1
|
Shen Q, Chen W, Wang M, Jin X, Zhang L, Shi J. A MOF@MOF S-scheme Heterojunction with Lewis Acid-Base Sites Synergistically Boosts Cocatalyst-Free CO 2 Cycloaddition. CHEMSUSCHEM 2025; 18:e202401362. [PMID: 39162037 DOI: 10.1002/cssc.202401362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
The photocatalytic cycloaddition reaction between CO2 and epoxide is one of the most promising green routes for CO2 utilization, for which high performance photocatalysts are intensely desired. Herein, we have constructed an S-scheme heterojunction of MIL-125@ZIF-67 modified by amino groups, which achieves a cyclic carbonate yield of as high as 99 % without employing any co-catalyst, outperforming the previously reported photocatalysts. In-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and in-situ electron paramagnetic resonance (EPR) spectroscopy reveal the important role of photogenerated electron migration from Lewis acid (Co) sites to the O atom of epoxide in triggering its ring-opening (the rate-determining step of CO2 cycloaddition reaction) under the assistance of photogenerated hole. Synergistically and concurrently, the Lewis base (amino groups) sites activate CO2 to CO2*, facilitating the following CO2 cycloaddition. Such a synergistic effect provides a most favorable approach to design efficient heterogeneous photocatalysts with dual/multiple-active sites for CO2 cycloaddition reaction.
Collapse
Affiliation(s)
- Qiuyan Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No 1295 Ding-Xi Road, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No 19 A Yuquan Road, Beijing, 100049, PR China
| | - Weiren Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No 1295 Ding-Xi Road, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No 19 A Yuquan Road, Beijing, 100049, PR China
| | - Min Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No 1295 Ding-Xi Road, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No 19 A Yuquan Road, Beijing, 100049, PR China
| | - Xixiong Jin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No 1295 Ding-Xi Road, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No 19 A Yuquan Road, Beijing, 100049, PR China
| | - Lingxia Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No 1295 Ding-Xi Road, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No 19 A Yuquan Road, Beijing, 100049, PR China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No 1 Xiangshan Sub-lane, Hangzhou, 310024, PR China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No 1295 Ding-Xi Road, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No 19 A Yuquan Road, Beijing, 100049, PR China
| |
Collapse
|
2
|
Zhai G, Yang S, Chen Y, Xu J, Si S, Zhang H, Liu Y, Ma J, Sun X, Huang W, Gao C, Liu D, Xiong Y. Direct Photocatalytic Oxidation of Methane to Formic Acid with High Selectivity via a Concerted Proton-Electron Transfer Process. J Am Chem Soc 2025. [PMID: 39772440 DOI: 10.1021/jacs.4c12758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Light-driven direct conversion of methane to formic acid is a promising approach to convert methane to value-added chemicals and promote sustainability. However, this process remains challenging due to the complex requirements for multiple protons and electrons. Herein, we report the design of WO3-based photocatalysts modified with Pt active sites to address this challenge. We demonstrate that modulating the dimensional effect of Pt on the WO3 support is key to enhancing the catalytic performance of selective CH4-to-HCOOH conversion. The Pt nanoparticles on WO3 exhibit superior conversion rate, selectivity and durability in the production of HCOOH compared to the Pt-free sample and WO3 decorated with Pt single atoms. The optimal PtNPs-WO3 catalyst achieves a HCOOH conversion rate of 17.7 mmol g-1, with 84% selectivity and stability maintained for up to 48 h. Mechanistic studies show that the protonation of O2 to hydroxyl radicals is the limiting step for HCOOH yield. Pt nanoparticles can facilitate electron transfer and promote O2 dissociation, generating hydroxyl radicals via a proton-coupled electron transfer process. This process provides sufficient protons to lower the formation barrier for •OH radicals, thereby promoting the activation of CH4. In addition, Pt nanoparticles regulate the adsorption of oxygenated hydrocarbon intermediates, increasing the selectivity of the reaction. This work advances our understanding of catalyst design for methane conversion and the effective regulation of complex reaction pathways.
Collapse
Affiliation(s)
- Guangyao Zhai
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Siyuan Yang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yihong Chen
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Junchi Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shenghe Si
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Honggang Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Jun Ma
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Xiao Sun
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weixin Huang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chao Gao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dong Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yujie Xiong
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| |
Collapse
|
3
|
Zhang X, Liu Z, Shao B, Liang Q, Wu T, Pan Y, He Q, He M, Ge L, Huang J. Porphyrin-Based Metal-Organic Framework Photocatalysts: Structure, Mechanism and Applications. SMALL METHODS 2025:e2402096. [PMID: 39757519 DOI: 10.1002/smtd.202402096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/24/2024] [Indexed: 01/07/2025]
Abstract
In recent years, porphyrins have been frequently reported as photocatalysts due to their fascinating photochemical properties. However, porphyrins have the same shortcomings as other homogeneous photocatalysts, such as poor stability and difficulty in recovering. To solve this problem, it is a good strategy to form a porphyrin-based metal-organic framework (PMOF) by modifying porphyrin functional groups and adding metals as nodes to connect and control the arrangement of porphyrins. The metal nodes control the rigidity and connectivity of the porphyrin modules to order them in the MOF, which improves the stability of the porphyrins, avoids porphyrin aggregation and folding, and increases the active sites for photocatalytic reactions. This review summarized the research progress of PMOF photocatalysts in the last ten years and analyzed the effects of the spatial structure, porphyrin ligands, porphyrin central metals, and metal nodes of PMOF on the photocatalytic performance. The applications of PMOF-based photocatalysts in H2 production, CO2 reduction, pollutant degradation, and sterilization are reviewed. In addition, the mechanism of these processes is described in detail. Finally, some suggestions on the development of PMOF photocatalysts are put forward.
Collapse
Affiliation(s)
- Xiansheng Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Miao He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Lin Ge
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Jian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| |
Collapse
|
4
|
Hassanzadeh Goji N, Alibolandi M, Ramezani M, Saljooghi AS, Dayyani M, Nekooei S. A four in one nanoplatform: Theranostic bismuth-containing nanoMOFs for chemo-photodynamic- radiation therapy and CT scan imaging. Int J Pharm 2025; 668:124971. [PMID: 39566700 DOI: 10.1016/j.ijpharm.2024.124971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/16/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Integration of different therapeutic performances into one platform is an innovative development for using multiple applications in real-time. In this paper, for the first time we exploited the concurrent capacity of radio and photosensitizing in a theranostic nanoMOFs based on bismuth, zirconium, and porphyrin. The porosity of nanoMOFs provided the capability of doxorubicin loading and chemotherapy besides enhanced photodynamic and radiation therapy (PDT & RT). Its PEGylation and aptamer (MUC1) immobilization endowed the platform with high biocompatibility and targeted tumor killing, respectively. In vitro assay exhibited that this aptamer immobilized DOX-loaded PEGylated MOF (Apt@DOX) produced more toxicity against 4 T1 cells compared to non-targeted nanoparticles (NP@DOX), especially when the treatment combined with PDT or/and RT. In vivo experiment also provided great results for tumor growth, survival rate, and body weight for 4 T1 bearing mice injected by Apt@DOX in combination with irradiation by 660 nm laser and/or exposure to 3 Gy dosage of X-ray radiation. The CT imaging of injected mice with targeted and non-targeted bismuth-based MOF introduced this nanoplatform as a promising CT contrast agent. Resultantly, we can present our as-synthesized nanoplatform as an efficient multifunctional theranostics with the ability of multimodal therapy and diagnostic performance.
Collapse
Affiliation(s)
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mahdieh Dayyani
- Radiation Oncology Department, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Li M, Wang Z, Tang H, Yang J, Luo X, Tian Y, Yang M, Jiang J, Wang M, Zheng L, Ma C, Xing G, Wang H, Li J. A bionic palladium metal-organic framework based on a fluorescence sensing enhancement mechanism for sensitive detection of phorate. NANOSCALE 2025; 17:934-946. [PMID: 39584801 DOI: 10.1039/d4nr03779k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
We have developed a biomimetic fluorescent nanoprobe (Pd-MOF) that can accurately identify phorate at a fixed wavelength for rapid, sensitive and selective detection. Pd-MOF was a nanoparticle (260.00 ± 27.83 nm) based on the linkage of Pd metal and a TCPP organic framework. It could detect phorate according to the fluorescence principles similar to that of the bioluminescence of Chrysaora pacifica (substance interaction and chromophore fluorescence enhancement). When phorate molecules enter the pores of Pd-MOF and interact with each other, the energy transfer process is stimulated, and the fluorescence signal is significantly enhanced, thereby improving the detection sensitivity. According to shift of the white line in the XANES energy spectrum and the DFT results, phorate increased the energy gap of Pd-MOF from 0.025 eV to 0.046 eV, enhanced the stability of the system, and thus achieved fluorescence enhancement. The sensitivity of Pd-MOF was due to its much smaller energy gap (<80 times) than other metal MOFs and thus it was easier to get excited. The linear detection range for the phorate of the nanoprobe in the water system was 0.01-100 ppb, and the detection limit was 0.0017 ppb. The response time of the Pd-MOF nanoprobe to phorate was 45 seconds. The detection of phorate in tap water, pear and cabbage samples showed that the recovery rates were in the range of 87.69-106.12%, and the relative standard deviation (RSD) was less than 11.16%, which verified the possibility of Pd-MOF nanoprobe in practical application. The sensitive and specific recognition of phorate by Pd-MOF nanoprobe and the development of a phorate test strip (Pd-MOF@paper) confirmed its potential application in pesticide residue detection.
