrile (>85% Faradaic efficiency), but adsorbed CO is not detected. This suggests that in acetonitrile media CO adsorption is inhibited compared to aqueous media. Remarkably, the addition of water to acetonitrile has little quantitative and almost no qualitative effect on the activity and selectivity of the CO2RR. This indicates that water is not strongly involved in the rate-determining step of the CO2RR in acetonitrile. Only at the highest water concentrations and at the CuNC surface, the CO coverage becomes high enough that a small amount of C2+ product is formed.
Collapse
Affiliation(s)
- Connor Deacon-Price
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Alisson H. M. da Silva
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Cássia S. Santana
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Amanda C. Garcia
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Xiong H, Sun Q, Chen K, Xu Y, Chang X, Lu Q, Xu B. Correlating the Experimentally Determined CO Adsorption Enthalpy with the Electrochemical CO Reduction Performance on Cu Surfaces. Angew Chem Int Ed Engl 2023; 62:e202218447. [PMID: 36655721 DOI: 10.1002/anie.202218447] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
CO binding energy has been widely employed as a descriptor for effective catalysts in the electrochemical CO2 and CO reduction reactions (CO(2) RR), however, it has yet to be determined experimentally at electrochemical interfaces due to the lack of suitable techniques. In this work, we developed a method to determine the standard adsorption enthalpy of CO on Cu surfaces with quantitative surface enhanced infrared absorption spectroscopy. On dendritic Cu at -0.75 V vs. SHE, the standard adsorption enthalpy, entropy and Gibbs free energy were determined to 1.5±0.5 kJ mol-1 , ≈37.9±13.4 J/(mol K), and ≈-9.8±4.0 kJ mol-1 , respectively. Comparison of the standard adsorption enthalpy of oxide-derived Cu and dendritic Cu, as well as their CORR activities, suggests the presence of stronger binding sites on OD Cu, which could favor multicarbon products. The method developed in this work will help establish the correlation between the CO binding energy and the CO(2) RR activity.
Collapse
Affiliation(s)
- Haocheng Xiong
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Qiwen Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Kedang Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yifei Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
20
|
Pennathur AK, Tseng C, Salazar N, Dawlaty JM. Controlling Water Delivery to an Electrochemical Interface with Surfactants. J Am Chem Soc 2023; 145:2421-2429. [PMID: 36688713 DOI: 10.1021/jacs.2c11503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Most electrochemical reactions require delivery of protons, often from water, to surface-adsorbed species. However, water also acts as a competitor to many such processes by directly reacting with the electrode, which necessitates using water in small amounts. Controlling the water content and structure near the surface is an important frontier in directing the reactivity and selectivity of electrochemical reactions. Surfactants accumulate near surfaces, and therefore, they can be used as agents to control interfacial water. Using mid-IR spectro-electrochemistry, we show that a modest concentration (1 mM) of the cationic surfactant CTAB in mixtures of 10 M water in an organic solvent (dDMSO) has a large effect on the interfacial water concentration, changing it by up to ∼35% in the presence of an applied potential. The major cause of water content change is displacement due to the accumulation or depletion of surfactants driven by potential. Two forces drive the surfactants to the electrode: the applied potential and the hydrophobic interactions with the water in the bulk. We have quantified their competition by varying the water content in the bulk. To our knowledge, for the first time, we have identified the electrochemical equivalent of the hydrophobic drive. For our system, a change in applied potential of 1 V has the same effect as adding a 0.55 mole fraction of water to the bulk. This work illustrates the significance of surfactants in the partitioning of water between the bulk and the surface and paves the way toward engineering interfacial water structures for controlling electrochemical reactions.
Collapse
Affiliation(s)
- Anuj K Pennathur
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Cindy Tseng
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Noemi Salazar
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
21
|
Hou J, Chang X, Li J, Xu B, Lu Q. Correlating CO Coverage and CO Electroreduction on Cu via High-Pressure in Situ Spectroscopic and Reactivity Investigations. J Am Chem Soc 2022; 144:22202-22211. [PMID: 36404600 DOI: 10.1021/jacs.2c09956] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The absolute coverage of CO has been a missing piece in the mechanistic puzzle of the CO reduction reaction (CORR) on Cu. For the first time, we revealed the upper bound of the CO coverage under electrocatalytic conditions to be 0.05 monolayer at atmospheric pressure and the saturation CO coverage to be ∼0.25 monolayer by conducting surface enhanced infrared spectroscopy at CO pressures up to 60 barg in a custom-designed spectroelectrochemical cell. CORR activities on Cu were also determined in the same pressure range. Calculated reaction orders of C2+ products with respect to adsorbed CO are substantially less than unity, clearly indicating that the coupling of adsorbed CO is not the rate-determining step leading to multicarbon products. The increase in CO coverage can reduce the C affinity on the Cu surface and favor the selectivity towards oxygenates, especially acetate, over ethylene. Uncommon products, including ethane, glycolaldehyde, and ethylene glycol, were detected in appreciable amounts, likely due to a new C-C coupling mechanism taking place at elevated CO pressures.