Collapse
Affiliation(s)
- Mengyao Li
- School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Zhijie Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Hongyu Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Jingru Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Xianwei Luo
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Youjia Tian
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Mingxin Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Jinhong Jiang
- Hangzhou Institute of Medicine Chinese Academy of Sciences, Hangzhou 310063, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Chenyan Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Hongbin Wang
- School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| |
Collapse
|
6
|
Wang D, Liu Y, Zhang G, Chu M, Gao F, Chen G, Wang G, Tung CH, Wang Y. Guest modulating the photoactivity of a titanium-oxide cage. Chem Sci 2024; 15:19952-19961. [PMID: 39568895 PMCID: PMC11575578 DOI: 10.1039/d4sc04983g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Two host-guest Ti-oxide clusters, Ti14(NH4)2 and Ti14Cs2, were synthesized and thoroughly characterized. They possess a rarely seen biloculate structure that encapsulates two NH4 + and Cs+ guests, respectively. Interestingly, alkali metal cations can exchange places with NH4 +. The ability of the host to capture the guest cations follows the order Cs+ > NH4 + > Rb+ > K+. The guests heavily influence the physiochemical properties and photocatalytic activities of the complexes. Ti14Cs2 exhibits a redshifted visible-light absorption edge, increased charge-separation properties, and enhanced interfacial charge-transfer ability compared to Ti14(NH4)2. It also demonstrates excellent performance in photocatalytic CO2/epoxide cycloaddition reactions regarding the reaction rate, scalability, sunlight usage, catalyst recyclability, and stability. This study presents a novel Ti-oxide-based cage cluster with exchangeable guests and provides insights for enhancing the solar harvesting applications of Ti-oxide cages.
Collapse
Affiliation(s)
- Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Menghui Chu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Fangfang Gao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Guanjie Chen
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Guo Wang
- Department of Chemistry, Capital Normal University Beijing 100048 China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| |
Collapse
|
7
|
Li L, Ying H, Qiao P, Liu W, Shang S, Shao W, Wang H, Zhang X, Xie Y. Symmetry-Broken Steered Delocalization State in a Single-Atom Photocatalyst. NANO LETTERS 2024; 24:14412-14419. [PMID: 39471053 DOI: 10.1021/acs.nanolett.4c04304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Single-atom catalysts (SACs) that feature uniform metal active sites with symmetry configurations hold great promise in photocatalysis, while their catalytic efficiency is often restricted by the insufficient inherent activity. Drawing inspiration from hard-soft acid-base theory, here we propose that the delocalized electronic state of single-atom centers can be selectively modulated by adjusting their coordination symmetry, thereby optimizing the adsorption and activation of the reactant molecules. By taking ceria-based Ru-SAC (Ru-CeO2) as an example, we show that after introducing symmetry breaking, the Ru-CeO2 with an asymmetric Ru-O4 configuration (named P-Ru-CeO2) exhibits highly delocalized electrons with a soft acidic nature, leading to a much higher photocatalytic performance than for pristine Ru-CeO2 and CeO2 counterparts. The corresponding inherent mechanism was systematically investigated by spectroscopy and theoretical studies. This work provides an effective strategy for the design and controllable modulation of atomically dispersed catalysts with symmetry-broken configurations, thereby advancing applications in photocatalysis.
Collapse
Affiliation(s)
- Lei Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hanghao Ying
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Panzhe Qiao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Wenxiu Liu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shu Shang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wei Shao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hui Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaodong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
8
|
Yu X, Xu X, Gao L, Luo R, Liu YF, Gu YH, Yuan S. Imine bond-directed assembly of polyoxometalate-based metal-organic frameworks. Dalton Trans 2024; 53:17902-17908. [PMID: 39431951 DOI: 10.1039/d4dt02609h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Polyoxometalate-based metal-organic frameworks (POMOFs) are highly effective heterogeneous catalysts that combine the catalytic activity of polyoxometalates (POMs) with the high surface area, tunable porosity, and structural diversity of MOFs. Nevertheless, there is still a lack of a general method to integrate POMs with various transition metal-based building units into POMOFs under mild conditions. In this work, we employed imine bonds to link amino-functionalized Anderson-type POMs with aldehyde-terminated divalent metal clusters, resulting in a series of isostructural POMOFs, M(II)-POMOFs (M = Zn, Co, Mg, or Mn). Furthermore, we used post-synthetic metal exchange and oxidation to transform Zn-POMOF into Fe(III)-POMOF with strong Lewis acidic Fe3+ sites. Notably, both the synthesis and post-synthetic modifications were performed under mild conditions (room temperature, acid-free), preventing the decomposition of the POMs. Compared to M(II)-POMOFs or MOFs without POMs, the combination of Lewis acidic Fe3+ and POMs enhanced its catalytic activity for CO2 cycloaddition with epoxides, enabling efficient synthesis of cyclic carbonates. This versatile synthetic method could broaden the scope of POMOFs, extending their applications in catalysis and beyond.
Collapse
Affiliation(s)
- Xiang Yu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xinyu Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Lei Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Rengan Luo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yi-Fan Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yu-Hao Gu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
9
|
Zhu J, Huo C, Chen J, Ma X, Zhu X, Li Y, Li G, Chen H, Duan X, Han F, Kong H, Zheng F, Jiang A. Ultrathin two-dimensional (2D) manganese-based metal-organic framework nanosheets for selective photocatalytic oxidation of thioether. Dalton Trans 2024; 53:15688-15695. [PMID: 39248590 DOI: 10.1039/d4dt01251h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The efficiency of photocatalysts depends largely on the accessibility of reaction species to the active centre, the electron transfer and geometric matching between the active surface of the catalyst and reaction species. In this work, we successfully synthesized and designed one two-dimensional Mn(II) MOF with [Mn2(H2L1)(H2O)2(DMF)2]n·(CH3CH2OH)n (HSTC 3) by using MnCl2·4H2O and 5,5'-(anthracene-9,10-diyl)diisophthalic acid (H4L1), in which the adjacent layers are stacked with weak interactions, and the huge gap leads to the interpenetration between layers to form a 2D + 2D → 3D interpenetration frame. Based on the particularity of the structure of HSTC 3, ultrasonic wall breaking methods were tried to successfully peel HSTC 3 into nanosheets (HSTC 3-NS), thus achieving a significant improvement in a series of optoelectronic properties due to exposure to more active centres for HSTC 3-NS. These results significantly enhance the photocatalytic selective oxidation of thioether. This study provides a new insight into the post-synthesis modification of MOF photocatalyst and their application in photocatalytic organic synthesis.
Collapse
Affiliation(s)
- Jing Zhu
- Huanghe Science and Technology College, Zhengzhou, Henan 450063, China.
| | - Cuimeng Huo
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou 450002, P. R. of China.
| | - Jin Chen
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou 450002, P. R. of China.
| | - Xiaoxing Ma
- Huanghe Science and Technology College, Zhengzhou, Henan 450063, China.
| | - Xiangjun Zhu
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou 450002, P. R. of China.
| | - Yan Li
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou 450002, P. R. of China.
| | - Guofang Li
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou 450002, P. R. of China.
| | - Haitao Chen
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou 450002, P. R. of China.
| | - Xianying Duan
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou 450002, P. R. of China.
| | - Fujiao Han
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou 450002, P. R. of China.
| | - Hongjun Kong
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou 450002, P. R. of China.
| | - Fuwei Zheng
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou 450002, P. R. of China.
| | - Aiyun Jiang
- Huanghe Science and Technology College, Zhengzhou, Henan 450063, China.
| |
Collapse
|
10
|
Zheng ZW, Zhou JJ, Liu H, Zhang XY, Zhao J, Zheng DS, Huang K, Qin DB. Cu(II)-Organic Framework for Carboxylative Cyclization of Propargylic Amines with CO 2. Inorg Chem 2024; 63:16878-16887. [PMID: 39190825 DOI: 10.1021/acs.inorgchem.4c02730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Effective CO2 transformations hold essential significance for carbon neutrality and sustainable energy development. Carboxylative cyclization of propargylic amines with CO2 serves as an atom-economic reaction to afford oxazolidinones, showing broad applications in organic synthesis and pharmaceutical fields. However, most catalysts involved noble metals, exhibited low efficiency, or required large amounts of base. Hence, it is imperative to explore alternative noble-metal-free catalysts in order to achieve efficient conversion while minimizing the use of additives. Herein, a novel nanopore-based Cu(II)-organic framework (1) based on a new imidazole carboxylic ligand was successfully constructed and exhibited excellent stability. Catalytic investigations revealed that the combination of 1 with 1,4-diaza[2.2.2]bicyclooctane (DABCO) efficiently catalyzed the carboxylative cyclization of propargylic amines with CO2, achieving turnover numbers of 142 based on the catalyst and 7.1 based on DABCO. 1 as a heterogeneous catalyst maintained high catalytic performance even after being reused at least 5 cycles, with its structure remaining stable. The strong activation of Cu(II) cluster nodes of catalyst 1 toward -NH- groups within organic substrates, as demonstrated by mechanism experiments, along with excellent CO2 adsorption performance and the presence of regular 1D channels, synergistically facilitates the reaction rate. This research presents the first instance of a Cu(II)-organic framework achieving this cyclization reaction, offering wide prospects for novel catalyst design and CO2 utilization.
Collapse
Affiliation(s)
- Zhi-Wei Zheng
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Jun-Jie Zhou
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Hua Liu
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Xiang-Yu Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian Zhao
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Da-Sheng Zheng
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Da-Bin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| |
Collapse
|
11
|
Jiang L, Wu D, Huang Z, Chen F, Chen K, Ibragimov AB, Gao J. In Situ Pyrolysis of ZIF-67 to Construct Co 2N 0.67@ZIF-67 for Photocatalytic CO 2 Cycloaddition Reaction. Inorg Chem 2024; 63:14761-14769. [PMID: 39056170 DOI: 10.1021/acs.inorgchem.4c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The development of heterogeneous catalysts with abundant active sites is pivotal for enhancing the efficiency of photothermal CO2 conversion. Herein, we report the construction of Co2N0.67@ZIF-67 through the in situ pyrolysis of ZIF-67 under low-temperature pyrolysis conditions. During the pyrolysis process, the crystal structure of ZIF-67 is predominantly preserved concurrently with the formation of Co2N0.67 nanoparticles (NPs) within the ZIF-67 pores. The optimal catalyst Co2N0.67@ZIF-67(450,2) not only possesses high photothermal efficiency but also can efficiently activate CO2. Benefiting from these characteristics, Co2N0.67@ZIF-67(450,2) exhibited significant catalytic activity in the photocatalytic cycloaddition of CO2 and epichlorohydrin. The yield of (chloromethyl)ethylene carbonate reached 95%, which is more than 4 times higher than that of ZIF-67 under visible light irradiation (300 W·m2 Xe lamp, 3 h). This study could offer an alternative approach to enhance the photocatalytic activity of MOFs through low-temperature pyrolysis.
Collapse
Affiliation(s)
- Lingjing Jiang
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dengqi Wu
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zishan Huang
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengfeng Chen
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui, Zhejiang 323000, China
| | - Kai Chen
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | | | - Junkuo Gao
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
12
|
Ye L, Qi S, Cheng T, Jiang Y, Feng Z, Wang M, Liu Y, Dai L, Wang L, He Z. Vanadium Redox Flow Battery: Review and Perspective of 3D Electrodes. ACS NANO 2024; 18:18852-18869. [PMID: 38993077 DOI: 10.1021/acsnano.4c06675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Vanadium redox flow battery (VRFB) has garnered significant attention due to its potential for facilitating the cost-effective utilization of renewable energy and large-scale power storage. However, the limited electrochemical activity of the electrode in vanadium redox reactions poses a challenge in achieving a high-performance VRFB. Consequently, there is a pressing need to assess advancements in electrodes to inspire innovative approaches for enhancing electrode structure and composition. This work categorizes three-dimensional (3D) electrodes derived from materials such as foam, biomass, and electrospun fibers. By employing a flexible electrode design and compositional functionalization, high-speed mass transfer channels and abundant active sites for vanadium redox reactions can be created. Furthermore, the incorporation of 3D electrocatalysts into the electrodes is discussed, including metal-based, carbon-based, and composite materials. The strong interaction and ordered arrangement of these nanocomposites have an influence on the uniformity and stability of the surface charge distribution, thereby enhancing the electrochemical performance of the composite electrodes. Finally, the challenges and perspectives of VRFB are explored through advancements in 3D electrodes, 3D electrocatalysts, and mechanisms. It is hoped that this review will inspire the development of methodology and concept of 3D electrodes in VRFB, so as to promote the future development of scientific energy storage and conversion technology.
Collapse
Affiliation(s)
- Lingzhi Ye
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Shaotian Qi
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Tukang Cheng
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Yingqiao Jiang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Zemin Feng
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongguang Liu
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Lei Dai
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Ling Wang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Zhangxing He
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| |
Collapse
|
13
|
Zhai G, Cai L, Ma J, Chen Y, Liu Z, Si S, Duan D, Sang S, Li J, Wang X, Liu YA, Qian B, Liu C, Pan Y, Zhang N, Liu D, Long R, Xiong Y. Highly efficient, selective, and stable photocatalytic methane coupling to ethane enabled by lattice oxygen looping. SCIENCE ADVANCES 2024; 10:eado4390. [PMID: 38941471 PMCID: PMC11637002 DOI: 10.1126/sciadv.ado4390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/22/2024] [Indexed: 06/30/2024]
Abstract
Light-driven oxidative coupling of methane (OCM) for multi-carbon (C2+) product evolution is a promising approach toward the sustainable production of value-added chemicals, yet remains challenging due to its low intrinsic activity. Here, we demonstrate the integration of bismuth oxide (BiOx) and gold (Au) on titanium dioxide (TiO2) substrate to achieve a high conversion rate, product selectivity, and catalytic durability toward photocatalytic OCM through rational catalytic site engineering. Mechanistic investigations reveal that the lattice oxygen in BiOx is effectively activated as the localized oxidant to promote methane dissociation, while Au governs the methyl transfer to avoid undesirable overoxidation and promote carbon─carbon coupling. The optimal Au/BiOx-TiO2 hybrid delivers a conversion rate of 20.8 millimoles per gram per hour with C2+ product selectivity high to 97% in the flow reactor. More specifically, the veritable participation of lattice oxygen during OCM is chemically looped by introduced dioxygen via the Mars-van Krevelen mechanism, endowing superior catalyst stability.
Collapse
Affiliation(s)
- Guangyao Zhai
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Lejuan Cai
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Jun Ma
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yihong Chen
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zehua Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Shenghe Si
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Delong Duan
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuaikang Sang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiawei Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinyu Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ying-Ao Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Bing Qian
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chengyuan Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Pan
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ning Zhang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Dong Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Ran Long
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yujie Xiong
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
- Anhui Engineering Research Center of Carbon Neutrality, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
14
|
Liu H, Zheng ZW, Zhang XY, Li Q, Zhou JJ, Huang K, Qin DB. Metal Hydrogen-Bonded Organic Frameworks as Open Lewis Acid Catalysts for Two Types of CO 2 Transformations. Inorg Chem 2024; 63:11554-11565. [PMID: 38815997 DOI: 10.1021/acs.inorgchem.4c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Efficient and multiple CO2 utilization into high-value-added chemicals holds significant importance in carbon neutrality and industry production. However, most catalysis systems generally exhibit only one type of CO2 transformation with the efficiency to be improved. The restricted abundance of active catalytic sites or an inefficient utilization rate of these sites results in the constraint. Consequently, we designed and constructed two metal hydrogen-bonded organic frameworks (M-HOFs) {[M3(L3-)2(H2O)10]·2H2O}n (M = Co (1), Ni (2); L = 1-(4-carboxyphenyl)-1H-pyrazole-3,5-dicarboxylic acid) in this research. 1 and 2 are well-characterized, and both show excellent stability. The networks connected by multiple hydrogen bonds enhance the structural flexibility and create accessible Lewis acidic sites, promoting interactions between the substrates and catalytic centers. This enhancement facilitates efficient catalysis for two types of CO2 transformations, encompassing both cycloaddition reactions with epoxides and aziridines to afford cyclic carbonates and oxazolidinones. The catalytic activities (TON/TOF) are superior compared with those of most other catalysts. These heterogeneous catalysts still exhibited high performance after being reused several times. Mechanistic studies indicated intense interactions between the metal sites and substrates, demonstrating the reason for efficient catalysis. This marks the first instance on M-HOFs efficiently catalyzing two types of CO2 conversions, finding important significance for catalyst design and CO2 utilization.
Collapse
Affiliation(s)
- Hua Liu
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Zhi-Wei Zheng
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Xiang-Yu Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, People's Republic of China
- Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
| | - Qi Li
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, People's Republic of China
| | - Jun-Jie Zhou
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Da-Bin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| |
Collapse
|
15
|
Wang Y, Liu H, Shi Q, Miao Z, Duan H, Wang Y, Rong H, Zhang J. Single-Atom Titanium on Mesoporous Nitrogen, Oxygen-Doped Carbon for Efficient Photo-thermal Catalytic CO 2 Cycloaddition by a Radical Mechanism. Angew Chem Int Ed Engl 2024; 63:e202404911. [PMID: 38581238 DOI: 10.1002/anie.202404911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Developing efficient and earth-abundant catalysts for CO2 fixation to high value-added chemicals is meaningful but challenging. Styrene carbonate has great market value, but the cycloaddition of CO2 to styrene oxide is difficult due to the high steric hindrance and weak electron-withdrawing ability of the phenyl group. To utilize clean energy (such as optical energy) directly and effectively for CO2 value-added process, we introduce earth-abundant Ti single-atom into the mesoporous nitrogen, oxygen-doped carbon nanosheets (Ti-CNO) by a two-step method. The Ti-CNO exhibits excellent photothermal catalytic activities and stability for cycloaddition of CO2 and styrene oxide to styrene carbonate. Under light irradiation and ambient pressure, an optimal Ti-CNO produces styrene carbonate with a yield of 98.3 %, much higher than CN (27.1 %). In addition, it shows remarkable stability during 10 consecutive cycles. Its enhanced catalytic performance stems from the enhanced photothermal effect and improved Lewis acidic/basic sites exposed by the abundant mesopores. The experiments and theoretical simulations demonstrate the styrene oxide⋅+ and CO2⋅- radicals generated at the Lewis acidic (Tiδ+) and basic sites of Ti-CNO under light irradiation, respectively. This work furnishes a strategy for synthesizing advanced single-atom catalysts for photo-thermal synergistic CO2 fixation to high value products via a cycloaddition pathway.
Collapse
Affiliation(s)
- Yifan Wang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Huimin Liu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qiujin Shi
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zerui Miao
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yiou Wang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jiatao Zhang
- MOE Key Laboratory of Cluster Science, School of Chemistry & Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
16
|
Kan L, Zhang L, Dong LZ, Wang XH, Li RH, Guo C, Li X, Yan Y, Li SL, Lan YQ. Bridging the Homogeneous and Heterogeneous Catalysis by Supramolecular Metal-Organic Cages with Varied Packing Modes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310061. [PMID: 38227292 DOI: 10.1002/adma.202310061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Indexed: 01/17/2024]
Abstract
Integrating the advantages of homogeneous and heterogeneous catalysis has proved to be an optimal strategy for developing catalytic systems with high efficiency, selectivity, and recoverability. Supramolecular metal-organic cages (MOCs), assembled by the coordination of metal ions with organic linkers into discrete molecules, have performed solvent processability due to their tunable packing modes, endowing them with the potential to act as homogeneous or heterogeneous catalysts in different solvent systems. Here, the design and synthesis of a series of stable {Cu3} cluster-based tetrahedral MOCs with varied packing structures are reported. These MOCs, as homogeneous catalysts, not only show high catalytic activity and selectivity regardless of substrate size during the CO2 cycloaddition reaction, but also can be easily recovered from the reaction media through separating products and co-catalysts by one-step work-up. This is because that these MOCs have varied solubilities in different solvents due to the tunable packing of MOCs in the solid state. Moreover, the entire catalytic reaction system is very clean, and the purity of cyclic carbonates is as high as 97% without further purification. This work provides a unique strategy for developing novel supramolecular catalysts that can be used for homogeneous catalysis and recycled in a heterogeneous manner.