Collapse
Affiliation(s)
- Jiajie Hou
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Jing Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| |
Collapse
|
22
|
Fundamental aspects in CO2 electroreduction reaction and solutions from in situ vibrational spectroscopies. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Su HS, Chang X, Xu B. Surface-enhanced vibrational spectroscopies in electrocatalysis: Fundamentals, challenges, and perspectives. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Ovalle VJ, Hsu YS, Agrawal N, Janik MJ, Waegele MM. Correlating hydration free energy and specific adsorption of alkali metal cations during CO2 electroreduction on Au. Nat Catal 2022. [DOI: 10.1038/s41929-022-00816-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Rebstock JA, Zhu Q, Baker LR. Comparing interfacial cation hydration at catalytic active sites and spectator sites on gold electrodes: understanding structure sensitive CO 2 reduction kinetics. Chem Sci 2022; 13:7634-7643. [PMID: 35872825 PMCID: PMC9242014 DOI: 10.1039/d2sc01878k] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Hydrated cations present in the electrochemical double layer (EDL) are known to play a crucial role in electrocatalytic CO2 reduction (CO2R), and numerous studies have attempted to explain how the cation effect contributes to the complex CO2R mechanism. CO2R is a structure sensitive reaction, indicating that a small fraction of total surface sites may account for the majority of catalytic turnover. Despite intense interest in specific cation effects, probing site-specific, cation-dependent solvation structures remains a significant challenge. In this work, CO adsorbed on Au is used as a vibrational Stark reporter to indirectly probe solvation structure using vibrational sum frequency generation (VSFG) spectroscopy. Two modes corresponding to atop adsorption of CO are observed with unique frequency shifts and potential-dependent intensity profiles, corresponding to direct adsorption of CO to inactive surface sites, and in situ generated CO produced at catalytic active sites. Analysis of the cation-dependent Stark tuning slopes for each of these species provides estimates of the hydrated cation radius upon adsorption to active and inactive sites on the Au electrode. While cations are found to retain their bulk hydration shell upon adsorption at inactive sites, catalytic active sites are characterized by a single layer of water between the Au surface and the electrolyte cation. We propose that the drastic increase in catalytic performance at active sites stems from this unique solvation structure at the Au/electrolyte interface. Building on this evidence of a site-specific EDL structure will be critical to understand the connection between cation-dependent interfacial solvation and CO2R performance.
Collapse
Affiliation(s)
- Jaclyn A Rebstock
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Quansong Zhu
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| |
Collapse
|
26
|
Wu ZZ, Zhang XL, Niu ZZ, Gao FY, Yang PP, Chi LP, Shi L, Wei WS, Liu R, Chen Z, Hu S, Zheng X, Gao MR. Identification of Cu(100)/Cu(111) Interfaces as Superior Active Sites for CO Dimerization During CO 2 Electroreduction. J Am Chem Soc 2021; 144:259-269. [PMID: 34962375 DOI: 10.1021/jacs.1c09508] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The electrosynthesis of valuable multicarbon chemicals using carbon dioxide (CO2) as a feedstock has substantially progressed recently but still faces considerable challenges. A major difficulty lines in the sluggish kinetics of forming carbon-carbon (C-C) bonds, especially in neutral media. We report here that oxide-derived copper crystals enclosed by six {100} and eight {111} facets can reduce CO2 to multicarbon products with a high Faradaic efficiency of 74.9 ± 1.7% at a commercially relevant current density of 300 mA cm-2 in 1 M KHCO3 (pH ∼ 8.4). By combining the experimental and computational studies, we uncovered that Cu(100)/Cu(111) interfaces offer a favorable local electronic structure that enhances *CO adsorption and lowers C-C coupling activation energy barriers, performing superior to Cu(100) and Cu(111) surfaces, respectively. On this catalyst, no obvious degradation was observed at 300 mA cm-2 over 50 h of continuous operation.