Collapse
Affiliation(s)
- Liang Kan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Lei Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Long-Zhang Dong
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiao-Han Wang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Run-Han Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Yong Yan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
17
|
Zhou X, Zhang H, Cheng H, Wang Z, Wang P, Zheng Z, Dai Y, Xing D, Liu Y, Huang B. Enhanced cycloaddition between CO 2 and epoxide over a bismuth-based metal organic framework due to a synergistic photocatalytic and photothermal effect. J Colloid Interface Sci 2024; 658:805-814. [PMID: 38154243 DOI: 10.1016/j.jcis.2023.12.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/30/2023]
Abstract
The cycloaddition reaction between CO2 and epoxide is an efficient way to convert CO2 into high value-added chemicals. Therefore, it is particularly important to develop efficient catalysts that can catalyze the reaction under mild conditions. In this work, a metal-organic framework (Bi-HHTP, consisting of bismuth (Bi) as metal dots and 2,3,6,7,10,11-hexahydroxy-triphenylene (HHTP) as organic linkers) with zigzagging corrugated topology was successfully synthesized, which shows excellent catalytic activity under visible light irradiation. Various characterizations suggest that the excellent activity is derived from the following reasons: (1) the abundant exposed Bi sites provide Lewis sites for adsorption of epoxides and CO2; (2) the free holes produced over Bi-HHTP under light irradiation which could oxidize epoxide, which consequently facilitateing the subsequent ring-opening reaction; and (3) the existence of synergistic photocatalytic and photothermal effect in Bi-HHTP. This study provides a new avenue of developing bismuth-based metal organic frameworks to promote the efficiency of cycloaddition of CO2 under mild conditions.
Collapse
Affiliation(s)
- Xiaolu Zhou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Honggang Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Danning Xing
- Shandong Institute of Advanced Technology, Jinan 250100, China.
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
18
|
Liu K, Du L, Wang T. Coordination Synergy between Iridium Photosensitizers and Metal Nanoclusters Leading to Enhanced CO 2 Cycloaddition under Mild Conditions. Inorg Chem 2024; 63:4614-4627. [PMID: 38422546 DOI: 10.1021/acs.inorgchem.3c04181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The achievement of photocatalytic CO2 and epoxide cycloaddition under mild conditions such as room temperature and atmospheric pressure is important for green chemistry, which can be achieved by developing coordination synergies between catalysts and photosensitizers. In this context, we exploit the use of coordinate bonds to connect pyridine-appended iridium photosensitizers and catalysts for CO2 cycloaddition, which is systematically demonstrated by 1H nuclear magnetic resonance titration and X-ray photoelectron spectroscopic measurements. It is shown that the hybrid Ir(Cltpy)2/Mn2Cd4 photocatalytic system with coordination synergy exhibits excellent catalytic performance (yield ≈ 98.2%), which is 3.75 times higher than that of the comparative Ir(Cltpy-Ph)2/Mn2Cd4 system without coordination synergy (yield ≈ 26.2%), under mild conditions. The coordination between the Mn2Cd4 catalyst and the Ir(Cltpy)2 photosensitizer enhances the light absorption and photoresponse properties of the Mn2Cd4 catalyst. This has been confirmed through transient photocurrent, electrochemical impedance, and electron paramagnetic tests. Consequently, the efficiency of cycloaddition was enhanced by utilizing mild conditions.
Collapse
Affiliation(s)
- Kelong Liu
- School of Chemistry and Chemical Engineering & the Key Laboratory of Environment-Friendly Polymer Materials of Anhui Province, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Longchao Du
- School of Chemistry and Chemical Engineering & the Key Laboratory of Environment-Friendly Polymer Materials of Anhui Province, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Tingting Wang
- School of Chemistry and Chemical Engineering & the Key Laboratory of Environment-Friendly Polymer Materials of Anhui Province, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| |
Collapse
|
19
|
Zhu H, Shen Q, Yuan Y, Gao H, Zhou S, Yang FL, Sun L, Wang X, Yi J, Han X. Engineering the Sulfide Semiconductor/Photoinactive-MOF Heterostructure with a Hollow Cuboctahedral Structure to Enhance Photocatalytic CO 2-Epoxide-Cycloaddition Efficiency. Inorg Chem 2024; 63:4078-4085. [PMID: 38390829 DOI: 10.1021/acs.inorgchem.3c03683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Providing efficient electronic transport channels has always been a promising strategy to mitigate the recombination of photogenerated charge carriers. In this study, a heterostructure composed of a semiconductor/photoinactive-metal-organic framework (MOF) was constructed to provide innovative channels for electronic transport. Prepared using a previously reported method ( Angew. Chem., Int. Ed. 2016, 55, 15301-15305) with slight modifications to temperature and reaction time, the CuS@HKUST-1 hollow cuboctahedron was synthesized. The CuS@HKUST-1 heterostructure possessed a well-defined cuboctahedral morphology with a uniform size of about 500 nm and a hollow structure with a thickness of around 50 nm. The CuS nanoparticles were uniformly distributed on the HKUST-1 shell. Structural characterization in cooperation with density functional theory (DFT) calculations revealed that CuS can effectively transfer photogenerated electrons to HKUST-1. CuS@HKUST-1 hollow cuboctahedrons were first introduced to the photocatalytic cycloaddition reaction of CO2 with epoxides, demonstrating excellent photocatalytic activity and stability at mild conditions (room temperature, solvent-free, and 1 atm CO2 pressure). The high photocatalytic performance of the CuS@HKUST-1 hollow cuboctahedron could be attributed to (1) the unique hollow cuboctahedron morphology, which provided a large specific surface area (693.1 m2/g) and facilitated the diffusion and transfer of reactants and products; and (2) CuS@HKUST-1 providing electronic transport channels from CuS to HKUST-1, which could enhance the adsorption and activation of CO2. Cu2+ carrying surplus electrons can activate CO2 to CO2-. The charge separation and transfer in the photocatalytic process can also be effectively promoted. This work provides a cost-effective and environmentally friendly approach for CO2 utilization reactions under ambient conditions, addressing the critical issue of rising atmospheric CO2 levels.
Collapse
Affiliation(s)
- Hongyu Zhu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P. R. China
| | - Qiuyan Shen
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P. R. China
| | - Yaya Yuan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P. R. China
| | - Hao Gao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P. R. China
| | - Shuo Zhou
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P. R. China
| | - Feng-Lei Yang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P. R. China
| | - Liming Sun
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P. R. China
| | - Xiaojun Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P. R. China
| | - Jianjian Yi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Xiguang Han
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P. R. China
| |
Collapse
|
20
|
Paul R, Boruah A, Das R, Chakraborty S, Chahal K, Deka DJ, Peter SC, Mai BK, Mondal J. Pyrolysis Free Out-of-Plane Co-Single Atomic Sites in Porous Organic Photopolymer Stimulates Solar-Powered CO 2 Fixation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305307. [PMID: 37926775 DOI: 10.1002/smll.202305307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/11/2023] [Indexed: 11/07/2023]
Abstract
Herein, a facile strategy is illustrated to develop pyrolysis-free out-of-plane coordinated single atomic sites-based M-POP via a one-pot Friedel Craft acylation route followed by a post-synthetic metalation. The optimized geometry of the Co@BiPy-POP clearly reveals the presence of out-of-plane Co-single atomic sites in the porous backbone. This novel photopolymer Co@BiPy-POP shows extensive π-conjugations followed by impressive light harvesting ability and is utilized for photochemical CO2 fixation to value-added chemicals. A remarkable conversion of styrene epoxide (STE) to styrene carbonate (STC) (≈98%) is obtained under optimized photocatalytic conditions in the existence of promoter tert-butyl ammonium bromide (TBAB). Synchrotron-based X-ray adsorption spectroscopy (XAS) analysis reveals the single atom coordination sites along with the metal (Co) oxidation number of +2.16 in the porous network. Moreover, in situ diffuse reflectance spectroscopy (DRIFTS) and electron paramagnetic resonance (EPR) investigations provide valuable information on the evolution of key reaction intermediates. Comprehensivecomputational analysis also helps to understand the overall mechanistic pathway along with the interaction between the photocatalyst and reactants. Overall, this study presents a new concept of fabricating porous photopolymers based on a pyrolysis-free out-of-plane-coordination strategy and further explores the role of single atomic sites in carrying out feasible CO2 fixation reactions.
Collapse
Affiliation(s)
- Ratul Paul
- Department of Catalysis and Fine Chemicals, CSIR- Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, India
| | - Ankita Boruah
- Department of Catalysis and Fine Chemicals, CSIR- Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, India
| | - Risov Das
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Subhajit Chakraborty
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Kapil Chahal
- Department of Catalysis and Fine Chemicals, CSIR- Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, India
| | - Dhruba Jyoti Deka
- Department of Catalysis and Fine Chemicals, CSIR- Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, India
| | - Sebastian C Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - John Mondal
- Department of Catalysis and Fine Chemicals, CSIR- Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, India
| |
Collapse
|
21
|
Said A, Chen G, Zhang G, Wang D, Liu Y, Gao F, Wang G, Tung CH, Wang Y. Enhancing the photocatalytic performance of a rutile unit featuring a titanium-oxide cluster by Pb 2+ doping. Dalton Trans 2024; 53:3666-3674. [PMID: 38293811 DOI: 10.1039/d3dt03865c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Titanium-oxide clusters (TOCs) are well-defined molecular models for TiO2 materials and provide the opportunity to study the structure-activity relationships of TiO2. Here, we report a new Pb-doped TOC, Ti12Pb2, which resembles a two-layer decker of the {TiTi6} structural units of rutile TiO2 with two Ti4+ ions replaced by two Pb2+ ions. Its electronic structure, photoresponse, and photocatalytic performances were investigated and compared with those of the Ti14 cluster, which is isostructural to Ti12Pb2. Our results indicate that Pb2+ does not affect the electronic structure, but it greatly enhances the photocatalytic activity by improving the charge-separation and interfacial charge-transfer properties of the TOC. The successful synthesis of Ti12Pb2 highlights the roles of closed-shell heterometal ions in the construction of new TOCs. Our mechanism may be an inspiration for understanding the structure-activity relationships of closed-shell heterometal-doped TiO2.
Collapse
Affiliation(s)
- Amir Said
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanjie Chen
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Fangfang Gao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
22
|
Liu Y, Zhang G, Wang D, Chen G, Gao F, Tung CH, Wang Y. A cryptand-like Ti-coordination compound with visible-light photocatalytic activity in CO 2 storage. Dalton Trans 2024; 53:1989-1998. [PMID: 38205664 DOI: 10.1039/d3dt04051h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A cryptand-like Ti-coordination compound, namely Ti12Cs, comprising two Ti6-salicylate cages and hosting two Cs+ ions, was synthesized by the solvothermal method. It exhibits strong visible-light absorption with an absorption band edge of 652 nm, attributed to the electron transition from salicylate ligands to Ti ions. Electrochemical impedance, visible-light transient photocurrent response, and photoluminescence spectra confirm that Ti12Cs has excellent visible-light response and charge-separation properties. Ti12Cs can be used as a heterogeneous and recyclable photocatalyst for CO2/epoxide cycloaddition, with high utilization efficiency of visible-light under mild conditions. The mechanism investigation points to a synergistic effect of photocatalysis and Lewis acid catalysis.
Collapse
Affiliation(s)
- Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanjie Chen
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Fangfang Gao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
23
|
Wang S, Li S, Zheng C, Feng H, Feng YS. Bimetallic Porphyrin-Based Metal-Organic Framework as a Superior Photocatalyst for Enhanced Photocatalytic Hydrogen Production. Inorg Chem 2024; 63:554-563. [PMID: 38151237 DOI: 10.1021/acs.inorgchem.3c03446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The meaningful and rational engineering of porphyrin-based catalysts with multimetallic active sites is very attractive toward photocatalytic hydrogen generation from water decomposition. Herein, three metal organic frameworks (MOFs) based on meso-tetrakis(4-carboxylphenyl)porphyrin (TCPP) were successfully constructed under solvothermal conditions. As a novel architectured photocatalyst (triclinic, C48H29N4O10PdYb), Pd/Yb-PMOF manifested diverse metal active sites, suitable bandgap positions, prominent visible light-collecting capacity, excellent carrier transfer efficiency, and obvious synergistic effect between ytterbium and palladium ions. Consequently, such a bimetallic MOF exhibited strengthened photocatalytic hydrogen evolution performance. Concretely, its hydrogen generation efficiency was up to 3196.42 μmol g-1 h-1 with 2 wt % Pt as a cocatalyst under visible light illumination. Our work demonstrates a promising strategy for highly efficient visible-light catalysts based on bimetallic-trimmed porphyrin MOFs.
Collapse
Affiliation(s)
- Sheng Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Shihao Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Chenglong Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Huiyi Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yi-Si Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| |
Collapse
|
24
|
Wang L, Wang J, Wu R, Shao F, Zhang D, Zhang X, Fan C, Fan Y. Pillar-Layered Porous Metal-Organic Frameworks with Co 2N 2O 8 Clusters and Tetragonal Ligands for CO 2 Conversion. Inorg Chem 2024; 63:294-303. [PMID: 38145954 DOI: 10.1021/acs.inorgchem.3c03154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Converting CO2 to valuable chemicals and fuels is a viable method to establish a carbon-neutral energy cycle in the environment. Metal-organic frameworks (MOFs), characterized by dispersed active sites, high porosity, etc., have displayed a great application prospect in the electrochemical/chemical CO2 reduction reaction (CO2RR) process. Herein, we proposed a one-step production to establish a series of pillar-layered porous MOFs, [Co2(L)(bimb)]n (MOF 1) and [Co4(L)2(bidpe)2]n (MOF 2) [H4L = 5'-(4-carboxyphenyl)-(1,1':2',1″-terphenyl)-4,4',4″-tricarboxylic, bimb = 1,4-bis(imidazol-1-yl)-butane, bidpe = 4'-bis(imidazolyl) diphenyl ether], for preferential conversion of CO2 via ligand adjustment and increase of active sites' density. According to single-crystal X-ray diffraction studies, [Co2(L)(bimb)]n exhibits pillar-layered binuclear 3D frameworks with a 2,4,6-linked 3-nodes new topology structure, while [Co4(L)2(bidpe)2]n displays pillar-layered tetranuclear interspersed networks with a 4,6-linked 2-nodes fsc topology structure through a ligand adjustment strategy. Meanwhile, the pillar-layered structure of the MOFs with abundant active sites is conducive to mass diffusion and benefits the conversion of CO2. MOFs 1-2 exhibit good electrocatalytic activity for CO2RR in 0.5 M KHCO3 solution. Especially, the current density of MOF 2 generated at -0.90 V (vs. RHE) reaches -81.6 mA·cm-2, which is 3.1 times higher than that under an Ar atmosphere. In addition, MOFs 1-2 can be used as a heterogeneous catalyst for chemical conversion of CO2. The results are expected to provide inspiration for rational design to develop stable and high-efficiency MOF-based electrocatalysts for CO2RR.
Collapse
Affiliation(s)
- Lulu Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Jinmiao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Ruixue Wu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Feng Shao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Dongmei Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Xia Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Chuanbin Fan
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P. R. China
| | - Yuhua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| |
Collapse
|
25
|
Zhou Y, Liu Z, Yang Z, Zheng Y, Yang M, Feng W, Li X, Yuan L. Pillar[5]arene-segregated ion pairs for enhanced cycloaddition of epoxides with CO 2. Chem Commun (Camb) 2024; 60:300-303. [PMID: 38054763 DOI: 10.1039/d3cc03878e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A supramolecular approach using a polyviologen-pillar[5]arene complex as segregated ion pairs was shown to be highly efficient for the conversion of CO2 with epoxides into cyclic carbonates without the need for metals or solvents. The enhanced catalytic performance was achieved by cooperative ion pair segregation and CO2 fixation.
Collapse
Affiliation(s)
- Yidan Zhou
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Zejiang Liu
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Zhiyao Yang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Yuexuan Zheng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Maoxia Yang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Wen Feng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Xiaowei Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
26
|
Wang D, Liu Y, Chen G, Gao F, Zhang G, Wang G, Tung CH, Wang Y. Ligation of Titanium-oxide and {Mo 2} Units for Solar CO 2 Storage. Inorg Chem 2023; 62:21074-21082. [PMID: 38095877 DOI: 10.1021/acs.inorgchem.3c02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Two Mo-Ti-mixed oxide clusters, Ti6Mo4 and Ti4Mo4, which contain the {Mo2V} unit commonly observed in many polyoxomolybdates, were successfully synthesized. The introduction of a {Mo2V} dopant into a titanium-oxide cluster (TOC) results in a red shift of the absorption edge, hence leading to a substantial enhancement of visible-light absorption. The band gap electron transition mainly involves the ligand-to-metal charge transfer (LMCT, benzoate-to-Mo) and MoV d-d transition. Both clusters show favorable visible-light responsiveness and charge-separation efficiency. Both serve as heterogeneous photocatalysts and exhibit excellent catalytic activity in CO2/epoxide cycloadditions under very mild conditions. The mechanism study suggests that the catalytically active sites are mainly MoV, and the photogenerated electrons and holes are both involved. Ti6Mo4 exhibits better photocatalytic activity than Ti4Mo4, demonstrating the crucial role of the titanium-oxide core, which corresponds to improved light absorption and charge-separation efficiency. Our findings highlight the potential of the {Mo2V} unit in constructing Mo-Ti-mixed oxide clusters with interesting topologies and excellent solar-light-harvesting activity.
Collapse
Affiliation(s)
- Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanjie Chen
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Fangfang Gao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
27
|
Wang M, Li S, Tang X, Zuo D, Jia Y, Guo S, Guan ZJ, Shen H. One-step preparation of Pt/Ag nanoclusters for CO 2 transformation. Phys Chem Chem Phys 2023; 25:30373-30380. [PMID: 37909301 DOI: 10.1039/d3cp02736h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Structurally precise metal nanoclusters with a facile synthetic process and high catalytic performance have been long pursued. These atomically precise nanocatalysts are regarded as model systems to study structure-performance relationships, surface coordination chemistry, and the reaction mechanism of heterogeneous metal catalysts. Nevertheless, the research on silver-based nanoclusters for driving chemical transformations is sluggish in comparison to gold counterparts. Herein, we report the one-step synthesis of Pt/Ag alloy nanoclusters of [PtAg9(C18H12Br3P)7Cl3](C18H12Br3P), which are highly active in catalysing cycloaddition reactions of CO2 and epoxides. The cluster was obtained in a rather simple way with the reduction of silver and platinum salts in the presence of ligands in one pot. The molecular structure of the titled cluster describes the protection of the Pt-centred Ag9 crown by the shell of phosphine ligands and halides. Its electronic structure, as revealed by density function theoretical calculations, adopts a superatomic geometry with 1S21P6 configuration. Interestingly, the cluster displays high activity in the formation of cyclic carbonates from CO2 under mind conditions.
Collapse
Affiliation(s)
- Meng Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Xiongkai Tang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongjie Zuo
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Yanyuan Jia
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
28
|
Siddig LA, Alzard RH, Abdelhamid AS, Ramachandran T, Nguyen HL, Paz AP, Alzamly A. Cobalt Hydrogen-Bonded Organic Framework as a Visible Light-Driven Photocatalyst for CO 2 Cycloaddition Reaction. Inorg Chem 2023; 62:15550-15564. [PMID: 37698585 DOI: 10.1021/acs.inorgchem.3c02051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
A novel cobalt hydrogen-bonded organic framework (Co-HOF, C24H14CoN4O8) was synthesized from a mixed linker, that is, 2,5-pyridinedicarboxylic acid (PDC) and 2,2'-bipyridyl (BPY) linkers and cobalt ion through a simple, one-pot, low-cost, and scalable solvothermal method. The Co-HOF was fully characterized using several analytical and spectroscopic techniques including single-crystal X-ray diffraction, diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray, and X-ray photoelectron spectroscopy. The Co-HOF exhibits high thermal and chemical stabilities compared to previously reported HOF materials. Moreover, Co-HOF shows excellent photocatalytic activity under visible light irradiation due to its narrow band gap of 2.05 eV. The cycloaddition reaction of CO2 to variable epoxides was investigated to evaluate the photocatalytic performance of Co-HOF under visible light radiation and was found to produce the corresponding cyclic carbonates in yields up to 99.9%.