Collapse
Affiliation(s)
- Zhi-Zheng Wu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zhuang-Zhuang Niu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Fei-Yue Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Peng-Peng Yang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Li-Ping Chi
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Lei Shi
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Sen Wei
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ren Liu
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhi Chen
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shaojin Hu
- Division of Theoretical and Computational Sciences, Hefei National Laboratory for Physical Sciences at Microscale, CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Zheng
- Division of Theoretical and Computational Sciences, Hefei National Laboratory for Physical Sciences at Microscale, CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
27
|
Sarkar S, Maitra A, Lake WR, Warburton RE, Hammes-Schiffer S, Dawlaty JM. Mechanistic Insights about Electrochemical Proton-Coupled Electron Transfer Derived from a Vibrational Probe. J Am Chem Soc 2021; 143:8381-8390. [PMID: 34042429 DOI: 10.1021/jacs.1c01977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Proton-coupled electron transfer (PCET) is a fundamental step in a wide range of electrochemical processes, including those of interest in energy conversion and storage. Despite its importance, several mechanistic details of such reactions remain unclear. Here, we have combined a proton donor (tertiary ammonium) with a vibrational Stark-shift probe (benzonitrile), to track the process from the entry of the reactants into the electrical double layer (EDL), to the PCET reaction associated with proton donation to the electrode, and the formation of products. We have used operando vibrational spectroscopy and periodic density functional theory under electrochemical bias to assign the reactant and product peaks and their Stark shifts. We have identified three main stages for the progress of the PCET reaction as a function of applied potential. First, we have determined the potential necessary for desolvation of the reactants and their entry into the polarizing environment of the EDL. Second, we have observed the appearance of product peaks prior to the onset of steady state electrochemical current, indicating formation of a stationary population of products that does not turn over. Finally, more negative of the onset potential, the electrode attracts additional reactants, displacing the stationary products and enabling steady state current. This work shows that the integration of a vibrational Stark-shift probe with a proton donor provides critical insight into the interplay between interfacial electrostatics and heterogeneous chemical reactions. Such insights cannot be obtained from electrochemical measurements alone.
Collapse
Affiliation(s)
- Sohini Sarkar
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Anwesha Maitra
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - William R Lake
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Robert E Warburton
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
28
|
Yang Y, He A, Yang M, Zou Q, Li H, Liu Z, Tao C, Du J. Selective electroreduction of CO 2 to ethanol over a highly stable catalyst derived from polyaniline/CuBi 2O 4. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01063h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We highlights the importance of surface evolution by electrochemical pre-treatment while stabilizing the main body of the catalyst. The PANi/CuBi2O4via electro-chemical activation process shows high faraday efficiency to ethanol.
Collapse
Affiliation(s)
- Yong Yang
- College of Chemistry and Chemical Engineering, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, China
| | - Anbang He
- College of Chemistry and Chemical Engineering, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, China
| | - Ming Yang
- College of Chemistry and Chemical Engineering, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, China
| | - Qian Zou
- College of Chemistry and Chemical Engineering, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, China
| | - Zuohua Liu
- College of Chemistry and Chemical Engineering, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, China
| | - Changyuan Tao
- College of Chemistry and Chemical Engineering, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, China
| | - Jun Du
- College of Chemistry and Chemical Engineering, Chongqing University, No.55 Daxuecheng South Rd., Shapingba, Chongqing, China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, China
| |
Collapse
|
29
|
Qi X, Shinagawa T, Kishimoto F, Takanabe K. Determination and perturbation of the electronic potentials of solid catalysts for innovative catalysis. Chem Sci 2020; 12:540-545. [PMID: 34163783 PMCID: PMC8179014 DOI: 10.1039/d0sc05148a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Concerns about energy and the environment are motivating a reexamination of catalytic processes, aiming to achieve more efficient and improved catalysis compatible with sustainability. Designing an active site for such heterogeneous catalytic processes remains a challenge leading to a next level breakthrough. Herein, we discuss a fundamental aspect of heterogeneous catalysis: the chemical potential of electrons in solid catalysts during thermal catalysis, which directly reflects the consequent catalytic reaction rate. The use of electrochemical tools during thermal catalysis allows for the quantitative determination of the ill-defined chemical potentials of solids in operando, whereby the potential-rate relationship can be established. Furthermore, the electrochemical means can also introduce the direct perturbation of catalyst potentials, in turn, perturbing the coverage of adsorbates functioning as poison, promoters, or reactants. We collect selected publications on these aspects, and provide a viewpoint bridging the fields of thermal- and electro-catalysis.
Collapse
Affiliation(s)
- Xingyu Qi
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Tatsuya Shinagawa
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Fuminao Kishimoto
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Kazuhiro Takanabe
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| |
Collapse
|