Collapse
Affiliation(s)
- Lamia A Siddig
- Department of Chemistry, UAE University, P.O. Box 15551, Al-Ain 15551, UAE
| | - Reem H Alzard
- Department of Chemistry, UAE University, P.O. Box 15551, Al-Ain 15551, UAE
| | - Abdalla S Abdelhamid
- Department of Chemistry, UAE University, P.O. Box 15551, Al-Ain 15551, UAE
- Department of Chemical Engineering, UAE University, P.O. Box 15551, Al-Ain 15551, UAE
| | | | - Ha L Nguyen
- Berkeley Global Science Institute, University of California Berkeley, Berkeley,California 94720, United States
| | | | - Ahmed Alzamly
- Department of Chemistry, UAE University, P.O. Box 15551, Al-Ain 15551, UAE
| |
Collapse
|
29
|
Li L, Zou JY, You SY, Zhang L. Ratiometric Fluorescence Thermometry, Quantitative Gossypol Detection, and CO 2 Chemical Fixation by a Multipurpose Europium (III) Metal-Organic Framework. Inorg Chem 2023; 62:14168-14179. [PMID: 37606309 DOI: 10.1021/acs.inorgchem.3c00739] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
A lanthanide-based molecular crystalline material endows metal-organic frameworks (MOFs) with many fascinating applications such as fluorescence detection and CO2 chemical fixation. Herein, we describe and study a multipurpose europium(III) MOF with the formula of {[Eu2(TATAB)2]·2.5H2O·2DMF}n (Eu-MOF) (where H3TATAB is 4,4',4″-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tribenzoic acid ligand) for photoluminescence sensor matrix and CO2 chemical fixation. This Eu-MOF features 1D square channels along the c direction with a pore size of ca.14.07 Å × 14.07 Å, occupied by lattice water and DMF molecules. The obtained Eu-MOF can achieve simultaneous luminescence of the H3TATAB ligand and Eu3+ ions, which can be developed as the sensor matrix for ratiometric fluorescence thermometry. The luminescence of the Eu-MOF demonstrates an obvious color change from red to yellow as temperature rises from 303 to 373 K and the Eu-MOF has a satisfying relative sensitivity of 3.21% K-1 and a small temperature uncertainty of 0.0093 K at 333 K. Moreover, sensitive detection of gossypol was achieved with a quenching constant Ksv of 1.18 × 105 M-1 and a detection limit of 4.61 μM. A combination of the competitive absorption and photoinduced electron transfer caused by host-guest interactions and strengthened π-π packing effect synergistically between gossypol molecules and the Eu-MOF skeleton realizes the "turn-off" sensing of gossypol. Importantly, the nature of the Eu-MOF allows showing CO2 chemical fixation under mild conditions. Thus, the Eu-MOF can be utilized as a multipurpose material for ratiometric fluorescence thermometry, quantitative gossypol detection, and CO2 chemical fixation.
Collapse
Affiliation(s)
- Ling Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Ji-Yong Zou
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Sheng-Yong You
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Li Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| |
Collapse
|
30
|
Yin HQ, Cui MY, Wang H, Peng YZ, Chen J, Lu TB, Zhang ZM. CO 2 Cycloaddition under Ambient Conditions over Cu-Fe Bimetallic Metal-Organic Frameworks. Inorg Chem 2023; 62:13722-13730. [PMID: 37540079 DOI: 10.1021/acs.inorgchem.3c01011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Carbon dioxide cycloaddition into fine chemicals is prospective technology to solve energy crisis and environmental issues. However, high temperature and pressure are usually required in the conventional cycloaddition reactions of CO2 with epoxides. Moreover, metal active sites play a vital role in the CO2 cycloaddition, but it is still unclear. Herein, we select the isostructural MOF-919-Cu-Fe and MOF-919-Cu-Al as models to promote the performance and clarify the effects of metal type on the CO2 cycloaddition. The MOF-919-Cu-Fe with exposed Fe and Cu Lewis acid sites reaches the CO2 cycloaddition with over 99.9% conversion and over 99.9% selectivity at room temperature and a 1 bar CO2 atmosphere, 3.0- and 52.6-fold higher than those of the MOF-919-Cu-Al with Al and Cu sites (33.8%) and the 1H-pyrazole-4-carboxylic acid, Fe, and Cu mixed system (1.9%), respectively. The proposed mechanism demonstrated that the exposed Fe3+ sites facilitate the ring opening of epoxide and CO2 activation to boost the CO2 cycloaddition reaction. This work provides a new insight to tune the catalytic sites of MOFs to achieve high performance for CO2 fixation.
Collapse
Affiliation(s)
- Hua-Qing Yin
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ming-Yang Cui
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hao Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yuan-Zhao Peng
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jia Chen
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
31
|
Lin X, Yu YH, Chen GH, Li QH, Zhang L, Zhang J. Ligand-dependent structural diversity and optimizable CO 2 chemical fixation activities of Cu-doped polyoxo-titanium clusters. Dalton Trans 2023; 52:11451-11457. [PMID: 37547997 DOI: 10.1039/d3dt01718d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Heterometallic oxo clusters have been attracting intensive interest due to their unique properties originating from the synergistic interactions between different components. Herein, we report the construction and catalytic applications of a family of copper-doped polyoxo-titanium clusters (Cu-PTCs) coordinated with different acetate derivative ligands. The solvothermal reactions of metal salts and trimethylacetic acid or 1,2-phenylenediacetic acid in ethanol produced Ti6Cu3(μ3-O)4(μ2-O)(OEt)16(L1)4 (L1 = trimethyl acetate, PTC-367) and H2Ti8Cu2Br2(μ4-O)2(μ2-O)4(OEt)20(L2)2 (L2 = 1,2-phenylenediacetate, PTC-368), respectively. When smaller acetic acid was introduced as a stabilizing ligand, higher nuclei H2Ti16Cu3(μ4-O)5(μ3-O)15(μ2-O)3(OiPr)18(Ac)8 (Ac = acetate, PTC-369) and H3Ti29Cu3(μ4-O)6(μ3-O)30(μ2-O)8(OiPr)17(Ac)20 (PTC-370) were prepared. The number of metal ions exposed on the surface of the four clusters changes due to variations in the steric hindrance of functionalizing ligands, and theoretically, so does their catalytic activity as Lewis acids. In light of this, we conducted a carbon dioxide cycloaddition reaction in an atmospheric environment and the four obtained compounds displayed increasing catalytic activities from PTC-367 to PTC-370. These results provide a feasible synthetic method for modulating the structures of Cu-doped titanium oxide materials and improving their catalytic activities.
Collapse
Affiliation(s)
- Xin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ying-Hua Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guang-Hui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| |
Collapse
|
32
|
Ning H, Li Y, Zhang C. Recent Progress in the Integration of CO 2 Capture and Utilization. Molecules 2023; 28:molecules28114500. [PMID: 37298975 DOI: 10.3390/molecules28114500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
CO2 emission is deemed to be mainly responsible for global warming. To reduce CO2 emissions into the atmosphere and to use it as a carbon source, CO2 capture and its conversion into valuable chemicals is greatly desirable. To reduce the transportation cost, the integration of the capture and utilization processes is a feasible option. Here, the recent progress in the integration of CO2 capture and conversion is reviewed. The absorption, adsorption, and electrochemical separation capture processes integrated with several utilization processes, such as CO2 hydrogenation, reverse water-gas shift reaction, or dry methane reforming, is discussed in detail. The integration of capture and conversion over dual functional materials is also discussed. This review is aimed to encourage more efforts devoted to the integration of CO2 capture and utilization, and thus contribute to carbon neutrality around the world.
Collapse
Affiliation(s)
- Huanghao Ning
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yongdan Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Kemistintie 1, P.O. Box 16100, FI-00076 Espoo, Finland
| | - Cuijuan Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
33
|
Putta Rangappa A, Praveen Kumar D, Do KH, Wang J, Zhang Y, Kim TK. Synthesis of Pore-Wall-Modified Stable COF/TiO 2 Heterostructures via Site-Specific Nucleation for an Enhanced Photoreduction of Carbon Dioxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300073. [PMID: 36965101 DOI: 10.1002/advs.202300073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/01/2023] [Indexed: 05/18/2023]
Abstract
Constructing stable heterostructures with appropriate active site architectures in covalent organic frameworks (COFs) can improve the active site accessibility and facilitate charge transfer, thereby increasing the catalytic efficiency. Herein, a pore-wall modification strategy is proposed to achieve regularly arranged TiO2 nanodots (≈1.82 nm) in the pores of COFs via site-specific nucleation. The site-specific nucleation strategy stabilizes the TiO2 nanodots as well as enables the controlled growth of TiO2 throughout the COFs' matrix. In a typical process, the pore wall is modified and site-specific nucleation is induced between the metal precursors and the organic walls of the COFs through a careful ligand selection, and the strongly bonded metal precursors drive the confined growth of ultrasmall TiO2 nanodots during the subsequent hydrolysis. This will result in remarkably improved surface reactions, owing to the superior catalytic activity of TiO2 nanodots functionalized to COFs through strong NTiO bonds. Furthermore, density functional theory studies reveal that pore-wall modification is beneficial for inducing strong interactions between the COF and TiO2 and results in a large energy transfer via the NTiO bonds. This work highlights the feasibility of developing stable COF and metal oxide based heterostructures via organic wall modifications to produce carbon fuels by artificial photosynthesis.
Collapse
Affiliation(s)
| | | | - Khai H Do
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jinming Wang
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yuexing Zhang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, China
| | - Tae Kyu Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
34
|
Wang L, Qiao W, Liu H, Li S, Wu J, Hou H. Synergistic Effects of Lewis Acid-Base Pair Sites─Hf-MOFs with Functional Groups as Distinguished Catalysts for the Cycloaddition of Epoxides with CO 2. Inorg Chem 2023; 62:3817-3826. [PMID: 36822620 DOI: 10.1021/acs.inorgchem.2c04078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The incorporation of Lewis acid-base sites in catalysts has been considered as a significant approach to fabricating bifunctional catalysts with efficient catalytic activity for CO2 fixation. In this paper, a series of Hafnium-based metal-organic frameworks (Hf-MOFs), NU-912(Hf) and NU-912-X(Hf)-X (X = -NH2, -Br, -CN, and -I) derivatives assembled by Lewis acidic Hf6(μ3-O)4(μ3-OH)4(H2O)4(OH)4 (Hf6) clusters and Lewis base-attached organic linkers, are successfully synthesized by a facile ligand functionalization method. These isostructural Hf-MOFs, which exhibit diamond channels of 1.3 nm diameter, great chemical stability, and CO2 adsorption capacity, have been evaluated as catalysts for the CO2 cycloaddition reaction with epoxides. Catalytic experiments reveal that the micropore environments of these MOFs have an outstanding impact on catalytic activity. Remarkably, NU-912(Hf)-I serves as an efficient heterogeneous catalyst for this catalytic reaction under mild conditions due to the high density of Lewis acid Hf6 cluster centers and strong Lewis base functional groups, surpassing most of the reported MOF-based catalysts.
Collapse
Affiliation(s)
- Lianlian Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wanzhen Qiao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Han Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shuwen Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jie Wu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hongwei Hou
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
35
|
Fang X, Yang L, Dai Z, Cong D, Zheng D, Yu T, Tu R, Zhai S, Yang J, Song F, Wu H, Deng W, Liu C. Poly(ionic liquid)s for Photo-Driven CO 2 Cycloaddition: Electron Donor-Acceptor Segments Matter. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206687. [PMID: 36642842 PMCID: PMC10015876 DOI: 10.1002/advs.202206687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
CO2 cycloaddition with epoxides is a key catalytic procedure for CO2 utilization. Several metal-based catalysts with cocatalysts are developed for photo-driven CO2 cycloaddition, while facing difficulties in product purification and continuous reaction. Here, poly(ionic liquid)s are proposed as metal-free catalysts for photo-driven CO2 cycloaddition without cocatalysts. A series of poly(ionic liquid)s with donor-acceptor segments are fabricated and their photo-driven catalytic performance (conversion rate of 83.5% for glycidyl phenyl ether) outstrips (≈4.9 times) their thermal-driven catalytic performance (17.2%) at the same temperature. Mechanism studies confirm that photo-induced charge separation is promoted by the donor-acceptor segments and can accelerate the CO2 cycloaddition reaction. This work paves the way for the further use of poly(ionic liquid)s as catalysts in photo-driven CO2 cycloaddition.
Collapse
Affiliation(s)
- Xu Fang
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Li Yang
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Zhangben Dai
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical Physics (DICP)Chinese Academy of SciencesDalianLiaoning116023China
| | - Die Cong
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Daoyuan Zheng
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Tie Yu
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Rui Tu
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Shengliang Zhai
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Junxia Yang
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Fengling Song
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Hao Wu
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Wei‐qiao Deng
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Chengcheng Liu
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| |
Collapse
|
36
|
Ma P, Ding M, Zhang Y, Rong W, Yao J. Integration of lanthanide-imidazole containing polymer with metal-organic frameworks for efficient cycloaddition of CO2 with epoxides. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
37
|
Erzina M, Guselnikova O, Elashnikov R, Trelin A, Zabelin D, Postnikov P, Siegel J, Zabelina A, Ulbrich P, Kolska Z, Cieslar M, Svorcik V, Lyutakov O. BioMOF coupled with plasmonic CuNPs for sustainable CO2 fixation in cyclic carbonates at ambient conditions. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
38
|
Liu S, Chen H, Fan L, Zhang X. Highly Robust {In 2}-Organic Framework for Efficiently Catalyzing CO 2 Cycloaddition and Knoevenagel Condensation. Inorg Chem 2023; 62:3562-3572. [PMID: 36791403 DOI: 10.1021/acs.inorgchem.2c04130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
To improve the catalytic performance of metal-organic frameworks (MOFs), creating higher defects is now considered as the most effective strategy, which can not only optimize the Lewis acidity of metal ions but also create more pore space to enhance diffusion and mass transfer in the channels. Herein, the exquisite combination of scarcely reported [In2(CO2)5(H2O)2(DMF)2] clusters and 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxylphenyl)pyridine (H5BDCP) under solvothermal conditions generated a highly robust nanoporous framework of {[In2(BDCP)(DMF)2(H2O)2](NO3)}n (NUC-65) with nanocaged voids (14.1 Å) and rectangular nanochannels (15.94 Å × 11.77 Å) along the a axis. It is worth mentioning that an In(1) ion displays extremely low tetra-coordination modes after the thermal removal of its associated four solvent molecules of H2O and DMF. Activated {[In2(BDCP)](Br)}n (NUC-65Br), as a defective material because of its extremely unsaturated metal centers, could be generated by bromine ion exchange, solvent exchange, and vacuum drying. Catalytic experiments proved that the conversion of epichlorohydrin with 1 atm CO2 into 4-(chloromethyl)-1,3-dioxolan-2-one catalyzed by 0.11 mol % NUC-65Br could reach 99% at 65 °C within 24 h. Moreover, with the aid of 5 mol % cocatalyst n-Bu4NBr, heterogeneous NUC-65Br owns excellent universal catalytic performance in most epoxides under mild conditions. In addition, NUC-65Br, as a heterogeneous catalyst, exhibits higher activity and better selectivity for Knoevenagel condensation of aldehydes and malononitrile. Hence, this work offers a fresh insight into the design of structure defect cationic metal-organic frameworks, which can be better applied to various fields because of their promoted performance.
Collapse
Affiliation(s)
- Shurong Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongtai Chen
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
39
|
Said A, Zhang G, Liu C, Wang D, Niu H, Liu Y, Chen G, Tung CH, Wang Y. A butterfly-like lead-doped titanium-oxide compound with high performance in photocatalytic cycloaddition of CO 2 to epoxide. Dalton Trans 2023; 52:2392-2403. [PMID: 36723215 DOI: 10.1039/d2dt03990g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cycloaddition reaction of CO2 to epoxides is quite promising for CO2 capture and storage as well as the production of value-added fine chemicals. Herein, a novel atomically precise lead-doped titanium-oxide cluster with the formula Ti10Pb2O16(phen)4(Ac)12(DMF)2 (denoted as Ti10Pb2; phen = 1,10-phenanthroline; Ac = acetate; DMF = dimethylformamide) was synthesized through a facile solvothermal process, and is a molecular photocatalyst with surface-anchored main-group metal active sites. Its structure was characterized by single-crystal X-ray diffraction and other complementary techniques. Ti10Pb2 showed high photo-response and charge-separation efficiency under simulated sunlight irradiation. Ti10Pb2 was successfully used in the cycloaddition reaction of CO2 with epoxides under solvent-free conditions. While its catalytic activity due to the Lewis acidity was moderate, simulated solar light irradiation further enhanced the reaction rate, demonstrating the synergistic effect of photocatalysis and Lewis-acid thermocatalysis.
Collapse
Affiliation(s)
- Amir Said
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Caiyun Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Huihui Niu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Guanjie Chen
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. .,State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
40
|
Said A, Liu C, Gao C, Wang D, Niu H, Liu Y, Wang G, Tung CH, Wang Y. Lead-Decorated Titanium Oxide Compound with a High Performance in Catalytic CO 2 Insertion to Epoxides. Inorg Chem 2023; 62:1901-1910. [PMID: 36184952 DOI: 10.1021/acs.inorgchem.2c01315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The CO2 cycloaddition to epoxides is an efficient method for CO2 capture and storage, important not only for reducing greenhouse gas emission but also for producing cyclic carbonates, which are valuable industrial materials. In this study, we report a novel high-nuclearity titanium oxide cluster (TOC) inlayed with main-group element Pb2+, H2Ti16Pb9O24(SA)18(DMF)10(OH2)2 (denoted as 1; SA = salicylate; DMF = N,N-dimethylformamide), which has the property of visible-light absorption and has shown high catalytic activities for cycloadditions of CO2 under visible-light irradiation. The cluster was synthesized in a high yield in a facial solvothermal process. Its structure and electronic structure were characterized by single-crystal X-ray diffraction, density functional theory calculations, and complementary techniques. The cycloaddition reactions were performed under solvent-free conditions. While the catalytic activity due to the Lewis acidity was moderate, visible-light irradiation further folded the reaction rates. The turnover number reached 3400 with a turnover frequency of 120 h-1. Mechanism studies indicated a synergistic effect of the Lewis acidity and photogenerated charge carriers. The performance of 1 in reversible I2 uptake was also investigated. This study demonstrates the high potential of heterometal-decorated TOCs in the cost-effective and efficient CO2 cycloaddition reaction under mild conditions.
Collapse
Affiliation(s)
- Amir Said
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Caiyun Liu
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chang Gao
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dexin Wang
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Huihui Niu
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yanshu Liu
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chen-Ho Tung
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
41
|
Wu C, Xing Z, Yang S, Li Z, Zhou W. Nanoreactors for photocatalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Wang S, Li S, Feng H, Yang W, Feng YS. Visible-Light-Driven Porphyrin-Based Bimetallic Metal-Organic Frameworks for Selective Photoreduction of Nitro Compounds under Mild Conditions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4845-4856. [PMID: 36629327 DOI: 10.1021/acsami.2c22686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Selective reduction of nitroaromatics to the corresponding amines generally requires complex conditions, involving pressurized hydrogen, higher temperatures, or organic acids. In this work, we successfully prepared a series of porphyrin-based MOF photocatalysts (Pd-PMOFs, In-PMOFs, and In/Pd-PMOFs) via a facile solvothermal method for the efficient selective reduction of nitroaromatics to corresponding anilines with deionized water as the hydrogen donor. Being a new structured material (monoclinic, C52H40InN6O8Pd), on account of the abundant pore channels, strong light absorption capability, well-matched bandgap, as well as the coordination of indium ions and palladium ions, In/Pd-MOFs have excellent migration efficiency of photo-induced electrons and holes. Specifically, the In/Pd-PMOF photocatalyst manifested superior conversion (100%) and selectivity (≥80%) toward the screened nitro compounds under mild conditions. This work avoids the use of strong reductants, organic acids, and pressurized hydrogen gas as hydrogen sources, providing a promising concept for developing green catalytic systems.
Collapse
Affiliation(s)
- Sheng Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui230009, China
| | - Shihao Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui230009, China
| | - Huiyi Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui230009, China
| | - Wenqing Yang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui230009, China
| | - Yi-Si Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui230009, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei230009, P. R. China
| |
Collapse
|
43
|
Wu L, Luo Y, Wang C, Wu S, Zheng Y, Li Z, Cui Z, Liang Y, Zhu S, Shen J, Liu X. Self-Driven Electron Transfer Biomimetic Enzymatic Catalysis of Bismuth-Doped PCN-222 MOF for Rapid Therapy of Bacteria-Infected Wounds. ACS NANO 2023; 17:1448-1463. [PMID: 36622022 DOI: 10.1021/acsnano.2c10203] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, a biomimetic nanozyme catalyst with rapid and efficient self-bacteria-killing and wound-healing performances was synthesized. Through an in situ reduction reaction, a PCN-222 metal organic framework (MOF) was doped with bismuth nanoparticles (Bi NPs) to form Bi-PCN-222, an interfacial Schottky heterojunction biomimetic nanozyme catalyst, which can kill 99.9% of Staphylococcus aureus (S. aureus). The underlying mechanism was that Bi NP doping can endow Bi-PCN-222 MOF with self-driven charge transfer through the Schottky interface and the capability of oxidase-like and peroxidase-like activity, because a large number of free electrons can be captured by surrounding oxygen species to produce radical oxygen species (ROS). Furthermore, once bacteria contact Bi-PCN-222 in a physiological environment, its appropriate redox potential can trigger electron transfer through the electron transport pathway in bacterial membranes and then the interior of the bacteria, which disturbs the bacterial respiration process and subsequent metabolism. Additionally, Bi-PCN-222 can also accelerate tissue regeneration by upregulating fibroblast proliferation and angiogenesis genes (bFGF, VEGF, and HIF-1α), thereby promoting wound healing. This biomimetic enzyme-catalyzed strategy will bring enlightenment to the design of self-bacterial agents for efficient disinfection and tissue reconstruction simultaneously.
Collapse
Affiliation(s)
- Lihua Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan430062, People's Republic of China
| | - Yue Luo
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan430062, People's Republic of China
| | - Chaofeng Wang
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin300401, People's Republic of China
| | - Shuilin Wu
- School of Materials Science and Engineering, Peking University, Beijing100871, People's Republic of China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing100871, People's Republic of China
| | - Zhaoyang Li
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin300072, People's Republic of China
| | - Zhenduo Cui
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin300072, People's Republic of China
| | - Yanqin Liang
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin300072, People's Republic of China
| | - Shengli Zhu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin300072, People's Republic of China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen516473, People's Republic of China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan430062, People's Republic of China
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin300401, People's Republic of China
| |
Collapse
|
44
|
Recent advances in the application of metal-organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide (CO2) to value-added chemicals. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Qu Y, Chen Y, Ye Y, Xu P, Sun J. Supercritical CO2 assisted synthesis of SBA-15 supported amino acid ionic liquid for CO2 cycloaddition under cocatalyst/metal/solvent-free conditions. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Gong X, Zhang Y, Xu Y, Zhai G, Liu X, Bao X, Wang Z, Liu Y, Wang P, Cheng H, Fan Y, Dai Y, Zheng Z, Huang B. Synergistic Effect between CO 2 Chemisorption Using Amino-Modified Carbon Nitride and Epoxide Activation by High-Energy Electrons for Plasmon-Assisted Synthesis of Cyclic Carbonates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51029-51040. [PMID: 36325951 DOI: 10.1021/acsami.2c16382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Photocatalytic CO2 cycloaddition is a promising approach for CO2 value-added processes. However, the efficiency of plasmon-assisted CO2 cycloaddition still needs to be improved and the reaction mechanism is unclear. Herein, g-C3N4/Ag (ACN-Ag) hybrids exhibited superior activity of CO2 cycloaddition by coupling a semiconductor into the plasmonic system, in which the ACN grafting amino group by the formation of carbon vacancies can enhance CO2 chemisorption; meanwhile, photo-generated electrons from ACN transfer to Ag to form high-energy electrons, which can activate propylene oxide, accelerating the ring-opening step. Importantly, photo-generated electron injection from ACN to Ag and the interaction between Ag nanoparticles and ACN were confirmed by single-particle photoluminescence spectroscopy. The wavelength-dependent activity demonstrated that the plasmon excitation is crucial for the reaction. Moreover, in situ single-particle PL quenching caused by propylene oxide and in situ electron paramagnetic resonance verified the activation of propylene oxide by ACN-Ag. This work is conducive to an in-depth understanding of the mechanism of CO2 cycloaddition at the single-particle level and provides guidance for the organic synthesis.
Collapse
Affiliation(s)
- Xueqin Gong
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yujia Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yayang Xu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Guangyao Zhai
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xiaolei Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xiaolei Bao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
47
|
Catalytic conversion of CO2 by supported ionic liquid prepared with supercritical fluid deposition in a continuous fixed-bed reactor. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Wang D, Said A, Liu Y, Niu H, Liu C, Wang G, Li Z, Tung CH, Wang Y. Cr-Ti Mixed Oxide Molecular Cages: Synthesis, Structure, Photoresponse, and Photocatalytic Properties. Inorg Chem 2022; 61:14887-14898. [PMID: 36063420 DOI: 10.1021/acs.inorgchem.2c02605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The solvothermal reaction of titanium isopropoxide and chromate in the presence of benzoate produced two novel host-guest clusters encapsulating Cs+ or H3O+, (H3O)@Ti7Cr14 and Cs@Ti7Cr14. The most remarkable feature is that the Ti7O7 ring is concentrically embraced by a Cr14O14 ring to form a rigid Ti7Cr14 host. ESI-MS and 133Cs NMR revealed that the overall framework structures are preserved, whereas the benzoate ligands on the two clusters may be labile in solutions. Both (H3O)@Ti7Cr14 and Cs@Ti7Cr14 exhibit good UV-vis light-responsive properties and photocatalytic activities, with absorption edges extending up to 780 nm. Cs@Ti7Cr14 is an effective visible-light-responsive photocatalyst in both the heterogeneous methylene dye degradation and homogeneous CO2 cycloaddition reaction under mild conditions like room temperature and 1 bar of CO2. According to the mechanism studies, Cs+, as a rigid guest, can significantly improve the photogenerated charge separation efficiency of the Ti7Cr14 host, thereby improving its interface charge separation properties, photocurrent, and photocatalytic activities. Our findings not only provide new members of heterometallic titanium oxide clusters to enrich the metal oxide cluster family but also open up new possibilities for their photoresponses, which may play an important role in solar energy harvesting for sustainable chemistry.
Collapse
Affiliation(s)
- Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Amir Said
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Huihui Niu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Caiyun Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
49
|
Sarkar C, Paul R, Dao DQ, Xu S, Chatterjee R, Shit SC, Bhaumik A, Mondal J. Unlocking Molecular Secrets in a Monomer-Assembly-Promoted Zn-Metalated Catalytic Porous Organic Polymer for Light-Responsive CO 2 Insertion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37620-37636. [PMID: 35944163 DOI: 10.1021/acsami.2c06982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anthropogenic carbon dioxide (CO2) emission is soaring day by day due to fossil fuel combustion to fulfill the daily energy requirements of our society. The CO2 concentration should be stabilized to evade the deadly consequences of it, as climate change is one of the major consequences of greenhouse gas emission. Chemical fixation of CO2 to other value-added chemicals requires high energy due to its stability at the highest oxidation state, creating a tremendous challenge to the scientific community to fix CO2 and prevent global warming caused by it. In this work, we have introduced a novel monomer-assembly-directed strategy to design va isible-light-responsive conjugated Zn-metalated porous organic polymer (Zn@MA-POP) with a dynamic covalent acyl hydrazone linkage, via a one-pot condensation between the self-assembled monomer 1,3,5-benzenetricarbohydrazide (TPH) and a Zn complex (Zn@COM). We have successfully explored as-synthesized Zn@MA-POP as a potential photocatalyst in visible-light-driven CO2 photofixation with styrene epoxide (SE) to styrene carbonate (SC). Nearly 90% desired product (SC) selectivity has been achieved with our Zn@MA-POP, which is significantly better than that for the conventional Zn@TiO2 (∼29%) and Zn@gC3N4 (∼26%) photocatalytic systems. The excellent light-harvesting nature with longer lifetime minimizes the radiative recombination rate of photoexcited electrons as a result of extended π-conjugation in Zn@MA-POP and increased CO2 uptake, eventually boosting the photocatalytic activity. Local structural results from a first-shell EXAFS analysis reveals the existence of a Zn(N2O4) core structure in Zn@MA-POP, which plays a pivotal role in activating the epoxide ring as well as capturing the CO2 molecules. An in-depth study of the POP-CO2 interaction via a density functional theory (DFT) analysis reveals two feasible interactions, Zn@MA-POP-CO2-A and Zn@MA-POP-CO2-B, of which the latter has a lower relative energy of 0.90 kcal/mol in comparison to the former. A density of states (DOS) calculation demonstrates the lowering of the LUMO energy (EL) of Zn@MA-POP by 0.35 and 0.42 eV, respectively, for the two feasible interactions, in comparison to Zn@COM. Moreover, the potential energy profile also unveils the spontaneous and exergonic photoconversion pathways for the SE to SC conversion. Our contribution is expected to spur further interest in the precise design of visible-light-active conjugated porous organic polymers for CO2 photofixation to value-added chemicals.
Collapse
Affiliation(s)
- Chitra Sarkar
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Shaojun Xu
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K
| | - Rupak Chatterjee
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhash Chandra Shit
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asim Bhaumik
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
50
|
Fan SC, Chen SQ, Wang JW, Li YP, Zhang P, Wang Y, Yuan W, Zhai QG. Precise Introduction of Single Vanadium Site into Indium-Organic Framework for CO 2 Capture and Photocatalytic Fixation. Inorg Chem 2022; 61:14131-14139. [PMID: 35998379 DOI: 10.1021/acs.inorgchem.2c02250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The capture and fixation of CO2 under mild conditions is a cost-effective route to reduce greenhouse gases, but it is challenging because of the low conversion and selectivity issues. Metal-organic frameworks (MOFs) are promising in the fields of adsorption and catalysis because of their structural tunability and variability. However, the precise structural design of MOFs is always pursued and elusive. In this work, a metal-mixed MOF (SNNU-97-InV) was designed by precisely introducing single vanadium site into the isostructural In-MOF (SNNU-97-In). The single V sites clearly change the interactions between the MOF framework and CO2 molecules, leading to a 71.3% improvement in the CO2 adsorption capacity. At the same time, the enhanced light absorption enables SNNU-97-InV to efficiently convert CO2 into cyclic carbonates (CCs) with epoxides under illumination. Controlled experiments showed that the promoted performance of SNNU-97-InV may be that the V═O site can more easily combine with CO2 and convert them into an intermediate state under illumination, and the possible mechanism was thus speculated.
Collapse
Affiliation(s)
- Shu-Cong Fan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Shuang-Qiu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Jia-Wen Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Yong-Peng Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Peng Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Ying Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Wenyu Yuan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| |
Collapse
|